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Abstract. In this study, we present a novel monitoring
methodology that combines satellite retrievals and forecasts
to detect local CH4 concentration anomalies worldwide.
These anomalies are caused by rapidly changing anthro-
pogenic emissions that significantly contribute to the CH4 at-
mospheric budget and by biases in the satellite retrieval data.
The method uses high-resolution (7 km× 7 km) retrievals of
total column CH4 from the TROPOspheric Monitoring In-
strument (TROPOMI) on board the Sentinel 5 Precursor
satellite. Observations are combined with high-resolution
CH4 forecasts (∼ 9 km) produced by the Copernicus Atmo-
sphere Monitoring Service (CAMS) to provide departures
(observations minus forecasts) at close to the satellite’s na-
tive resolution at appropriate time. Investigating these depar-
tures is an effective way to link satellite measurements and
emission inventory data in a quantitative manner. We per-
form filtering on the departures to remove the synoptic-scale
and meso-alpha-scale biases in both forecasts and satellite
observations. We then apply a simple classification scheme
to the filtered departures to detect anomalies and plumes that
are missing (e.g. pipeline or facility leaks), underreported
or overreported (e.g. depleted drilling fields) in the CAMS
emissions. The classification method also shows some limi-
tations to detect emission anomalies only due to local satel-
lite retrieval biases linked to albedo and scattering issues.

1 Introduction

Atmospheric methane (CH4) is the second most important
anthropogenic greenhouse gas after carbon dioxide; it con-
tributes significantly to changes in radiative forcing and cli-
mate change. CH4 is estimated to account for at least a quar-
ter of the present-day warming (Myhre et al., 2013) and has
a near-term global warming potential that is 84 times larger
than CO2 per unit mass (Hartmann et al., 2013). There are
numerous natural and anthropogenic CH4 sources, which
vary in location and areal extent. The related anthropogenic
emissions, such as oil and gas production, coal mining and
biomass burning, tend to be geographically localised, e.g.
over a plant facility, a pipeline or a field of extraction. How-
ever, methane emissions relating to biological fluxes such as
livestock, landfills and rice fields can be either geographi-
cally localised over narrow areas or more widespread; for
example, there are extensive patterns of microbial respira-
tion in wetlands across the globe (Saunois et al., 2016). At-
mospheric methane concentrations have more than doubled
since preindustrial times because of an imbalance between
methane sources and sinks (Hartmann et al., 2013) caused by
increases in oil and gas production, rice crop cultivation, live-
stock farming and landfills. Methane has a relatively short at-
mospheric lifetime (with respect to climate scales) of around
9 years, meaning that targeted emission reductions could be
an effective way to limit the rate of warming over the coming
decades (Shoemaker et al., 2013).

Greenhouse gas emission inventories are generated
through the aggregation and extrapolation of regional and na-
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tional data. These data are reported individually by countries
using the guidelines provided by the United Nations Frame-
work on Climate Change (UNFCC) and the Intergovernmen-
tal Panel for Climate Change (IPCC). The reporting follows
a bottom-up approach that utilises activity data and emission
factors from individual emissions sectors. The process of of-
ficially reporting and processing these data to build these
bottom-up inventories can cause a significant lag, so infor-
mation can be out of date for certain sectors once publicly
released. This can become an issue in the context of rapidly
changing emissions from large point sources, for example in
the oil and gas sectors (Alvarez et al., 2018). In the case of at-
mospheric composition modelling, emissions inventories are
used as input surface fluxes to simulate atmospheric concen-
trations. Within the Copernicus Atmosphere Monitoring Ser-
vice (CAMS), these simulations are used to provide routine
real-time forecasts of greenhouse gas concentrations. The
CAMS greenhouse gas forecasting system integrates satel-
lite observations (Massart et al., 2014, 2016) to generate ini-
tial conditions for high-resolution forecasts at about 10 km
(Agustí-Panareda et al., 2019). The lack of up-to-date emis-
sions inventories impacts and likely degrades simulated CH4
concentrations in areas where the local contribution from an-
thropogenic emissions is significant.

Many studies have demonstrated the rapidly changing and
event-based nature of CH4 anthropogenic emissions, espe-
cially when identifying the locations of “super-emitter” point
sources. Conley et al. (2016) used aircraft measurements
to characterise a blowout of a well connected to the Aliso
Canyon gas storage facility in California from October 2015
to February 2016. Pandey et al. (2019) showcased the de-
tection of high methane emissions from a gas well blowout
in Ohio during February to March 2018 using satellite mea-
surements. More recently, Varon et al. (2019) detected an
anomalously large CH4 source associated with a gas com-
pression station using a combination of satellite instruments
over Central Asia (western Turkmenistan). These types of
suddenly occurring CH4 emissions cannot be or are not re-
ported/detected in time to be included in the bottom-up in-
ventories, but they are seen from space. Other studies have
shown the ability of satellite measurements to detect CH4
emissions from extensive drilling and fracking areas. Kort
et al. (2014) identified a large methane anomaly over the
Four Corners region of the USA; more recently, de Gouw
et al. (2020), Zhang et al. (2020) and Schneising et al. (2020)
reported the satellite detection of large and extended CH4 en-
hancements from various US oil- and gas-producing regions,
such as the Permian Basin. While these satellite-based stud-
ies focused on specific events and locations, none of them
systematically detected such anomalies at a global scale; nor
did they provide a method to do so.

The systematic detection of large point sources of an-
thropogenic CH4 emissions using a combination of satel-
lite observations and modelling could prompt rapid action
to reduce emissions from the oil and gas sectors. Two re-

cent developments allow for the systematic detection of unre-
ported CH4 atmospheric anomalies linked to small-scale and
point-source emissions: the newly available high-resolution
(7 km× 7 km) satellite observations from the TROPOspheric
Monitoring Instrument (TROPOMI; Veefkind et al., 2012) on
board the Sentinel-5P platform and the improved real-time
forecasting at high resolution (∼ 9 km) provided by CAMS
(Agustí-Panareda et al., 2019). In this paper, we present a
novel methodology to routinely compare the satellite ob-
servations with the model forecasts in order to systemati-
cally detect atmospheric CH4 anomalies relating to emission
changes from small-scale and point sources that are not re-
ported or are not updated in a timely manner. The paper is
organised as follows: Sect. 2 describes the setup, including
the TROPOMI observations and the forecasting and moni-
toring configurations; Sect. 3 presents the detection method;
and Sect. 4 discusses several case studies that showcase the
capabilities but also the limitations of the detection method.
This is followed by our conclusions, where we briefly dis-
cuss the benefit that our approach can bring combined with
coarse-resolution inverse modelling.

2 Setup

2.1 TROPOMI CH4 observations

The TROPOMI (Veefkind et al., 2012) instrument was
launched on 13 October 2017 on board the Sentinel-5 Pre-
cursor satellite, a low Earth orbiter with a Sun-synchronous
orbit that overpasses at 13:30 local solar time. Operational
since the end of April 2018, the instrument is an imag-
ing spectrometer with a wide spectral range: ultraviolet,
visible, near-infrared and shortwave infrared. This allows
TROPOMI to measure a variety of atmospheric chemical
species, such as ozone, nitrogen dioxide, carbon monoxide,
sulfur dioxide, formaldehyde, aerosol and methane (Hu
et al., 2018). Current CH4 observations, which are available
for the inner two-thirds of the swath and only over land,
are vertically integrated columns sensitive to the tropo-
sphere (surface to 200 hPa). With a swath that is around
1750 km (normally 2600 km) wide from the along-track
position and a ground pixel size of 7 km× 7 km, TROPOMI
CH4 data can provide near-global daily coverage at high
horizontal resolution over land, but they are limited by
cloud cover and retrieval quality. In this study, we use the
bias-corrected version of the product and apply the most
stringent quality flagging possible, selecting only pixels
that have the qa_value= 1.0 (see Product Readme Methane
V01.03.02, https://sentinel.esa.int/documents/247904/
3541451/Sentinel-5P-Methane-Product-Readme-File, last
access: January 2021). That document states that an overall
bias of −0.3 % was found in a comparison against indepen-
dent data, which is well within the mission requirements of
≤ 1.5 % (24 ppb). The scatter of the data around this bias
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Figure 1. Global average TROPOMI XCH4 column-averaged dry-air mixing ratios for the full year 2019, July 2019 and 1 July 2019 (a–c
respectively).

also complies with the mission requirements of ≤ 1.0 %
(18 ppb). Figure 1 illustrates the CH4 satellite observation
coverage that TROPOMI provides per year, per month and
per day.

The measurements show clear geographical variation in
the CH4 column-averaged dry-air mixing ratios (XCH4),
which is driven to some extent by atmospheric transport
but mostly by the spatial and temporal variability of surface
fluxes and emission variations. Figure 2 shows the 2019 an-
nual averages for the Middle East and the western USA. In
these regions, spatial variability results in XCH4 enhance-
ments of up to 50 ppb over emission hotspots. The average
concentrations in these regions – approximately 1825 ppb
over the USA and approximately 1875 ppb over the Middle

East – are also significantly different. The strong local en-
hancements are an indication of strong local surface fluxes
and emissions of CH4 from oil and gas activities, mining,
agriculture or wetlands. XCH4 retrievals can also be prone
to some systematic residual errors, especially those relat-
ing to surface albedo (Hasekamp et al., 2019). De Gouw
et al. (2020), for instance, mentioned the possibility of re-
trieval biases due to low surface albedo in the shortwave-
infrared spectral band during winter. Even though they are
generally reduced in the bias-corrected product, such re-
trieval biases need further investigation (see Sect. 4.3). Nev-
ertheless, the TROPOMI data are sufficiently accurate to
show local enhancements linked (but not limited) to oil and
gas production. We show in Sect. 3 how to isolate these
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Figure 2. Regional zooms of TROPOMI XCH4 columns for the full year 2019 in the Middle East (a) and central/western North America (b).

small-scale signals of interest and remove the contribution
of synoptic-scale (more than 2000 km) and meso-alpha-scale
(between 2000 and 200 km) biases. In the rest of the paper,
we define “large scale” as the combination of synoptic scale
and meso-alpha scale.

2.2 CAMS high-resolution CH4 forecasting suite

In this study, we use the ECMWF Integrated Forecasting
System (IFS), which is used in different configurations for
the operational Numerical Weather Prediction (NWP) system
as well as for the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) atmospheric composition analyses and fore-
casts. As part of the CAMS greenhouse gas services, the IFS
provides 5 d forecasts for CO2 and CH4 (Agustí-Panareda
et al., 2019) along with other species that are relevant to air
quality (Flemming et al., 2015).

The IFS model cycle used in this paper is CY45R1. This
is run routinely at TCo1279 horizontal resolution, which is
a cubic octahedral reduced Gaussian grid at approximately
9 km resolution (Holm et al., 2016), 137 vertical levels from
the surface to 0.01 hPa, and a time step of 450 s. Details
about the transport and meteorological configuration can be
found in Agustí-Panareda et al. (2019). The CAMS green-
house gas (GHG) operational suite is composed of an analy-
sis and forecasts at medium and high resolution (see Fig. 3).
The analysis is based on the IFS 4D-Var assimilation system,
which was adapted to assimilate retrieved column-averaged
mole fractions of CO2 and CH4 together with all the oper-
ational meteorological observations (Engelen et al., 2009:
Massart et al., 2014, 2016). The analyses are produced ev-
ery 12 h (00:00 and 12:00 UTC). A 4 d forecast is then issued
daily after the 00:00 UTC analysis on a TCo399 cubic octa-
hedral grid corresponding to approximately 25 km× 25 km
with the same 137-model-level configuration. Two satellite
observation streams are currently assimilated: the Infrared
Atmospheric Sounding Interferometer (IASI) for CH4 on the

MetOp satellites and the Thermal And Near-infrared Sensor
for carbon Observations (TANSO) on the GOSAT satellite
for both CO2 and CH4 (see Massart et al., 2014, for fur-
ther details). In this configuration, only the concentrations
are corrected by the assimilation; the emissions and surface
fluxes remain unchanged. Processing and acquisition of the
level 2 data in 2019 yielded the satellite XCH4 data 4 d be-
hind real time. The high-resolution forecast is then coupled to
the analysis experiment by merging the 4 d lower-resolution
forecast from the CO2 and CH4 analysis with the previous 1 d
high-resolution forecast (Fig. 3) in order to preserve the fine-
scale features of the high-resolution forecast. Additionally,
the high-resolution forecast from the operational NWP runs
is used to reset the initial meteorological conditions in order
to ensure the best possible accuracy of the transport. In this
paper, we will focus on using the CH4 forecasts at high res-
olution from the setup described above. The high-resolution
forecasts are run on a TCo1279 L137 grid of approximately
9 km× 9 km for a 5 d period and are initialised approxi-
mately 4 h behind real time every day from 00:00 UTC. The
impact of the TANSO and IASI CH4 retrieval assimilation is
not strong close to the surface (see Fig. 8 in Massart et al.,
2014). Analyses performed at a resolution of 25 km do not
correct the emissions and hence mainly provide a correction
to the forecast initial condition concentrations in the free tro-
posphere and above. At lower altitudes, the emissions are
the dominant influence on the 4 d forecast at 25 km, which
is used to initialise the high-resolution forecast at 9 km that
does not include data assimilation.

Both high-resolution forecasts and analysis use prescribed
CH4 surface fluxes. The anthropogenic emissions data, in-
cluding fossil fuel, agricultural and landfill/waste emis-
sions, are from the EDGARv4.2FT2010 dataset (Olivier and
Janssens-Maenhout, 2012) for 2010 with 0.1◦× 0.1◦ and
monthly resolution for the rice emissions (Matthews et al.,
1991). Monthly mean wetland emissions come from a cli-
matology (1990–2008) based on the LPJ-WHyMe model
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Figure 3. Flow chart of the CAMS greenhouse gas analysis and forecast system.

Figure 4. Examples of combined net fluxes (only positive values are shown due to the logarithmic scale) that constitute the surface boundary
conditions of the IFS high-resolution CH4 forecast. Global- and regional-scale examples for 15 January and 15 July 2019 at 12:00 UTC are
presented.
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Figure 5. Examples of the IFS high-resolution CH4 forecast output, showing snapshots at global and regional scales of the total column mean
molar fractions for 15 January and 15 July 2019 at 12:00 UTC. The lower panels show parts of Europe (left) and the Middle East (right).

that is constrained by SCIAMACHY observations during
the HYMN project (Spahni et al., 2011) and has a resolu-
tion of 1◦× 1◦. The biomass burning emissions are from
GFASv1.2 (Kaiser et al., 2012). Other sources and sinks
include a monthly soil sink (Ridgwell et al., 1999), an-
nual mean oceanic fluxes (Houweling et al., 1999; Lam-
bert and Schmidt, 1993), and monthly mean fluxes from ter-
mites (Sanderson, 1996) and wild animals (Houweling et al.,
1999). The chemical sink in the troposphere and stratosphere
is represented by a climatological monthly mean chemi-
cal loss rate (Bergamaschi et al., 2009). This is based on
OH fields optimised with methyl chloroform using the TM5
model (Krol et al., 2005) with prescribed concentrations of
stratospheric radicals obtained using the 2D photochemical
Max Planck Institute model. Figure 4 shows the geographical
and seasonal structure of the surface fluxes. Large-scale and
smoother structures are representative of wetland, soil and
agricultural fluxes, whereas the finer-scale and sharper struc-
tures are representative of anthropogenic and fire emissions.

Figure 5 shows the usefulness of the high-resolution fore-
casts at global and regional scales. Global seasonal cycles
and synoptic-scale concentrations are represented, as well as
concentrations at smaller scales, such as plumes from point-
source emissions and orographic effects. Large point sources
and associated plumes can be seen over Europe, for example
over Madrid, Paris and Tours (western France). Inventory es-
timates suggest that the modelled hotspot region near Tours
is probably the result of solid-waste landfill emissions. Other
possibilities include emissions from the enteric fermentation
and wastewater treatment sectors, all of which may be linked
to a landfill site. Over the Middle East region zoom, sharp
point sources are seen in Teheran and southern Iran, as well
as over Pakistan (Karachi) and closer to the Himalayan re-
gion.
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2.3 Monitoring suite

To monitor and compare the TROPOMI XCH4 retrievals
with the IFS CH4 9 km forecasts, we reuse part of the IFS
assimilation system in a so-called monitoring mode. The sys-
tem recomputes a high-resolution trajectory at 9 km (which
is a model integration), initialised from the forecasts in a 12 h
monitoring window, to calculate so-called first-guess depar-
tures (a departure is the difference between an observation
and the corresponding model forecast) using the observations
at the appropriate model time step. At each observation loca-
tion, the departure can be written

d = y−HM(xi) , (1)

where d is the departure, y is the observation,H is the obser-
vation operator, M is the model integration or trajectory, and
xi is the initial CH4 condition at the beginning of the mon-
itoring window. If we inject the retrieval equation (Rodgers,
2000), the departure becomes

d = Axt+ (I−A)xa+ ε−AM(xi)− (I−A)xa , (2)

where xt is the true CH4 concentration state (which is never
known exactly), A is the averaging kernel matrix (which rep-
resents the sensitivity of the retrieval on the vertical profile
to the true state), I is the identity matrix, xa is the informa-
tion known a priori that is used in the retrieval, and ε is the
retrieval error term. The equation then simplifies to

d = A(xt−M(xi))+ ε, (3)

which is the difference between the true state and the fore-
cast smoothed by the averaging kernel function plus the re-
trieval error term. Those departure values are thus strongly
dependent on the averaging kernel function shape. For the
TROPOMI XCH4 retrievals, the mean averaging kernel func-
tion shows a homogeneous sensitivity to the entire tropo-
sphere, slightly decreasing in the stratosphere (see Fig. 2
in Hu et al., 2016). The averaging kernel function does
not vary markedly between pixels or regions of the globe
(not shown). Figure 6 shows the departures over various
timescales (yearly, monthly and daily) for the global domain.
Overall, the departures (observation minus forecast) show a
global positive bias of around 25 ppb (meaning that the ob-
servation values are higher than the model values), which
can be attributed to model biases (Ramonet et al., 2019)
and/or observation biases (Langerock et al., 2019). Ramonet
et al. (2019) compared the CAMS CH4 forecasts with inde-
pendent total column data. Results showed that the forecasts
continuously underestimated the CH4 total columns by 5–
20 ppb. Langerock et al. (2019) showed that the average total
column bias for the TROPOMI CH4 retrievals was −0.32 %
(i.e. around −5 ppb) with respect to ground-based measure-
ments.

Regional-scale error structures are evident from the
observation–model comparison. For example, boreal regions

show a band of negative values that are potentially at-
tributable to systematic errors caused by surface albedo val-
ues during winter (see Sect. 2.1) in the TROPOMI retrieval
algorithm. Alternatively, they could be caused by CH4 biases
at the tropopause and lower stratosphere levels in the IFS
model. Also, a possible time lag in the wetland emissions,
which are calculated offline and provide boundary conditions
in the IFS forecasting chain (see Sect. 2.2), could cause such
errors. The origin of this type of large-scale error in the de-
partures is not yet fully understood and is beyond the scope of
this paper, although an understanding of these biases is cru-
cial to further improving the quality of CAMS CH4 forecasts
and TROPOMI retrievals. At finer scales, structures are seen
on the yearly average comparison that become more evident
at the monthly timescale. Local differences are even stronger
at the daily timescale, but recognising fine-scale structures
is challenging due to the lack of daily coverage. For these
reasons, spatial filtering and temporal averaging of the de-
partures are performed to extract and use the small-scale fea-
tures seen in the departures.

3 Detection method

3.1 Filtering the signal

To remove the large-scale features seen in the departures,
we have implemented high-pass Gaussian filtering. The filter
uses a convolution of a 2D Gaussian kernel on a given aver-
aged and binned departure field. In this study, we use 0.1◦

latitude–longitude binning. Due to the ocean, cloud cover
and quality control flagging, a number of departure bins will
have missing values, which will jeopardise the convolution.
This problem is solved technically by creating two auxiliary
matrices in which missing values are replaced by 0. The two
auxiliary matrices are then defined as

D=

{
dm if n > N

0 otherwise
(4)

C=

{
1 if n > N

0 otherwise,
(5)

where dm (the subscript m refers to “mean”) is the average
departure in the given bin and N is the minimum number
of observations that must be included in a given bin. In this
study, we use N = 2 to avoid smoothing with very isolated
(and potentially faulty) pixels while retaining as much data
as possible. Replacing the missing values in D with zeros
introduces an error in the filtered departures dhp (where the
subscript hp refers to “high pass”) after convolution (lower
values are induced by the smoothing resulting from the in-
sertion of zeros). This can be corrected for by applying the
same Gaussian filter to a matrix C representing the bins se-
lected for filtering (where the number of counts is at least N )
and using the ratio of the two filtered matrices to compensate
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Figure 6. Departure values computed with the observations displayed in Fig. 1 for the full year 2019, July 2019 and 1 July 2019.

for the missing-value errors. A high-pass filter on a given ob-
servation space field (departures here) can then be formulated
as follows:

dhp = dm−
G(σ ) ∗D
G(σ ) ∗C

, (6)

whereG(σ) is a 2D Gaussian kernel function with a σ length
scale. The same filtering is also applied to the observation
values y and the first-guess values HM(xb), as these will
be used for classification in Sect. 3.2. Figure 7 shows the
effect of the filtering on the observation-space data using a
30 d window and a length scale of 2◦. Firstly, we can see that
the large-scale features in the departures such as the over-
all bias and regional variations are removed. Secondly, the
departure, observation and first-guess distributions are made

more Gaussian, such that the distributions is centred at zero
and is more symmetrical, and display tails. This makes the
processing and classification of the data much easier (see
Sect. 3.2).

To decide on the appropriate window length and Gaussian
kernel length scale, we conducted sensitivity tests with dif-
ferent length scales (σ = [0.5, 1.0, 2.0, 5.0]◦) and window
lengths of 10, 30 and 90 d. Figure 8 shows the resulting fil-
tered departures normalised to the instrument precision for
the 12 possible sensitivity tests. For the tests with Gaussian
kernel sizes of 0.5 and 1.0◦, the filtered signal is generally
weaker than the measurement precision, so very few or no
detections of local anomalies will be made. Conversely, if the
kernel is large, the signal is stronger relative to the instrument
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Figure 7. Example of the effect of high-pass filtering on observation-space data using a 30 d window ending on 1 July 2019 with a 2◦

Gaussian kernel length scale: (a) the unfiltered departures, (b) the filtered departures, (c) histograms comparing unfiltered (red) vs. filtered
(blue) departures, and (d) 2D distributions of the unfiltered (red) and filtered (blue) data points in the observation–forecast space. Note that
the unfiltered data distribution is centred at the mean in this plot to facilitate comparisons with the filtered distribution.

precision, but there is a risk of picking up larger patterns than
the targeted features, i.e. features that are directly related to
local emissions in the atmospheric distribution of CH4. For
these reasons, we found that a kernel of 2.0◦ performed best.
If the time window is short, e.g. 10 d, decreased coverage
could hinder the correct detection of outliers, especially for
isolated data points. Isolated data points that indicate pos-
sible outliers could be filtered out towards 0, as the convo-
lution does not have neighbouring points to use within the
kernel range. The shorter the window and the narrower the
kernel, the more likely this is. Conversely, using a long time
window, i.e. 90 d, maximises the chances of achieving good
observation coverage, allowing the most effective use of the
convolution filter, although this reduces the ability to provide
information on temporal variability. Also, the sharp spatial
structures that correspond to more recent or sporadic emis-
sion events are smoothed by the time averaging, decreas-
ing the filtered departure over instrument precision ratio. For
these reasons, we found that a time window of 30 d provides
the most reasonable results.

3.2 Outlier classification

The final step is outlier detection of the filtered departures.
We choose to retain the filtered departures with absolute val-
ues that are larger than the CH4 measurement precision of
TROPOMI. If the absolute value of a filtered departure is
lower than the measurement precision, it is considered noise
and ruled out. The current methodology could be refined

to find a better outlier detection method based on more ad-
vanced statistical techniques. In the present study, we found
that the measurement precision of the satellite product pro-
vides suitable results. In addition to outlier detection, we
classify the departures into four categories based on the rela-
tive values and signs of the filtered observations and forecast
values:

– High observations (red in Fig. 9), where the filtered
observation values are higher than the absolute filtered
forecast values. This class represents XCH4 values that
are high according to TROPOMI but are not seen as
high or not seen at all in the forecasts. These likely origi-
nate from emissions that are not reported or are underes-
timated in the inventories. However, high observations
may also be caused by poor-quality observations due to
albedo and scattering issues (see Sect. 4.3).

– High forecasts (green in Fig. 9), where the filtered fore-
cast values are higher than the absolute filtered obser-
vation values. This class represents CH4 values that are
high in the forecasts but are not seen as strong or not
seen at all in the TROPOMI XCH4 retrievals. High fore-
casts likely originate from emissions that are overesti-
mated, no longer being produced, or even mislocated in
the emissions inventory.

– Low observations (blue in Fig. 9), where the filtered
observation values are lower than the absolute filtered
forecast values. This class represents XCH4 values that

https://doi.org/10.5194/acp-21-5117-2021 Atmos. Chem. Phys., 21, 5117–5136, 2021
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Figure 8. High-pass filtering sensitivity tests of the departures normalised to the instrument precision. Window length (columns) is 10, 30 or
90 d, and kernel size (rows) is 0.5, 1.0, 2.0 or 5.0◦. The selected filter parameter values are those for the plot outlined in bold.

are locally low according to TROPOMI but are not seen
to be as low or are not seen at all in the forecasts. Poor-
quality observations that are influenced by low surface
albedo likely fall in this category (see Sect. 4.3).

– Low forecasts (gold in Fig. 9), where the filtered fore-
cast values are lower than the absolute filtered observa-
tion values. This class represents XCH4 values that are
low in the forecasts but are not seen to be as low or are
not seen at all in the TROPOMI XCH4 retrievals. This
category generally includes relatively few data points,
which are very sparsely distributed. Orography may ex-
plain the data points in this category (i.e. model surface
heights that are higher than the corresponding observa-
tion values). Further improvements to our method will

likely involve the use of orography to improve the filter-
ing.

In the maps shown in Fig. 9, colour intensity indicates the
magnitude of the offset, i.e. how far the observation value is
from the forecast value. Point size indicates the number of
samples included: a larger dot indicates that more data points
within the 30 d window were used to compute the statistics,
making them more robust. Figure 9 gives an overview of out-
liers detected around the world, which are many and varied.
In the next section, we focus on specific case studies from the
underreported/missed plumes (red) category and the overre-
ported plumes (green) category to demonstrate both the use-
fulness of the method and its current limitations.
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Figure 9. Examples of outlier classification. (a, b) Global distributions in the observation–first-guess space for two different 30 d windows
(end dates: 1 July and 1 September 2019). The four data classes are shown in different colours; the colour intensity reflects the number
of outliers. (c, d) Locations of outlier classes around the globe during the two 30 d windows (end dates: 1 July and 1 September 2019,
respectively). Darker dots show larger departures. Larger dots indicate that more occurrences were detected in the bin and time window.

Figure 10. Outlier detection and classification over the southwestern USA. Dates indicate the end date of the 30 d time window.

4 Case studies

4.1 Underestimation of emissions from local sources in
the forecasts

Southwestern USA and Mexico. Figure 10 shows that the
method detects underpredicted local CH4 concentrations (in

red) in the forecast system for three areas of the southwest-
ern USA and Mexico. One area is in the Permian Basin,
around the Texas–New Mexico border, where multiple oil
drilling sites are currently operating. These enhancements
have been documented by de Gouw et al. (2020) and Zhang
et al. (2020), showing the reliability of the presented method.
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Figure 11. Outlier detection and classification over Turkmenistan. Dates indicate the end date of the 30 d time window.

The two other regions have smaller biases and extents, and
they occur around the southern tip of Nevada (by Lake Mead)
and northern Baja California (close to the USA–Mexico bor-
der). To our knowledge, these two cases are yet to be investi-
gated or documented, so they need further investigation. We
could not identify any facilities that are responsible for those
enhancements; neither could we find any matching land sur-
face albedo features that could create local biases in the re-
trievals (see Sect. 4.3) from visible satellite imagery. The
northern Baja California enhancements are observed to be
correlated with scattering parameters such as the aerosol op-
tical thickness (AOT, not shown), which should be investi-
gated further to improve the method. A case study of the in-
fluence of the AOT on the detection method is described in
Sect. 4.3.

Western Turkmenistan. To confirm the ability of this
methodology to detect large point-source emitters, we also
showcase the very strong detection of anomalous concen-
trations over western Turkmenistan. Strong enhancement oc-
curred throughout 2019 (Fig. 11), although the enhancement
changed in intensity and shape. The filtered departures can
be very large (above 50 ppb), with high counts in the bins
(i.e. large dots). As mentioned above, anomalously large CH4
sources linked to oil and gas production in this location have
been documented and detected by Varon et al. (2019) using
TROPOMI in combination with private-sector satellite data.

4.2 Overestimation of emissions from local sources in
the forecasts

Western Russia. Our detection system shows two local point
sources with large forecast values that are not seen by
TROPOMI XCH4 (green dots in Fig. 12). The features are
depicted as small dots (i.e. relatively few samples) that form
a plume shape, with strong departures near the point sources.
One is very close to Moscow and corresponds to the sur-
roundings of Domodedovo Airport. The other source is near
the Volga River; its location correlates with small drilling
fields seen in visible satellite images. The detection method
suggests that emission inventories are overestimating emis-
sions from these sources, which were actually releasing
lower emissions or were no longer active emitters during the
monitoring period.

Los Angeles. Similar features can occur in the area of Los
Angeles. Figure 10 shows significant overprediction of CH4
(green dots) over San Bernardino and Palmdale. Both towns
have industrial facilities and regional airports. Stronger de-
tection is seen in the 1 September and 1 October 2019 win-
dows than in the 1 July and 1 August 2019 windows. Differ-
ences in intensity may be attributed to changes in emission
levels from month to month, as well as seasonal atmospheric
transport changes due to different meteorological situations
in different windows. For example, if the overall wind speed
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Figure 12. Outlier detection and classification over western Russia. Dates indicate the end date of the 30 d time window.

Figure 13. Outlier detection and classification over Libya, Egypt and Niger. Dates indicate the end date of the 30 d time window.

increases near the source, less accumulation of CH4 would
be seen, leading to smaller departures and less detection.

Such cases in very different locations show the ability
of the method to detect not only missing or underreported
point sources but also overreported cases. This can only be
achieved by combining numerical model forecasts and satel-
lite measurements that have closely matched high horizon-
tal resolutions (9 and 7 km respectively). It is also important
to mention that the method presented here is subject to un-
certainties due to model transport error and representation
error, although the error associated with emission levels gen-
erally dominates. Further work is needed to account for at-
mospheric transport and, more generally, weather variability
in the detection method. Techniques such as those described
in Barré et al. (2020) show great potential for application in
this context.

4.3 Local retrieval issues

The TROPOMI XCH4 retrieval can be affected by albedo is-
sues (see Sect. 2), and the filtering is not able to remove fea-
tures with geographical extents that are smaller than the size
of the Gaussian kernel (see Sect. 3.1). Figure 13 shows pat-
terns in the outlier detections where the filtered observations
are lower than the filtered forecasts (low observation cate-
gory; plotted in blue). Similar patterns are seen for the two
months considered. In Fig. 14, the TROPOMI albedo in the
near-infrared (NIR) and shortwave-infrared (SWIR) bands is
displayed along with the XCH4 column retrieval. There are
large albedo variations in the two spectral bands in this area
that affect the XCH4 columns. The patterns for the albedo
and the XCH4 columns clearly match. The ability of the fil-
tering algorithm to remove this effect depends on the struc-
ture of the pattern and how narrow or small it is. This is an
issue with the outlier detection method in its current form.
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Figure 14. (a, b) TROPOMI albedo in the near-infrared (NIR) band, (c, d) TROPOMI albedo in the shortwave-infrared (SWIR) band, and
(e, f) TROPOMI XCH4 columns. Maps display averages for the same windows as shown in Fig. 13.

Another example is provided in Fig. 15, where the same
pattern is seen repeatedly in the outlier detection over the
Siberian region. In this case, the filtered observation values
are higher than the filtered forecast values (high observation
category; plotted in red). The pattern detected matches the
SWIR albedo pattern shown in Fig. 16. The high-albedo ar-
eas in the SWIR albedo map are also the areas with relatively
high TROPOMI XCH4 compared to their surroundings, and
the pattern is narrow enough to be missed by the filter. Thus,
great care should be taken when diagnosing such filtered de-
partures. Features with a consistent distinctive shape and in-
tensity are potential retrieval error artefacts, as atmospheric
methane signals generally show considerable variability as
a result of meteorological dynamics, not a consistently dis-

tinctive shape over a period of months (8 and 10 weeks in
Figs. 13 and 15 respectively). Further development of our
detection method should include the incorporation of albedo
information to try to account for such systematic local biases.

However, in certain cases, identifying such biases can be
more complex than just correcting outlier detections using
albedo information. In Fig. 17, the anomaly presents a con-
sistent shape for the four months shown when using 30 d
windows, but there is no feature in the corresponding NIR
and SWIR albedo maps that is clearly correlated with the
anomaly. Instead, investigations showed that this anomaly is
associated with scattering parameters such as the aerosol op-
tical thickness (AOT); it correlates well with the AOT in the
NIR and SWIR bands. As an example, Fig. 18 shows the
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Figure 15. Outlier detection and classification over Siberia. Dates indicate the end date of the 30 d time window.

Figure 16. Albedo in the shortwave-infrared (SWIR) band over Siberia, as provided by TROPOMI. Maps display averages for the same
windows as shown in Fig. 13.
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Figure 17. Outlier detection and classification over Australia. Dates indicate the end date of the 30 d time window.

Figure 18. Aerosol optical thickness (AOT) in the near-infrared (NIR) band over Australia, as provided by TROPOMI. Maps display averages
for the same windows as shown in Fig. 15.
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presence of a feature in the map of the AOT in the NIR band
that correlates to high-XCH4 observations with respect to the
forecasts. A similar feature is also seen in the map of the AOT
in the SWIR band (not shown). This shows that more work
is needed to identify systematic local biases, as they are not
all caused by albedo variations. Additionally, there is still a
potential impact of temporally and spatially variable small-
scale albedo features. For example, nonpersistent biases can
arise with snow coverage. More research will be needed to
improve automatic local bias detection for less persistent bi-
ases.

Currently, the method presented here helps to identify re-
trieval biases, but it does not do this systematically. Further
improvements to the method could include the joint use of
albedo and scattering parameters to perform additional filter-
ing correction and flagging. The availability of such an auto-
matic retrieval bias detection tool would help to improve the
quality of the retrieval product.

5 Conclusions

In this paper, we have shown the potential for the system-
atic detection of anthropogenic CH4 point and local source
emissions relative to known emissions inventory data using
TROPOMI satellite measurements in combination with high-
resolution CH4 forecasts. While many studies have included
detailed analyses of a few case studies using TROPOMI ob-
servations, this is the first step towards providing a system-
atic way to detect strong local anthropogenic emitters of CH4
and to compare the results with emissions inventories. The
method presented here not only shows the potential for the
detection of unreported or missing sources, but it also targets
overreported sources in the inventories. It also has the poten-
tial to identify systematic local retrieval errors, which could
help to improve the satellite product. However, the current
method has some limitations, as it requires additional correl-
ative analyses with albedo and scattering parameters to ac-
count for local biases in the retrieval values. Complications
can arise if land-surface-induced biases and detected local
emission features are collocated. The presence of multiple
types of collocated emissions (i.e. anthropogenic plus wet-
land emissions) will also increase the complexity, as emis-
sion patterns could show albedo correlations in this case. We
have, however, demonstrated the potential of the methodol-
ogy by focusing on several case studies, and further work
is required to provide a global assessment based on several
years from this dataset.

Our method is novel in that it combines information from
multiple sources (emissions inventories, modelled surface
fluxes and observations) in a data assimilation framework
in order to detect and analyse observed anomalies. We used
the global emissions inventories and fluxes that were the
best possible global estimates available to us when we were
running our system. Using other emissions inventories from

research activities that are more specific to local regions
could provide different answers. In this way, our methodol-
ogy could provide an efficient way to validate improvements
in sector-specific emission inventories. For example, using
revised CH4 inventories such as those presented by Maasak-
ers et al. (2016) for the USA or more recently by Scrapelli
et al. (2020) for the entire globe could lead to different detec-
tion patterns. Bottom-up inventories will always lag in time
and therefore cannot track rapid emission changes such as
pipeline and gas facility blowouts. Satellite measurements
have clear added value given that they can provide timely
detection of large emissions.

Combining satellite measurements, forecasts and emis-
sions inventories using a data assimilation system paves the
way to estimating the emissions themselves. While inverse
modelling studies to estimate CH4 emissions have been per-
formed with SCIAMACHY and GOSAT CH4 satellite data,
they have generally been performed at rather low resolu-
tion and have focused on specific study sites (e.g. Jacob
et al., 2016). To our knowledge, there are no published stud-
ies that report global inversions based on TROPOMI data
and update emissions at close to the 10 km scale globally.
Inverse modelling is computationally expensive, and mod-
elling at scales of more than 10 km to closely match satel-
lite observations is a challenge that must be overcome in the
next decade. Efforts are underway to implement a sector-
specific inverse high-resolution modelling monitoring sys-
tem as part of the CAMS service evolution at ECMWF and
the future Copernicus CO2 service at global and regional
scales (e.g. Barré et al., 2019; Bousserez et al., 2019; Pinty
et al., 2019; Janssens-Maenhout et al., 2020). Approaches
combining global and regional modelling could be adopted
to perform inversion at fine scales but at the cost of missing
fine-scale detection outside regional domains. Large and lo-
cal CH4 emission events could occur in very remote areas
that are typically not considered in regional modelling se-
tups (e.g. western Turkmenistan; Varon et al., 2019). System-
atic detection will then require the establishment of many re-
gional subdomains, again increasing the computational bur-
den on a single monitoring entity. We have demonstrated
that monitoring satellite XCH4 departures at high resolution
at the global scale using pre-existing parts of a forecasting
chain is an affordable solution to a highly desirable aim: to
track rapidly changing CH4 sources around the world, thus
supporting efforts to urgently develop climate policies aimed
at reducing anthropogenic CH4 emissions.

Data availability. The underlying research data can be accessed
through the Copernicus Atmosphere Monitoring Service https:
//atmosphere.copernicus.eu/ (Copernicus Atmosphere Monitoring
Service, 2021).
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