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Abstract. We used a global long-term (1995–2015) data set
of total column water vapour (TCWV) derived from satellite
observations to quantify to which extent the temporal pat-
terns of various teleconnections can be identified in this data
set. To our knowledge, such a comprehensive global TCWV
data set was rarely used for teleconnection studies. One im-
portant property of the TCWV data set is that it is purely
based on observational data. We developed a new empirical
method to decide whether a teleconnection index is signifi-
cantly detected in the global data set. We compared our new
method to well-established hypothesis tests and found good
agreement with the results of our approach. Based on our
empirical method more than 40 teleconnection indices were
significantly detected in the global TCWV data set derived
from satellite observations. In addition to the satellite data
we also applied our method to other global data sets derived
from ERA-Interim. One important finding is that the spatial
patterns obtained for the ERA TCWV data are very similar
to the observational TCWV data set indicating a high consis-
tency between the satellite and ERA data. Moreover, similar
results are also found for two selections of ERA data (either
all data or mainly clear-sky data). This finding indicates that
the clear-sky bias of the satellite data set is negligible for the
results of this study. However, for some indices, also system-
atic differences in the spatial patterns between the satellite
and model data set were found probably indicating possi-
ble shortcomings in the model data. For most “traditional”
teleconnection data sets (surface temperature, surface pres-
sure, geopotential heights and meridional winds at different
altitudes) a smaller number of significant teleconnection in-

dices was found than for the TCWV data sets, while for zonal
winds at different altitudes, the number of significant tele-
connection indices (up to > 50) was higher. The strongest
teleconnection signals were found in the data sets of tro-
pospheric geopotential heights and surface pressure. In all
global data sets, no “other indices” (solar variability, strato-
spheric AOD or hurricane frequency) were significantly de-
tected. Since many teleconnection indices are strongly corre-
lated, we also applied our method to a set of orthogonalised
indices, which represent the dominant independent temporal
teleconnection patterns. The number of significantly detected
orthogonalised indices (20) was found to be much smaller
than for the original indices (42). Based on the orthogo-
nalised indices we derived the global spatial distribution of
the cumulative effect of teleconnections. The strongest effect
on the TCWV is found in the tropics and high latitudes.

1 Introduction

It has been known for a long time that weather at one lo-
cation can be linked to weather at a far distant location
(Walker and Bliss, 1932; Bjerknes, 1966, 1969; Wallace
and Gutzler, 1981; Nigam and Baxter, 2015; Feldstein and
Frantzke, 2017, and references therein). The distances be-
tween such locations can be very large, up to opposite loca-
tions on the globe. The strength of the correlation varies with
location exhibiting regions of maximum (anti-)correlations
and regions without any significant correlation. The result-
ing correlation patterns are referred to as teleconnection pat-
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terns. The strongest teleconnection is the El Nin¯o–Southern
Oscillation (ENSO) phenomenon (Walker and Bliss, 1932;
Bjerknes, 1966, 1969), but many more teleconnections are
known, which are located in many regions in both hemi-
spheres (e.g. Feldstein and Frantzke, 2017, and references
therein).

The temporal variability of teleconnections is usually de-
scribed by teleconnection indices (e.g. the ratio of surface
pressures at selected stations) and covers a wide range of fre-
quencies from a few days to inter-annual and inter-decadal
timescales (Hurrel, 1995; Feldstein, 2000; Nigam and Bax-
ter, 2015; Woolings et al., 2015; Feldstein et al., 2017). At-
mospheric teleconnections (e.g. the North Atlantic Oscilla-
tion, NAO) have typically higher intrinsic frequencies than
oceanic teleconnection indices (e.g. the Atlantic Meridional
Mode, AMM).

Teleconnections can be identified in different data sets like
sea level pressure, surface air temperature, sea level pressure,
as well as geopotential heights and wind fields at different
altitudes (Wallace and Gutzler, 1981; Thompson and Wal-
lace, 1998; Nigam and Baxter, 2015; Feldstein and Frantzke,
2017). In recent studies, the geopotential height is the most
used variable for the quantification of teleconnections. Tele-
connections are mainly found in the troposphere with the
strongest amplitudes in the upper troposphere (Feldstein,
2000). But several teleconnections also have connections
to the stratosphere (Feldstein, 2000, and references therein;
Nigam and Baxter, 2015; Feldstein and Frantzke, 2017;
Domeisen et al., 2019). Teleconnections can be identified
and defined in different ways: historically, teleconnection
indices were empirically and intuitively determined based
on the locations of meteorological stations (e.g. Walker and
Bliss, 1932). In later studies more objective methods were
developed based on correlation matrices, principle compo-
nent analyses (PCAs) (also referred to as empirical orthogo-
nal function (EOF) methods) or rotated PCAs (also referred
to as varimax rotation). More details about these and further
methods can be found in Horel (1981), Wallace and Gutzler
(1981), Barnston and Livezey (1987), Thompson and Wal-
lace (1998), Feldstein and Frantzke (2017) and references
therein. If these methods are applied, the derived telecon-
nection time series and spatial patterns particularly depend
on the selected region of the globe. Most of such studies use
pressure or geopotential heights and are confined to midlati-
tude and Arctic regions in the Northern Hemisphere because
of the barotropic conditions in the tropical latitudes. Thus
usually, these methods are not applied for the full globe.

Besides the fact that teleconnections are interesting in
themselves, their study is also important for other applica-
tions. For example, taking teleconnections into account can
improve weather forecasts (Feldstein and Frantzke, 2017,
and references therein). They have impact on extreme events,
e.g. heat waves, droughts, and floods (King et al., 2016; Yeh
et al., 2018, and references therein) and can affect storm
tracks. In addition to atmospheric quantities (e.g. humidity,

precipitation, stratospheric ozone), teleconnections also af-
fect oceanic variables (e.g. Arctic and Antarctic sea ice, the
Atlantic thermohaline circulation) and the marine and ter-
restrial ecosystems (Feldstein and Frantzke, 2017, and refer-
ences therein). Finally it is worth noting that teleconnections
are expected to change in a changing climate (e.g. King et
al., 2016; Feldstein and Frantzke, 2017; Yeh et al., 2018).

In this study we investigate to which extent the tempo-
ral patterns of various teleconnections can be identified in
the global distribution of the total column water vapour
(TCWV). For that purpose we use a consistent long-term
data set (1995–2015) derived from satellite observations in
the visible spectral range obtained from GOME on ERS-
2, SCIAMACHY on ENVISAT and GOME-2 on MetOp
(Beirle et al., 2018). The data sets consist of monthly mean
values on a 1◦×1◦ latitude–longitude grid, which were care-
fully merged making use of the long overlap time between
the different satellite data sets (for details see Beirle et al.,
2018). Validation by independent data sets showed a smooth
temporal variation with a stability within 1 % over the whole
period (1995–2016) (Danielczok and Schröder, 2017). To our
knowledge, teleconnection studies using water vapour data
sets are rare (e.g. van Malderen et al., 2018). One particular
specialty/advantage of our study is that we use for the first
time a global data set which is entirely based on measure-
ments. Here it is important to note that the TCWV is domi-
nated by the atmospheric layers close to the surface. Another
important aspect of our study is the development of a new
empirical method to decide whether a teleconnection (index)
can be significantly identified in an atmospheric data set or
not.

Our study addresses the following main questions:

a. Which teleconnection indices (and other time series
such as indices of solar activity) can be significantly
identified in the satellite TCWV data set (or other data
sets)? Here it should be noted that with significance
we do not mean that an index is significantly detected
everywhere on the globe. We are rather interested in
whether an index is significantly detected somewhere
on the globe, which is usually referred to as “field sig-
nificance” (see e.g. Wilks, 2006). We also do not aim
to identify causal relationships or even to predict the
TCWV based on teleconnection indices.

b. Are the same results obtained for TCWV data from ob-
servations and models? Here also the question is ad-
dressed of how representative the satellite observations
(for mainly clear sky) are of all sky data sets. An-
other important aspect is to compare the spatial patterns
obtained for the different teleconnections between the
satellite and model data sets. Differences in the spatial
patterns can give hints on possible shortcomings of the
model simulations or measurements.
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c. How does the number of significant teleconnections in
the global TCWV data sets compare to similar results
obtained for “traditional” teleconnection data sets like
surface temperature, sea level pressure or wind fields,
and geopotential heights at different altitudes? From
this comparison we can conclude whether our global
TCWV data set is suited for teleconnection studies. One
advantage of the use of this TCWV data set is that it is
exclusively derived from measurements.

d. What is the spatial distribution of teleconnection pat-
terns found in the global TCWV distribution? One mo-
tivation for this question is that the different telecon-
nections have specific drivers (e.g. tropical convection).
Thus the obtained spatial distributions can give hints on
the underlying mechanisms.

The paper is organised as follows: in Sect. 2 the global data
sets used in this study are introduced, and in Sect. 3 the con-
sidered (mostly teleconnection) indices are described. Sec-
tion 4 presents the fit function of the indices to the global data
sets and the obtained global patterns. In Sect. 5 a new method
for the determination of the significance is introduced, which
is applied to the different global data sets in Sect. 6. In Sect. 7
a reduced set of orthogonalised teleconnection indices is ex-
tracted and. Section 8 presents the global distribution of the
cumulative effect of the teleconnections.

2 Data sets

2.1 Total column water vapour

Our study focuses on global long-term data sets of the total
column water vapour (TCWV). Here we use three data sets:

a. Satellite observations from July 1995 to October 2015
(Beirle et al., 2018) are derived from the satellite instru-
ments GOME on ERS-2 (1995 to 2003), SCIAMACHY
on ENVISAT (2002 to 2012) and GOME-2 on MetOp
(2006 to present), which have similar overpass times
(between 09:30 and 10:30 LT). The data analysis is per-
formed in the red spectral range. Since these satellite in-
struments observe scattered and reflected sunlight, the
observations are sensitive for the whole atmospheric
column including the surface-near layers which usu-
ally contain the largest fraction of the total atmospheric
TCWV. The start date of the time series was predeter-
mined by the start of the first satellite mission; the end
date of the time series was set to October 2015, because
some of the used time series were only available until
that date. The data set is available on a 1◦×1◦ latitude–
longitude grid with monthly resolution. The data set
does not cover polar winter, since the satellite obser-
vations use scattered and reflected sunlight. It should
be noted that the satellite data set used in this study

was optimised with respect to temporal stability, which
makes it well-suited for climate studies. However, be-
cause of the rather simple analysis approach, for specific
situations small systematic biases of the absolute values
might occur, e.g. related to the effects of surface albedo
or terrain height. It should also be noted that the satel-
lite data set has some gaps over high mountains (due to
the simplified cloud filter) and north of India (because of
routine internal calibration measurements of the GOME
instrument over that region).

In Fig. 1 the variation of the TCWV with latitude and
time is shown (the latitude bins represent zonally aver-
aged values). The top panel shows the original TCWV
data set, whereas both lower panels present the abso-
lute and relative anomalies with the mean seasonal cy-
cle removed. Several anomaly patterns are clearly ob-
vious, which are mainly related to strong ENSO events
(see e.g. Soden, 2000; Simpson et al., 2001; Wagner et
al., 2005). Especially for the relative anomalies, many
high-frequency variations are found. While part of these
high-frequency variations represent measurement noise
and atmospheric noise, the results of this study showed
that they also represent atmospheric teleconnections.

In addition to the satellite observations of the TCWV we
also use global time series of the TCWV derived from
ECMWF reanalysis (ERA Interim, Dee et al., 2011).
The main purpose of using model data is that we want
to see if teleconnections are found in a similar way in
both satellite and model data sets. In addition, the use
of model data also allows the quantification of a possi-
ble clear-sky bias in the satellite observations, because
these observations are made for mainly cloud-free con-
ditions. Therefore we use two model data sets:

b. All ERA data including clear and cloudy conditions are
used.

c. Only ERA data for clear sky observations are used.
Here, a cloud cover below 0.3 between 1 and 6 km is
regarded as cloud free. This criterion reflects the obser-
vational conditions of the satellite data set.

Both data sets have a temporal resolution of 6 h. For the com-
parison with the satellite TCWV results, the ERA data were
temporally interpolated to the time of the satellite overpass
(10:00 LT). From the comparison of the results for the mea-
surements and model data sets, the effect of the specific sam-
pling of the satellite observations observing mainly cloud-
free situations can be investigated. The application of the
cloud filter leads to a reduction of the number of considered
model data of about 40 %. In Fig. 2 the global mean distribu-
tions of the TCWV data sets from satellite observations and
ERA data are shown. Similar patterns are found in all three
data sets indicating the good consistency amongst them. The
highest values are found over the tropics, especially over the
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Figure 1. (a) TCWV measured from satellite as a function of time and latitude (zonally averaged values) on a 1◦× 1◦ latitude–longitude
grid with monthly resolution; (b) (absolute anomalies) after the mean seasonal cycle and a linear trend was subtracted; (c) relative anomalies
(absolute anomalies divided by the corresponding monthly mean TCWV).

western Pacific. Lower values are found towards higher lati-
tudes showing the strong dependence of the TCWV on tem-
perature.

2.2 Other global data sets

Teleconnections patterns are usually derived from meteoro-
logical quantities like surface pressure and temperature or
geopotential heights and wind fields at different altitudes. In
this study we also consider such quantities, which we also
obtained from ERA data (see Table 1). We analyse these data
sets similarly to the TCWV data sets (details are described
below). In this way we will assess in how far the impact of
teleconnections on TCWV is comparable to traditional tele-
connection data sets.

3 Teleconnection indices

We performed an extensive search for teleconnection indices
in the scientific literature and websites of national weather
services. We found in total 54 teleconnection indices, which
cover the time span of our TCWV data set. An overview on
these teleconnection indices as well as additional time series
(e.g. of the solar activity) is given in Table 2. Here it should
be noted that for some of these indices with low frequencies
(e.g. MGII or IPO) no full period is covered by our 20-year-
long satellite TCWV data set, which might be one reason
why they are not significantly detected.

Although we not only focus on teleconnection indices in
this study, in the following we use the term “index” to de-
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Figure 2. Global mean distribution of the TCWV from satellite ob-
servations (a) and ERA data: (b) all data; (c) only clear sky obser-
vations during day.

scribe the whole set of teleconnection indices and other time
series.

It should be noted that for several teleconnection indices
(in particular for the Madden–Julian Oscillation) different
definitions exist. Thus the number of teleconnection indices
in Table 2 is much larger than the corresponding atmospheric
phenomena. Many of these indices (describing the same phe-
nomenon) as well as many of the other teleconnection in-
dices are highly correlated. The strength of these correla-
tions is presented in Fig. 3 as a matrix with correlation co-
efficients between the different indices (after the seasonal
cycles were removed). In spite of the correlations amongst
the teleconnection indices, we decided as a first step to in-

clude them all in our study, because beforehand it is not clear
which index might be best suited to represent a teleconnec-
tion phenomenon. Using our empirical approach, however, it
becomes possible to quantify the significance and strength
of the different indices and thus to select the best suited
index for a given teleconnection phenomenon. Finally, we
apply an orthogonalisation for the most significant indices
(see Sect. 7) to minimise the effect of the correlations and
to identify the dominant temporal teleconnection patterns in
our TCWV data set.

A detailed overview on the selected indices and their data
sources is provided in Fig. A6 in the Appendix.

4 Analysis of global data sets

To determine the strength with which individual indices are
detected in the temporal variations of the different global
data sets, the index time series are fitted to the global data
sets as described in Sect. 4.1 below. Before the fit is applied,
the mean seasonal cycle (1995–2015) and a linear trend are
subtracted from the individual indices (see e.g. Horel, 1981).
Some teleconnection indices are characterised by strong sea-
sonal cycles, whereas others are not. Finally the obtained
anomalies are normalised by the corresponding standard de-
viations. This ensures that the obtained fit coefficients for
the different indices can be directly compared. The differ-
ent steps of these preparations are illustrated in Fig. A7. For
consistency, the same steps are also applied to the different
global data sets before the fit is applied.

4.1 Fit function

For each 1◦× 1◦ latitude–longitude pixel of the global
data sets (the example below is for the TCWV) the de-
seasonalised time series of the monthly mean anomalies are
fitted by the following function:

TCWVi(t)= c+ b · t + fi · indexi(t). (1)

Here c and b describe constant and linear terms. indexi repre-
sents the selected normalised index of monthly mean anoma-
lies. The fit coefficient fi describes the sign and strength of
the contribution of the chosen index to the variability of the
TCWV anomaly of the chosen 1◦× 1◦ pixel. The constant
offset c and possible linear trend b and the fit coefficient fi

are simultaneously determined by the fit. An example of the
derived fit coefficient for the ENSO index is shown in Fig. 4
(top). Systematic patterns with positive and negative fit coef-
ficients are found. The fit function is separately applied to the
individual indices listed in Table 2. Here it should be noted
that the fit function could in principle be applied to several or
even all indices simultaneously. However, since many indices
are highly correlated, the interpretation of the results would
then not be straightforward. Thus, we chose to include the
individual indices one by one in the fit function. Besides the
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Table 1. Meteorological data sets used in this study.

Quantity Source Altitude

TCWV Satellite observations Total column
TCWV ECMWF reanalysis (all sky conditions) Total column
TCWV ECMWF reanalysis (clear sky conditions) Total column
Surface temperature ECMWF reanalysis (all sky conditions) Surface
Surface pressure ECMWF reanalysis (all sky conditions) Surface pressure extrapolated to sea level
Geopotential heights ECMWF reanalysis (all sky conditions) 50, 200, 500, 850, 950 hPa
Zonal winds ECMWF reanalysis (all sky conditions) 50∗, 200, 500, 850, 950 hPa
Meridional winds ECMWF reanalysis (all sky conditions) 50, 200, 500, 850, 950 hPa

∗ The zonal winds at 50 hPa are not further analysed, because they are – by definition – dominated by the Quasi-Biennial Oscillation (QBO)
teleconnection signal.

Table 2. Teleconnection indices and other time series used in this study. More details about these indices as well as their sources are given in
Fig. A6 in the Appendix.

Indices similar
to ENSO (7)

Other
oceanic
indices (16)

Atmospheric
polar
indices (8)

MJO
indices
(15)

Other atmospheric
indices (8)

Others
indices (7)

BEST
N34
TPI
ONI
ENSO
N4
IND

HAW
PDO
PMM
N1
TNI
NTA
TNA
WHWP
IPO
CAR
AMO
DMI
AMM
STA
TSA
EA_ersst

SCA
AAO
EAWR
NAO
EPNP
AO
PE
WP

MJ1
MJ2
MJN
VPM1
VPM2
VPMN
RMM1
RMM2
RMMN
OOMI1
OOMI2
OOMIN
FMO1
FMO2
FMON

PNA
SOI
NOI
EA
QBO
Q30
Q50
Q70

Solar indices:
RI
MGII
SWO
S107
AP
HUR
(hurricane frequency)
SAOD (stratospheric
AOD)

parameters c, b, and the fit coefficient fi , also the difference
between the temporal variation of the global data sets and
the applied fit function is quantified by the root mean square
(rms). The rms for the ENSO index is shown in Fig. 4 (sec-
ond row).

In order to quantify the importance of a selected index,
a second fit is performed with only the constant and linear
terms:

TCWV(t)= c+ b · t. (2)

The comparison of the rms with and without including the
index term (Eqs. 1 and 2) allows the quantification of the im-
portance of the chosen index to describe the temporal vari-
ation of the data set. Therefore the following quantity is de-
fined:

delta rms=
rmswithout index− rmswith index

mean of data set(latitude)
. (3)

The rms differences are divided by the zonal mean value
(see Appendix A1) of the considered quantity, because (like
for water vapour) many of the analysed quantities depend
strongly on latitude. The delta rms is a measure for the mag-
nitude of the variance of a considered data set, which can
be explained by the chosen teleconnection pattern. If there is
high similarity of the temporal variation of an index with the
temporal variation of the considered data set, the delta rms
is large. If there is no similarity, the corresponding delta rms
value is zero.

It should be noted that instead of the delta rms values,
also the correlation coefficients between the considered data
set and the fit function (Eq. 1) might have been used since
the spatial patterns of both quantities are very similar (see
Fig. A8).

The delta rms value for the ENSO index is also shown in
Fig. 4 (bottom).
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Figure 3. Correlation coefficients between the different teleconnec-
tion indices (after seasonal cycle was removed). Note that only one
set of MJO indices is included here to minimise the total number of
indices.

The fit results in Fig. 4 for the ENSO index are obtained
for the TCWV from satellite observations (left), ERA data
(centre), and ERA data for clear sky conditions (right). High
fit coefficients (Fig. 4 top) mean that a substantial part of the
measured TCWV time series can be explained by the ENSO
index pattern. High negative fit coefficients mean the same
for the negative ENSO index. Fit coefficients of zero indi-
cate no connection to ENSO. Very similar spatial patterns are
found for the three TCWV data sets indicating that the ENSO
phenomenon is well captured in the satellite and model data
sets. From the similarity between the model data including all
sky conditions (centre) or only clear sky conditions (right), it
can be concluded that the satellite observations (represent-
ing mainly clear sky conditions) are representative of all sky
conditions (no obvious clear-sky bias).

In all three data sets, the smallest rms values (Fig. 4, sec-
ond row) are found close to the Equator. This is an interesting
finding but can probably be explained by (a) the rather high
TCWV and (b) its rather small variability in these regions.
In mid-latitudes, systematically higher rms values are found
for the satellite observations compared to the model results.
This is probably related to the rather large effects of clouds
on the satellite observations, which becomes especially im-
portant in these regions (clouds lead to fewer valid observa-
tions and larger measurement uncertainties). Another inter-
esting finding is that in polar regions the rms for the satel-

lite observations is smaller than for the model results. This
finding is probably related to the sparseness of water vapour
measurements in these regions assimilated in the ECMWF
model. Thus the spatio-temporal variability of the satellite
observations is probably more realistic than that of the model
data. The rms for the model results for clear sky conditions is
slightly higher than for the model results for all conditions,
which is to be expected because of the reduced number of in-
put data for the cloud-filtered data set (about 40 % less com-
pared to the non-filtered data set).

The lower panel of Fig. 4 shows the delta rms for the
ENSO index indicating the reduction of the rms if the ENSO
index is included in the fit. As expected, the largest delta
rms is found over the tropical Pacific, where the ENSO phe-
nomenon is most pronounced. The global distribution of the
delta rms is very similar for the three data sets. The fit co-
efficients and delta rms for three other selected indices are
shown in Fig. 5 for the TCWV data set from satellite obser-
vations. For all indices, specific activity centres can be found
in different parts of the globe. The fit coefficients for all in-
dices are presented in the Appendix (Fig. A9). Note that in
general very similar spatial patterns are found for the three
TCWV data sets, but in some cases also systematic differ-
ences are derived (for more details see Sect. 6.1). As ex-
pected, for groups of indices with strong temporal correlation
also similar spatial patterns are found. This is most obvious
for indices similar to the ENSO index (first group of indices
in Figs. A6 and A8). Similar spatial patterns are also found
for other pairs of indices, e.g. between the Hawaiian Index
(HAW) and the Pacific Decadal Oscillation (PDO) as well
as between the South Tropical Atlantic Index (STA) and the
Equatorial Atlantic Index (EA_errst).

5 Determination of significance

For most teleconnection indices spatially coherent patterns
of fit coefficients and delta rms values are found in the global
maps (see Fig. A9) indicating that these indices are signif-
icantly detected in the global water vapour data sets. These
spatial patterns agree also well with the known regions where
the corresponding teleconnections are active. Information
about the significance of the fit results can be obtained from
the fit function itself. However, in practice, the significance
information from the fit has several limitations:

a. The determination of the significance is based on sev-
eral assumptions about the data sets (e.g. that all data
points of the time series have the same uncertainties
and follow a normal distribution). However, the errors
of the individual data points can be very different. For
example the effect of clouds on the errors of the satellite
TCWV data set can be very different for different sea-
sons and regions. Also, the uncertainties are not only
random but contain also systematic contributions. It is
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Figure 4. Global maps with the ENSO fit results for the three TCWV data sets. (a) Fit coefficients; (b) rms of the differences between
original data sets and fit functions; (c) delta rms values which describe the relative difference of the rms if the ENSO index is included or
excluded in the fit function (for details see text).

difficult (if not impossible) to quantify the uncertainties
of the involved time series.

b. The determination of the significance is based on pre-
scribed significance levels. The choice of such a signif-
icance level is arbitrary, and the obtained significance
information depends on this choice.

c. In several tests we fitted artificial time series to the
TCWV data set. These tests showed that even for such
non-geophysical time series “significant” fit results can
be obtained (see the examples in Fig. 6). On the left side
of this figure, fit results for a time series containing only
white noise, and on the right side fit results for a tempo-
rally reversed teleconnection index are shown (the tem-
porally reversed index is obtained from the original in-
dex by mirroring the time axis). The blue and red areas
show fit coefficients for both time series, which are clas-
sified as significant by the fit.

To address these difficulties, we developed and applied an
empirical approach to determine threshold values for the
delta rms values to decide whether an index is significantly
detected in a global data set. The new procedure is described
in the next section. It has the following two main advantages:

– The threshold values are determined empirically. Thus
no assumptions on the properties of the time series or
the significance levels have to be made.

– The method provides a clear procedure and in particu-
lar a metric which can be applied in a consistent way to
different data sets and thus allows a quantitative com-
parison (see Sect. 6).

We compared the results of our empirical approach to lit-
erature hypothesis tests and found good agreement (see
Sect. 5.2)

5.1 Use of reversed indices

The basic idea of our new approach is to use non-geophysical
indices for the estimation of the significance level. Non-
geophysical indices are indices without any temporal correla-
tion with the temporal variations of the investigated geophys-
ical data sets. For that purpose we chose all temporally re-
versed indices (see Table 2 and Fig. A6), because they cover
all relevant frequencies of the true teleconnections. In prac-
tice, the time axis is flipped, which means the first entry (July
1995) will be assigned to the last month (October 2015), and
so on. In a first step, we calculate the 99th percentile of the
delta rms values of the reversed indices for all 1◦× 1◦ pix-
els of the global map. We chose the 99th percentile because
it is close to the maximum but still not affected by individ-
ual outliers. Here it should be noted that the exact choice of
the percentile is not critical, as the same percentile is applied
to both original and reversed indices. We found exactly the
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Figure 5. Global maps with the fit results (left) and delta rms (right) for selected teleconnection indices with activity centres in northern high
latitudes (a), subtropics (b) and southern high latitudes (c). Results for the TCWV data set from satellite observations.

Figure 6. Global maps of the fit results for an artificial time series containing only white noise (a) and a temporally reversed teleconnection
index (AMM, b). The white areas represent fit results, which are classified as non-significant by the fit routine (for a 5 % significance level).

same set of significant indices (see below) if we used the 95th
percentile or the 98th percentile.

The red data points in Fig. 7 present the 99th percentiles
(p99) for all reversed indices for the three TCWV data sets.
From the mean value and standard deviation of the results
for all temporally reversed indices, we calculate a threshold
value (black dotted line in Fig. 7) for each data set (for de-
tails see Appendix A2). The obtained threshold value for the
TCWV data set from satellite observations is 0.0031. We also

applied the same method to a set of 100 artificial random
time series and obtained a slightly smaller threshold value of
0.0027 indicating that the threshold value obtained from the
temporally reversed time series is reasonable.

If the p99 values are above the threshold, it is likely that the
considered index significantly contributes to the variability of
the considered data set and vice versa.

In Fig. 7 besides the p99 values for the temporally reversed
indices (red), also those for the original indices are shown
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Figure 7. Blue markers: 99th percentiles (p99) of the delta rms of the original indices for the three TCWV data sets. Red markers: similar
results for the temporally reversed indices. Black lines: significance threshold. The indices are sorted from highest to lowest p99 values for
the original indices. Note that different y axes are used for the satellite and model data.

(blue). For many of the original indices, the p99 values are
much larger than the threshold value indicating that these in-
dices are significantly detected in the respective data set.

In addition to the use of the absolute threshold of the delta
rms values for the determination of significance, we also
made use of the effect of time shifts applied to the individ-
ual indices. The underlying idea is that the delta rms values
should decrease if the original indices are de-synchronised
by± 1 month. The details of this approach are described in
Appendix A3. Using this additional criterion, a few more in-
dices are added to the number of significantly detected tele-
connection indices. For the TCWV data set from satellite ob-
servations, the number of significantly detected indices in-
creases from 40 to 42, for the ERA TCWV data set from 43

to 44, and for the ERA data set for clear sky conditions from
39 to 42.

5.2 Comparison of the results from the empirical
approach to established tests

We compared the results of our new empirical approach to
those of standard methods for significance testing. For this
purpose we derived the local p values for each individual
fit by a two-tailed t test. As standard methods we applied
the so-called Walker test and the false discovery rate (FDR)
test (e.g. Wilks, 2006, 2016). The Walker test uses the min-
imum local p value derived from the individual fits as the
global test statistic. The FDR test compares the p values of
all grid pixels with the distribution of the statistically ex-
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Figure 8. Comparison of the results of the three approaches. (a) Results for the Walker test (left axis) and FDR test (right axis) for a
significance level of 1 %. The indices are sorted according to the results of the Walker test. The black vertical line indicates the significance
threshold (similar for both tests). (b) Comparison of the results for the Walker test (left axis) and our empirical (reverse) approach (right
axis). The indices are sorted according to the results of the Walker test. The black vertical line indicates the significance threshold of the
Walker test. The red horizontal line indicates the significance threshold for our empirical approach. (c) Similar as for the middle panel, but
for the FDR test.

pected FDR. Both tests deal with the problem of field signif-
icance. Another advantage of both tests is that they are rather
robust with respect to spatial correlations. We also account
for effects of temporal autocorrelation within the fit method
by assuming an AR(1) process of the fit residual (Seabold
and Perktold, 2010). We applied both standard tests to the
satellite TCWV data set and compared the results to those of
our empirical approach using reversed indices (Fig. 8). Es-
pecially for the FDR test, very similar results were obtained

compared to our empirical approach. Only a few indices with
low frequencies (Q50, Q70, and IPO), which were previ-
ously found to be slightly above the significance level, are
now found to be slightly below the significance level. Con-
versely, some previously non-significant indices with high
frequencies are now found to be slightly above the signif-
icance threshold. These changes are related to the fact that
for the new method we also accounted for the temporal cor-
relations of the indices. The most important finding, how-
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ever, is that these differences between the FDR test and the
old method are only found for indices close to the signifi-
cance thresholds and thus do not affect the main findings of
our study. The number of significant indices found for our
empirical approach and the FDR test differs only by 2 (42
for our empirical method and 44 for the new method) if one
takes into account that the OOMI2 and FMO2 as well as the
OOMI1 and FMO1 indices are very similar.

Another interesting finding is that for the Walker test and
the FDR test exactly the same number of significant indices is
found. However, the order of importance obtained from both
tests also shows large differences for some indices (Fig. 8
top).

6 Results for the different global data sets

6.1 Comparison of the results for the TCWV data sets
to those for the other data sets

A rather high number of significant indices was identified in
the global TCWV data sets. To put this finding into a broader
perspective, we applied the same procedure also to other
global data sets, which are usually considered in teleconnec-
tion studies (see Table 1). The corresponding p99 values of
the different indices (including also the reversed indices) are
presented in Fig. A10. In general similar results as for the
TCWV data sets are found. In particular, for all data sets a
large number of teleconnection indices is significantly de-
tected. However, also differences are found: in particular, the
teleconnection index with the maximum p99 value is found
to be different for the different data sets. For the TCWV data
sets, surface temperature and pressure, as well as most of the
zonal winds, the largest p99 values are found for indices sim-
ilar to ENSO. For the TCWV data sets and surface tempera-
ture, this can be expected, because the ENSO phenomenon is
driven by the surface temperature (over the tropical Pacific).
Accordingly, also the TCWV data sets will be strongly af-
fected, because the TCWV depends strongly on the temper-
ature in the lowest atmospheric layers. The strong influence
of the ENSO phenomenon (BEST index) on the zonal winds
at most levels can probably be explained by the fact that
large-scale phenomena like ENSO can have a strong influ-
ence on the quasi-persistent zonal flow patterns in the trop-
ics and subtropics. For the geopotential heights and merid-
ional winds, the largest p99 values are found for the polar
atmospheric indices (mostly AAO, but also SCA). For the
geopotential heights this might be expected because the po-
lar atmospheric indices are defined based on anomalies of
the geopotential heights. Also for the zonal winds, the largest
p99 values are found for the polar atmospheric indices, which
is probably caused by the strong relationship between geopo-
tential heights and winds.

A summary of the number of significant indices and the
teleconnection index with the highest p99 is given in Ta-

ble 3. Most significant indices are found for the zonal winds
with the highest number in the upper troposphere. For these
data sets the number of significant indices is larger than for
the TCWV data sets. For geopotential heights and merid-
ional winds, fewer significant indices are found (and even
less than for the TCWV data sets). For geopotential heights
most significant indices are found in the upper troposphere,
while for the meridional winds no clear altitude dependence
is observed. Also for the surface temperature and surface
pressure rather low numbers (less than for the TCWV data
sets) of significant indices are found. From these results we
conclude that the global TCWV data sets are well suited for
teleconnection studies. Here it should again be noted that the
satellite TCWV data are exclusively determined from mea-
surements, and the TCWV is dominated by the layers close
to the surface. Thus our findings indicate that also indices
which are usually detected in the middle and upper tropo-
sphere can be significantly detected in data sets which are
dominated by the lower troposphere.

Our new method for the determination of the significance
level also allows a direct comparison of the strengths at
which the different indices are detected in the different data
sets. In Table 3 also the maximum p99 values of the delta rms
normalised by the corresponding significance threshold val-
ues are shown. The highest normalised p99 values are found
for the geopotential heights (except the 50 hPa level) and the
surface pressure. This finding is consistent with the fact that
these quantities are used in most teleconnection studies and
many indices are even defined using these quantities. The
lowest normalised p99 values are found for zonal winds, for
which also the smallest numbers of significant indices are
obtained. Intermediate values are found for the water vapour
data sets.

6.2 Comparison of the spatial patterns of the measured
and simulated TCWV

For most of the teleconnection indices, very similar spatial
patterns are found in the TCWV data sets obtained from
satellite or ECMWF data (see Fig. A9). This confirms both
the high quality of the satellite measurements and model sim-
ulations. However, for some indices, also substantial differ-
ences are found (see Fig. 9). The most obvious differences
are found over northern Africa. In principle, they could be
caused by errors of both the satellite or model data sets.
However, since very good agreement over northern Africa
is found for most of the indices, we can very probably ex-
clude systematic measurement biases in the satellite data set
(e.g. effects from the high surface albedo over the Sahara).
Thus we conclude that the observed differences probably in-
dicate deficiencies in the model simulations, possibly related
to the sparseness of observational data over northern Africa
used in the model. It is interesting to note that the differences
are found for both oceanic and atmospheric indices which
have rather different frequencies. These comparison results
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Table 3. Numbers of significant indices and most significant indices for all data sets (the number of indices with p99 values below the
threshold but with shift ratios < 0.8 are indicated in brackets). The complete list of significant indices for the different data sets is provided
in Table A1 in the Appendix.

Data set Number of Most Maximum relative
significant significant p99

indices index value

TCWV sat 42 (2) ONI 9.9
TCWV ERA 44 (1) ONI 12.6
TCWV ERA clear 42 (3) ONI 11.6
Tsurf (surface temperature) 37 (1) ONI 6.6
Spred (surface pressure) 35 (1) AAO 19.1
Geopot 50 hPa 17 (5) AAO 8.7
Geopot 200 hPa 40 (0) AAO 23.3
Geopot 500 hPa 32 (1) AAO 21.4
Geopot 850 hPa 33 (1) AAO 20.2
Geopot 950 hPa 30 (1) AAO 19.0
Zonal winds 200 hPa 51 (0) BEST 15.0
Zonal winds 500 hPa 49 (0) BEST 7.2
Zonal winds 850 hPa 46 (1) BEST 11.0
Zonal winds 950 hPa 42 (4) AO 11.8
Meridional winds 50 hPa 24 (3) AAO 2.9
Meridional winds 200 hPa 32 (1) AAO 5.4
Meridional winds 500 hPa 34 (0) AAO 4.5
Meridional winds 850 hPa 33 (0) SCA 6.1
Meridional winds 950 hPa 32 (0) SCA 6.0

might help to improve the model performance over northern
Africa (and to a lesser degree also over other regions).

7 Orthogonalisation of indices

It was shown in Fig. 3 that many indices are strongly corre-
lated. Thus the numbers of “significant indices” obtained in
the previous chapters are not useful to represent the number
of independent significant indices. To account for correla-
tions between the different indices, we thus applied an or-
thogonalisation approach. For the orthogonalisation (based
on the Gram–Schmidt process), all “significant” original in-
dices and significant temporal derivatives (see Fig. A11)
were considered (in total 57 indices). The order of indices
used in the iterative orthogonalisation process was from
highest to lowest p99 values. The result of the orthogonali-
sation approach is a set of modified teleconnection indices,
which shows zero correlation amongst each other (for the
considered time period). Thus this new set of orthogonalised
indices can be used to determine the number of indepen-
dent significant teleconnection patterns in the global water
vapour data sets. We applied our new method to the new set
of orthogonalised indices to test which of the modified in-
dices have p99 values above the significance threshold. As
expected, this number (20, see Fig. 10) was found to be
much smaller than for the original indices (40) confirming
that many teleconnection indices are indeed highly correlated

and related to the same phenomena. We also found that the
difference between the highest p99 value (for the ONI index)
and subsequent p99 values is much larger than for the origi-
nal indices. This finding indicates that the temporal pattern of
the ENSO phenomenon is contained in many teleconnection
indices (see also Fig. 3). The delta rms maps for the signifi-
cant orthogonalised indices (together with the delta rms maps
for corresponding original indices) are presented in Fig. A12.

8 Global distributions

The delta rms maps derived for the individual indices show
characteristic patterns which indicate in which regions of the
globe the selected index is important or not. In order to as-
sess the global distribution of the general importance of tele-
connections, we added the delta rms maps of all significant
indices. The corresponding maps of the derived cumulative
delta rms distributions are presented in Fig. 11 for different
selections of teleconnection indices and TCWV data sets. In
the upper panel the patterns of all significant teleconnection
indices found for the TCWV data set from satellite observa-
tions are added. In the middle panel the same is shown for
the significant orthogonalised indices. The comparison again
clearly indicates that many indices are highly correlated to
the ENSO index. Thus, if only the orthogonalised indices
are considered, the ENSO pattern, especially in the tropical
Pacific, becomes relatively weaker compared to the cumula-
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Figure 9. Fit coefficients for selected teleconnection indices, for which different patterns were found in the TCWV data set from satellite
observations (left) and model simulations (right). The red circles indicate regions with substantial differences between the results for both
data sets.

tive delta rms values in other regions. The cumulative delta
rms map for the orthogonalised indices represents the overall
contribution of teleconnections to the variability of the global
TCWV distribution. Our results indicate that these contribu-
tions are strong in the tropics as well as in high latitudes. This
points to potential drivers of these teleconnections, e.g. trop-
ical convection or synoptic-scale wave breaking in jet exit
regions (see e.g. Feldstein and Franzke, 2017). In the lower
panel the cumulative delta rms map for all significant orthog-

onalised indices for the ERA TCWV data set is shown. The
derived spatial patterns are very similar to those for the satel-
lite data set. It should, however, be noted that also for regions
in high latitudes, which are not covered by the satellite ob-
servations, high values are found.

Figure 12 shows the latitudinal (top) and longitudinal (bot-
tom) distribution of the p99 values for all significant original
indices (red) and all significant orthogonalised indices (blue)
detected in the TCWV data from satellite observations. As
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Figure 10. The 99th percentiles (p99) of the delta rms of the orthogonalised indices. The black lines represent the significance threshold.
The indices are sorted from highest to lowest p99 values.

expected, the highest values (related to ENSO) are found
over the equatorial eastern Pacific, but most indices have the
strongest effects in mid and high latitudes. Interestingly, in
the latitude range between −30 and +30◦ only for one sig-
nificant orthogonalised index (besides ENSO) the maximum
delta rms is found. Another interesting finding is that several
indices have their p99 values close to the date line (between
167 and −180◦ latitude). Four of these indices are also lo-
cated at similar latitudes (between 38 and 71◦ N). In that re-
gion, also previous studies found enhanced activity (e.g. Hsu
and Lin, 1992; Hoskins and Ambrizzi, 1993; Trenberth et al.,
1998). One possible reason for the enhanced activity in this
area might be the effect of jet exit regions, which are driven
to a large extent by the Earth’s topography (Feldstein and
Franzke, 2017).

9 Conclusions

We investigated if and how strong the temporal patterns of a
large set of teleconnection indices can be identified in the
spatio-temporal variability of a global data set of the to-
tal column water vapour (TCWV) from 1995–2015 derived
from satellite observations. To our knowledge, it is the first
time that a global TCWV data set was used in such a detailed
way in teleconnection studies (note that part of this data set
was already used by van Malderen et al., 2018). Here it is
important to note that the TCWV data set is purely based on
observational data. Another important achievement of this
study is the development of a new empirical method to de-
cide whether a teleconnection index is significantly detected
in the global data set. The method is based on temporally re-
versed teleconnection indices, which ensures that all relevant
timescales are considered. The new method can be applied in

a universal way to different data sets. In this study we applied
the new method to the TCWV sets derived from satellite or
model data as well to several further quantities, which are
often used in teleconnection studies. Based on the obtained
results, we could derive the following main conclusions re-
lated to the science questions mentioned in the introduction:

a. We developed a new empirical approach to determine
whether a teleconnection index is significantly detected
in a global data set. This approach avoids problems
of existing algorithms for the determination of signifi-
cance, because no assumptions on the significance level
or the measurement uncertainties have to be made. We
applied the new method to a global data set of the
TCWV derived from satellite observations and found
that 40 teleconnection indices could be significantly de-
tected.

b. We applied the same method also to TCWV from the
ERA interim data set. Here we used two versions of the
model data sets: one including all data, the other only
clear-sky data. The results for both versions agree in
general very well with those for the satellite data set.
This confirms both the quality of the satellite and model
data sets. It also indicates that the satellite observations
can be seen as representative of all day mean values.
For some teleconnections, however, also systematic dif-
ferences, mainly over northern Africa, were obtained.
Since these differences are not found for the majority
of the teleconnection indices, we conclude that they are
very probably not related to systematic errors of the
satellite data set, but rather they indicate shortcomings
of the model over these regions.
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Figure 11. Cumulative delta rms for different selections of indices and data sets (note the different colour scales).

c. We also applied our method to a variety of other data
sets, which are usually used in teleconnection stud-
ies (surface temperature, surface pressure, geopotential
heights and meridional winds at different altitudes). For
most of these data sets fewer teleconnection indices
were significantly detected than for the TCWV data
sets, while for zonal winds, more teleconnection indices
(up to > 50) were significantly detected. These results
indicate that our global TCWV data set is well suited
for teleconnection studies. In our view, this is an im-
portant aspect, because our data set is exclusively based
on measurements. The strongest teleconnection signals
were detected for the data sets of tropospheric geopo-

tential heights and surface pressure. This finding is con-
sistent with the fact that most teleconnection studies are
based on these quantities. Another interesting finding is
that in none of the global data sets, non-teleconnection
indices (like the solar variability, the stratospheric AOD
or the hurricane frequency) were significantly detected.

d. We investigated the spatial distribution of the tele-
connection patterns. In particular we calculated global
maps for the cumulative effect of all teleconnection
patterns. For that purpose we first orthogonalised the
teleconnection indices to avoid the effect of correla-
tion between the indices. Compared to the original set
of indices, much fewer of the orthogonalised indices
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Figure 12. Location of the 99th percentile of the delta rms values detected in the TCWV data derived from satellite observations as function
of latitude (a) or longitude (b). Red points indicate results for the original indices, blue points for the orthogonalised indices.

(20 compared to 42) were significantly detected in the
TCWV data set. Our global map of the cumulative ef-
fects of all significantly detected orthogonalised tele-
connections showed the strongest teleconnection sig-
nals in the global TCWV data set over the tropics and
in polar regions. These spatial patterns point to the im-
portance of different driving mechanisms in different re-
gions.
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Appendix A

A1 Normalisation of the delta rms values

In many teleconnection studies (e.g. Horel, 1981, and refer-
ences therein), the strength of a teleconnection index is quan-
tified by calculating the ratio of the difference of the rms
(with and without an index included) and the total rms. In
this study we applied a different procedure, because the total
rms depends on many factors, in particular also on the un-
certainties of the considered data set. Since we want to com-
pare the delta rms values derived for different data sets (in
particular the TCWV data sets derived from satellite obser-
vations and model results, but also other data sets) in a quan-
titative way, we decided to divide the rms (with and without
an index included) by the zonal mean of the considered data
set. Thus the delta rms shows the relative impact of the re-
spective index. While the rms values of the different TCWV
data sets are rather different (see Fig. 4, middle panel), the
zonal means are very similar (Fig. 2). The zonal mean was
chosen (instead of the long-term average of each considered
1◦× 1◦ pixel), because for some data sets used in this study
(especially the wind data sets) large variations and even zero-
crossings exist, which would lead to meaningless delta-rms
values. We compared the delta rms values calculated by our
new definition with those of the more traditional definition
for the TCWV data sets (Fig. A1). The obtained global pat-
terns of both delta rms definitions are almost identical.

A2 Effect of the temporal correlation of the reversed
indices with the original indices

For several temporally reversed indices, the 99th percentiles
in Fig. 7 are substantially higher than for others. Since all
reversed indices represent non-geophysical variations, such
enhanced 99th percentiles are not expected. Thus this find-
ing was further investigated. It turned out that the enhanced
values are caused by accidental correlations of these reversed
indices with original indices (see Fig. A2), for which high
99th percentile values are found. This reasoning is confirmed
by the results shown in Fig. A3. There, high p99 values for
reversed indices are always found if they are correlated with
original indices with high p99 values. To avoid the effects of
such accidental enhanced p99 values, only the reversed in-
dices with no obvious correlations with original indices with
high p99 values were kept for further processing (red boxes
in Fig. A3). Here it should be noted that two somewhat arbi-
trary choices were made:

a. The selection of the selected reversed indices (red boxes
in Fig. A3) was made by visual inspection.

b. The effect of the correlation of the reversed indices with
the original indices was only investigated for the eight
original indices with the highest p99 values.

Fortunately, both choices had only a minor influence on the
derived threshold value. With respect to the first point, it
should be noted that while the selection was made rather con-
servatively, still many reversed indices were kept after the
filtering process. It was also found that most of the skipped
reversed indices were removed because of enhanced correla-
tions with several original indices. With respect to the second
point it should be noted that it makes sense to consider only
the original indices with the highest p99 values, because the
correlations of the reversed indices with the original indices
are in general rather low (see Fig. A2). The p99 values of the
selected eight original indices with the highest p99 values
are in general substantially higher than the p99 values of the
remaining indices. In sensitivity studies we found that taking
into account more than eight original indices had a negligible
effect on the derived threshold values.

The red markers in Fig. A4 represent the p99 values for
the indices which were kept after applying the selection cri-
teria explained above. In the final step, from these p99 val-
ues the average and standard deviation are calculated. The
p99 threshold for the significance of an index is then cal-
culated as the sum of the average plus 3 times the standard
deviation (for the TCWV data set from satellite observations
the threshold is 0.00200+3×0.00036= 0.00309, including
rounding). This procedure was chosen, because the threshold
values calculated in this way are very close to the maximum
p99 values of the remaining indices (red dots in Fig. A4) but
are hardly affected by possible remaining outliers. The de-
rived threshold value is indicated by the dashed black line in
Fig. 7.

A3 Effect of a time shift of the teleconnection indices

In addition to the p99 values themselves, also the effect of
time shifts 1t =±1 month of the indices on the p99 values
was considered to decide whether an index was significantly
identified in a global data set, because for indices with a geo-
physical relationship to a considered data set, the exact tem-
poral synchronisation should be important (but might depend
on region). In contrast, for indices without a geophysical rela-
tionship to the considered data set, the p99 values should not
depend on the exact temporal synchronisation. Here it should
be noted that for some teleconnections, also time lags might
exist between the corresponding indices and the atmospheric
variables. Thus the lack of an exact synchronisation should
not be seen as a strong indication that the corresponding tele-
connection was not significantly detected in a global data set.
But conversely, if a clear synchronisation for a teleconnec-
tion is found, this can be interpreted as a strong indication of
significant detection.

In Fig. A5 the p99 values for the original and shifted (by
± 1 month) indices are shown for the TCWV data set from
satellite observations. For most data sets (especially for those
with high p99 values) indeed smaller p99 values are found for
the shifted indices. Here it is interesting to note that in gen-
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eral a stronger effect is found for atmospheric indices than for
oceanic indices, which can be understood by the higher fre-
quencies of the atmospheric indices. For several oceanic in-
dices, even higher values are found for the shifted indices in-
dicating a time shift (mostly a time lag) between the TCWV
and these indices. For one index (AMM) higher p99 values
are even found for shifts in both directions indicating an am-
biguity in the synchronisation between the TCWV and the
AMM index.

Another interesting finding is that for some atmospheric
indices with p99 values below the significance threshold (PE,
MJ2, OOMI2, FMO1) still rather small ratios of the shifted
and original indices are found indicating that these indices
are also probably significantly detected in the TCWV data
set. Thus in the following we consider also indices with p99
values below the significance threshold but with p99 ratios
below 0.8 for both shifts as significantly detected. Here it
should be noted that the choice of the threshold value of 0.8
is somewhat arbitrary. It was chosen because a deviation of
20 % from unity is larger than the “noise level” of the ratio.
The exact choice of the threshold has only a small effect on
the obtained results.
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Figure A1. Comparison of delta rms values for the ENSO index calculated in two different ways. (a) The difference of the rms with and
without the ENSO index included in the fit is divided by the respective rms of each 1◦× 1◦ pixel; (b) the difference of the rms with and
without the ENSO index included in the fit is divided by the zonal mean of the TCWV at the same latitude. Note the different colour scales.
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Figure A2. Correlation coefficients between the temporally reversed and original indices. For several combinations enhanced coincidental
correlations are found.
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Figure A3. Correlation plots for the eight original indices with the highest p99 values. The blue dots represent the 61 reversed indices. The
x axis describes the correlation coefficients of the reversed indices with the selected original indices. The y axis describes the p99 value or
the reversed indices. High p99 values are found for the reversed indices which show high correlation to the original indices.
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Figure A4. The 99th percentiles (p99) of the delta rms of the temporally reversed indices for the TCWV from satellite observations (same as
in Fig. 7, top). The blue markers indicate indices which are excluded from the calculation of the significance threshold (for details see text).

Figure A5. Top: 99th percentiles (p99) of the delta rms values for the original (blue) and shifted indices (green: plus 1 month; red: minus 1
month). The indices are sorted from highest to lowest p99 values for the unshifted original indices. Bottom: ratios of the p99 values of the
shifted and original indices. Results are for the TCWV data set from satellite observations. The blue circles indicate teleconnection indices
with p99 values below the threshold, but ratios of the shifted indices < 0.8.
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A4 Additional figures and tables

Figure A6. Continued.
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Figure A6. Continued.
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Figure A6. Continued.
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Figure A6. Continued.
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Figure A6. Continued.
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Figure A6. List of original indices used in this study. Besides the short names also the data sources and their temporal variation from 1995
to 2016 are shown. ∗ All MJO indices are convoluted with a Gaussian kernel of 30 d FWHM. ∗∗ Original index according to Wheeler and
Hendon (2004). ∗∗∗ Khaykin et al. (2017).
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Figure A7. Illustration of the preparations for the indices before they are used in the fit to the global data sets: first, the mean seasonal cycles
and linear trends are subtracted. Then the differences are normalised by their standard deviations.

Figure A8. Delta rms (a) and r2 values (b) for the fit of the ENSO index to the TCWV derived from satellite observations.
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Figure A9. Continued.
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Figure A9. Continued.
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Figure A9. Fit coefficients for all indices used in this study. Shown are the results for the TCWV data set from satellite observations (left)
and model results (for all sky conditions) (right).
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Figure A10. Continued.
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Figure A10. The 99th percentiles of the delta rms values (p99) found for the different indices in different global data sets. Blue markers:
p99 for the original indices; red markers: p99 for the temporally reversed indices; black lines: significance thresholds. The indices are sorted
from highest to lowest p99 values for the original indices.

Figure A11. The 99th percentiles (p99) of the delta rms of the derivatives of all indices. The black lines represent the significance threshold.
The indices are sorted from highest to lowest p99 values.
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Figure A12. Delta rms maps for the significant orthogonalised indices together with the delta rms maps for the original indices. The numbers
at the left sides indicate the order (descending) of the p99 values (see also Fig. 10).
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Table A1. Significant indices for all data sets (indices with p99 values below threshold but shift ratios < 0.8 are indicated in brackets).

Data set Number of Significant indices (from highest to lowest p99 values)
significant indices

TCWV sat 42 (2) ONI, N34, TPI, ENSO, BEST, N4, N1, SOI, IND, HAW, PDO, PMM, AAO, SCA, WHWP,
NOI, NAO, TNI, WP, EAWR, DMI, EPNP, CAR, PNA, VPM1, AO, VPM2, TSA, STA, TNA,
EA, EA_ersst, AMO, RMM2, NTA, AMM, RMM1, IPO, Q50, Q70 (PE, MJ2)

TCWV ERA 44 (1) ONI, N34, ENSO, TPI, BEST, N1, N4, SOI, IND, AAO, WHWP, NOI, PDO, SCA, NAO, HAW,
PMM, EPNP, TNI, DMI, VPM1, AO, WP, EAWR, CAR, TNA, NTA, PNA, RMM1, VPM2,
AMO, IPO, STA, RMM2, TSA, EA, AMM, EA_ersst, MJ2, Q70, FMO2, OOMI2, VPMN,
Q50 (PE)

TCWV ERA clear 42 (3) ONI, N34, ENSO, TPI, N1, BEST, N4, SOI, IND, AAO, WHWP, PDO, NOI, SCA, HAW, NAO,
TNI, DMI, PMM, EPNP, WP, VPM1, EAWR, CAR, AO, PNA, TNA, VPM2, NTA, IPO, AMO,
TSA, EA_ersst, STA, RMM2, RMM1, AMM, EA (PE, FMO2, OOMI2)

Tsurf 37 (1) ONI, AAO, N34, AO, TPI, N1, ENSO, SCA, BEST, N4, PDO, NAO, EPNP, HAW, SOI,
WHWP, PMM, TNA, IPO, NTA, IND, PE, WP, NOI, AMM, TSA, EA, STA, EAWR, AMO,
TNI, PNA, EA_ersst, DMI, Q70, CAR (RMM2)

Spred 35 (1) AAO, AO, NAO, SCA, PE, NOI, PNA, WP, SOI, BEST, EPNP, N34, ONI, EA, TPI, ENSO,
N4, PDO, HAW, Q70, EAWR, TNA, PMM, NTA, N1, Q50, AMM, TNI, IND, WHWP, VPM2,
RMM2, DMI, VPM1 (RMM1)

Geopot 50 hPa 17 (5) AAO, AO, NAO, Q50, TNI, PE, N4, N34, TPI, ONI, EPNP (VPM2, PNA, EA, RMM2, RMMN)

Geopot 200 hPa 40 (0) AAO, AO, NAO, N34, ENSO, N4, TPI, ONI, BEST, SCA, WP, IND, SOI, EPNP, PNA, PE, EA,
NOI, WHWP, PDO, EAWR, N1, CAR, VPM1, NTA, Q70, TNA, TNI, HAW, AMO, RMM1,
RMM2, PMM, VPM2, EA_ersst, MJ2, FMO2, OOMI2, TSA

Geopot 500 hPa 32 (1) AAO, NAO, AO, SCA, WP, PNA, PE, EPNP, BEST, EA, EAWR, NOI, ENSO, TPI, N4, SOI,
N34, ONI, PDO, HAW, IND, Q70, TNA, PMM, NTA, WHWP, TNI, AMO, N1, Q50 (RMM2)

Geopot 850 hPa 33 (1) AAO, AO, NAO, PE, SCA, PNA, WP, NOI, BEST, SOI, EPNP, EA, TPI, N4, N34, ENSO,
ONI, PDO, EAWR, HAW, Q70, TNA, NTA, PMM, Q50, N1, TNI, IND, WHWP, DMI, VPM2
(RMM1)

Geopot 950 hPa 30 (1) AAO, AO, NAO, PE, SCA, NOI, PNA, WP, SOI, BEST, EA, ENSO, N34, ONI, TPI, N4, PDO,
EPNP, EAWR, HAW, Q70, TNA, NTA, N1, PMM, TNI, IND, Q50 (RMM2)

Zonal winds 200 hPa 51 (0) BEST, N34, TPI, SOI, ONI, ENSO, N4, IND, PDO, NOI, N1, VPM2, WHWP, RMM2, HAW,
AO, NAO, PE, VPM1, AAO, WP, CAR, SCA, EA_ersst, OOMI1, PMM, EPNP, TNI, RMM1,
EA, IPO, PNA, NTA, TNA, STA, MJ2, MJ1, TSA, DMI, OOMI2, FMON, AMO, FMO2,
AMM, VPMN, RMMN, MJN, FMO1, OOMIN, Q50

Zonal winds 500 hPa 49 (0) BEST, SOI, ENSO, N34, ONI, NOI, TPI, N4, AO, NAO, PE, WP, EA, PNA, VPM2, RMM2,
AAO, SCA, IND, PDO, N1, EPNP, TNA, OOMI1, MJ1, HAW, WHWP, NTA, VPM1, FMO1,
EAWR, PMM, TNI, RMM1, MJ2, DMI, EA_ersst, OOMI2, IPO, FMO2, FMON, VPMN, MJN,
STA, TSA, Q50, RMMN, CAR, OOMIN

Zonal winds 850 hPa 46 (1) BEST, AO, ONI, N34, ENSO, SOI, NAO, TPI, N4, PE, WP, NOI, PDO, AAO, N1, PNA,
SCA, HAW, IND, EPNP, EA, WHWP, VPM2, VPM1, RMM2, TNI, PMM, EAWR, IPO, TNA,
EA_ersst, RMM1, NTA, DMI, MJ1, OOMI1, AMO, FMO1, CAR, STA, Q70, TSA, MJ2,
AMM, OOMI2 (FMO2)

Zonal winds 950 hPa 42 (4) AO, NAO, ONI, BEST, N34, PE, TPI, ENSO, SOI, N4, WP, AAO, PNA, SCA, NOI, PDO, N1,
HAW, EA, EPNP, IND, WHWP, EAWR, TNI, PMM, TNA, VPM1, NTA, IPO, VPM2, AMO,
EA_ersst, RMM2, DMI, RMM1, Q70, CAR, AMM (OOMI2, MJ1, MJ2, OOMI1)

Meridional winds 50 hPa 24 (3) AAO, EAWR, EPNP, SCA, EA, PNA, Q50, N34, ONI, BEST, TPI, SOI, IND, ENSO, NOI, N4,
Q70, QBO, WP, AO (VPM2, RMM2, PE)

Meridional winds 200 hPa 32 (1) AAO, N4, BEST, SOI, N34, TPI, ONI, EAWR, ENSO, EPNP, SCA, NAO, NOI, WP, IND,
PDO, EA, PNA, RMM2, AO, VPM2, N1, HAW, PMM, WHWP, CAR, TNI, TNA, NTA, Q70
(FMO1)

Meridional winds 500 hPa 34 (0) AAO, EAWR, SCA, NOI, EPNP, NAO, N4, SOI, BEST, N34, TPI, ONI, ENSO, WP, EA, AO,
PNA, TNI, PDO, PMM, VPM2, HAW, RMM2, N1, IND, IPO, PE, TNA, RMM1, NTA, VPM1,
CAR, STA

Meridional winds 850 hPa 33 (0) SCA, AAO, EAWR, NAO, EA, PNA, EPNP, BEST, N34, SOI, TPI, AO, ONI, ENSO, N4, PE,
WP, NOI, HAW, PDO, PMM, IND, VPM2, RMM2, N1, TNI, NTA, TNA, WHWP, Q70, IPO,
CAR

Meridional winds 950 hPa 32 (0) SCA, EAWR, AAO, EA, N34, PNA, ONI, NAO, BEST, PE, ENSO, TPI, SOI, N1, AO, N4,
EPNP, WP, NOI, PMM, IND, PDO, HAW, TNI, WHWP, DMI, VPM2, RMM2, CAR, AMM,
TNA
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