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Abstract. Satellite observations reveal that China has been
leading the global greening trend in the past 2 decades. We
assessed the impact of land cover change as well as cli-
mate variability on total biogenic volatile organic compound
(BVOC) emission in China from 2001–2016. We found the
greening trend in China is leading a national-scale increase
in BVOC emission. The BVOC emission level in 2016 could
be 11.7 % higher than that in 2001 because of higher tree
cover fraction and vegetation biomass. On the regional scale,
the BVOC emission level from 2013–2016 could be 8.6 %–
19.3 % higher than that from 2001–2004 in hotspots includ-
ing (1) northeastern China, (2) Beijing and its surround-
ing areas, (3) the Qin Mountains, (4) Yunnan Province,
(5) Guangxi–Guangdong provinces, and (6) Hainan island
because of the land cover change without considering the
impact of climate variability. The comparison among differ-
ent scenarios showed that vegetation changes resulting from
land cover management are the main driver of BVOC emis-
sion change in China. Climate variability contributed signif-
icantly to interannual variations but not much to the chang-
ing trend during the study period. In the standard scenario,
which considers both land cover change and climate vari-
ability, a statistically significant increasing trend can still be
found in regions including Beijing and its surroundings, Yun-
nan Province, and Hainan island, and BVOC emission total

amount in these regions from 2013–2016 is 11.0 %–17.2 %
higher that from 2001–2004. We compared the long-term
HCHO vertical columns (VC) from the satellite-based Ozone
Monitoring Instrument (OMI) with the estimation of iso-
prene emission in summer. The results showed statistically
significant positive correlation coefficients over the regions
with high vegetation cover fractions. In addition, the isoprene
emission and HCHO VC both showed statistically significant
increasing trends in the south of China where these two vari-
ables have high positive correlation coefficients. This result
may support our estimation of the variability and trends of
BVOC emission in this region; however, the comparison still
has large uncertainties since the chemical and physical pro-
cesses, including transportation, diffusion and chemical reac-
tions, were not considered. Our results suggest that the con-
tinued increase in BVOC will enhance the importance of con-
sidering BVOC when making policies for controlling ozone
pollution in China along with ongoing efforts to increase the
forest cover fraction.
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1 Introduction

Biogenic volatile organic compounds (BVOCs) play an im-
portant role in air quality and the climate system due to
their large emission amount and reactivity (Guenther et al.,
1995, 2006). BVOCs are important precursors of ozone and
secondary organic aerosols (SOAs) (Kavouras et al., 1998;
Claeys et al., 2004); therefore, it is important to understand
the variability of BVOC emission and its impact on air qual-
ity and the climate system. The emission of BVOC is con-
trolled by multiple environmental factors like temperature,
radiation, CO2 concentration and other stresses. Therefore it
is affected by climate changes (Guenther et al., 1995; Arneth
et al., 2007; Penuelas and Staudt, 2010). Besides the climatic
factors, land cover change also plays a key role in the vari-
ability of BVOC emission (Stavrakou et al., 2014; Unger,
2013; Chen et al., 2018). For instance, the global cropland
expansion has been estimated to dominate the reduction of
isoprene, the dominant BVOC species, in the last century
(Lathière et al., 2010; Unger, 2013), although there are large
uncertainties associated with these estimates.

China has been greening in recent decades (Piao et al.,
2015). A recent study points out that China accounts for
25 % of the net increase in global leaf area from 2000–2017
(Chen et al., 2019). The increase in forest area plays a dom-
inant role in greening in China, with multiple programs to
maintain and expand forests (Zhang et al., 2016; Bryan et
al., 2018; Chen et al., 2019). The enhancement of vegetation
cover rate and biomass can lead to the increase in BVOC
emission and induce changes in local air quality and the cli-
mate system. Previous studies have investigated the long-
term emission trend of dominant BVOC species like isoprene
in China (Fu and Liao, 2012; Li and Xie, 2014; Stavrakou
et al., 2014; Chen et al., 2019). Li and Xie (2014) estimated
the historical BVOC emissions from 1981–2003 in China us-
ing the national forest inventory records and reported that
the BVOC emission increased at a rate of 1.27 % yr−1. An-
other estimation by Stavrakou et al. (2014) showed an up-
ward trend of 0.42 % yr−1 of isoprene emission in China
from 1979–2005 driven by the increasing temperature and
solar radiation; moreover, the upward trend of isoprene emis-
sion reached 0.7 % yr−1 when considering the replacement of
cropland with forest. A recent study by Chen et al. (2018)
concluded that the global isoprene emission decreased by
1.5 % because of the tree cover change from 2000–2015, but
in China, the isoprene emitted by broadleaf trees and non-
trees increased by 3.6 % and 5.4 %, respectively. However,
these studies have limitations in representing annual changes
of vegetation; e.g., Li and Xie (2014) used fixed leaf area in-
dex (LAI) input of the year 2003 over the whole study period
of 1981–2003.

Considering the significant land cover change and green-
ing trend in China, it is necessary to thoroughly investigate
the impact of intense reforestation on BVOC emission in
China. In this study, we used the latest annually continu-

ous land cover products Version 6 by the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) sensors as well as
the Model of Emissions of Gases and Aerosols from Nature
(MEGAN; Guenther et al. 2012) to investigate BVOC emis-
sion in China from 2001 to 2016. By annually updating the
vegetation information of MODIS observations, we could ac-
curately estimate interannual variability of BVOC emission
to assess the impact of greening trend on BVOC in China
from 2001–2016.

A long-term in situ observation of BVOC is not available
in China currently to investigate interannual variability of
BVOC emission; however, satellite formaldehyde (HCHO)
observations provide an opportunity to validate the interan-
nual variability of isoprene, the dominant compound among
BVOC species that accounts for almost half of total BVOC
emission in China (Li et al., 2013). Since HCHO is an impor-
tant proxy of isoprene in forest regions with no significant
anthropogenic impact, satellite HCHO columns are widely
used to derive isoprene emission at regional to global scales
(Palmer et al., 2003; Marais et al., 2012; Stavrakou et al.,
2009, 2015; Kaiser et al., 2018). Zhu et al. (2017b) reported
an increasing trend of HCHO vertical columns (VC) detected
by the Ozone Monitoring Instrument (OMI) driven by in-
creasing cover rate of local forest in the northwestern United
States. Stavrakou et al. (2018) also used the long-term HCHO
VC to investigate the annual variability of BVOC induced by
climate variability. Here we used the long-term OMI 2005–
2016 record to evaluate the interannual isoprene variability
we estimated in China.

2 Data and method

2.1 MEGAN

MEGAN (Guenther et al., 2006, 2012) is the most widely
used model for calculating BVOC emission from regional to
global scales (Müller et al., 2008; Li et al., 2013; Sindelarova
et al., 2014; Chen et al., 2018; Bauwens et al., 2018; Messina
et al., 2016). The offline version of MEGAN v2.1 (Guenther
et al., 2012), available at https://bai.ess.uci.edu/megan (last
access: 25 March 2021), was used to estimate the BVOC
emission in China from 2001 to 2016. MEGAN v2.1 calcu-
lates emissions for 19 major compound categories and uses
the fundamental algorithm

Fi = εiγi, (1)

where Fi , εi and γi represent the emission amount, the stan-
dard emissions factor and emission activity factor of chem-
ical species i. The standard emission factor in this study is
based on the plant functional type (PFT) distribution from
the Community Land Model 4.0 (Lawrence et al., 2011). The
emission activity factor γi accounts for the impact of multi-
ple environmental factors and can be written as

γi = CCELAIγp,iγT ,iγA,iγSM,iγC,i, (2)
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where γp,i , γT ,i,γA,i,γSM,i and γC,i represent the activity
factors for light, temperature, leaf age, soil moisture and
CO2 inhibition impact. The CCE (= 0.57) is a factor to set
the γi equal to 1 at standard conditions (Guenther et al.,
2006). LAI is the leaf area index, and it is used to define
the amount of foliage and the leaf age response function as
described in Guenther et al. (2012). The light and tempera-
ture response algorithms in MEGAN v2.1 are from Guenther
et al. (1991, 1993, 2012), which described enzymatic activi-
ties controlled by temperature and light conditions. The CO2
inhibition algorithm is from Heald et al. (2009), and only the
estimation of isoprene emission considers the impacts of soil
moisture and CO2 concentration. The detailed descriptions
of these algorithms can be found in Guenther et al. (2012)
and Sakulyanontvittaya et al. (2008).

2.2 Land cover datasets

The land cover parameters for driving MEGAN including
LAI, PFT and vegetation cover fraction (VCF) were pro-
vided by satellite datasets. The MODIS MOD15A2H dataset
for 2001 (https://lpdaac.usgs.gov/products/mod15a2hv006/,
last access: 25 March 2021, Myneni et al., 2015a) and
MCD15A2H dataset for 2002–2016 LAI (https://lpdaac.
usgs.gov/products/mcd15a2hv006/, last access: 25 March
2021, Myneni et al., 2015b) were used in this study. The pa-
rameter LAIv in MEGAN is calculated as

LAIv=
LAI
VCF

, (3)

where VCF is provided by MODIS MOD44B datasets
(https://lpdaac.usgs.gov/products/mod44bv006/, last access:
25 March 2021, Dimiceli et al., 2015).

The PFT was used to determine the canopy structure
and standard emission factors in MEGAN (Guenther et al.,
2012). We adopted the default emission factors for PFTs de-
scribed in Guenther et al. (2012), which have been presented
in Table S3 in the Supplement. The PFT dataset in this study
is obtained from the MODIS MCD12C1 land cover prod-
uct (https://lpdaac.usgs.gov/products/mcd12c1v006/, last ac-
cess: 25 March 2021, Friedl and Sulla-Menashe, 2015).
MODIS IGBP classifications were mapped to the PFT classi-
fication of MEGAN or the Community Land Model (CLM)
(Lawrence et al., 2011) based on the description of the leg-
ends in the user guide (Sulla-Menashe and Friedl, 2018)
and the climatic criteria described in Bonan et al. (2002).
The spatial distribution of percentage of PFTs in model
grids is presented in Fig. 1. According to the description
of the legends, we firstly mapped the IGBP classification
to eight main vegetation categories: (1) needleleaf ever-
green forests, (2) broadleaf evergreen forests, (3) needle-
leaf deciduous forests, (4) broadleaf deciduous forests, (5)
mixed forests, (6) shrub, (7) grass and (8) crop. The map-
ping method is described in Table S1 in the Supplement.
Eight main categories were then mapped to the classifica-
tion of MEGAN–CLM for boreal, temperate and tropical

climatic zones using the definition in Bonan et al. (2002).
Table S2 in the Supplement presents the climatic criteria
for mapping, and the climatic information for mapping was
from the ERA-Interim climatology (https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era-interim, last ac-
cess: 25 March 2021, Berrisford et al., 2011) reanalysis
dataset over 2001–2016.

2.3 Meteorological datasets

The hourly meteorological fields including temperature,
downward shortwave radiation (DSW), wind speed, sur-
face pressure, precipitation and water vapor mixing ratio
were provided by the Weather Research and Forecast (WRF)
model V3.9 (Skamarock et al., 2008) simulations. The model
was driven by ERA-Interim reanalysis data (Berrisford et al.,
2011) with 27 km horizontal spatial resolution and 39 ver-
tical layers. The physical schemes are presented in Supple-
ment Table S4.

Since light and temperature conditions are the main envi-
ronmental drivers of BVOC emission (Guenther et al., 1993;
Sakulyanontvittaya et al., 2008), we assessed the reliability
of the WRF-simulated DSW and 2 m temperature (T 2) using
in situ observations from 98 radiation observation sites and
697 meteorology observation sites in China. The in situ ob-
servations are from the National Meteorological Information
Center (http://data.cma.cn/, last access: 25 March 2021). We
converted the hourly model outputs and daily observations to
monthly averaged values from 2001 to 2016 for comparison.
For DSW, the average mean bias (MB), mean error (ME) and
root-mean-square error (RMSE) are 40.37 (±20.81), 43.55
(±17.52) and 49.79 (±17.70) W m−2 for 98 studied sites.
The overestimation of DSW simulation is a common issue
in multiple simulation studies and may be induced by the
lack of physical processes for aerosol radiation effect (Wang
et al., 2011; Situ et al., 2013; Wang et al., 2018) and misrep-
resentation of the radiative effect of the sub-grid-scale cumu-
lus cloud (Ruiz-Arias et al., 2016). For T 2, the average MB,
ME and RMSE are −1.19 (±2.87), 2.40 (±2.14) and 2.65
(±2.11) ◦C among 697 sites over China. The regional-scale
validation was also conducted in five main regions (Fig. S1)
by comparing the averaged values of the observation and the
simulation among the sites in the regions we defined, and the
results (Figs. S2 and S3) and statistical parameters (Tables S5
and S6) can be found in the Supplement.

We also compared the monthly anomalies of DSW and
T 2 from the model simulation and observation to validate
the interannual variability of meteorological fields simulated
by WRF. As shown in Fig. 2, the results indicate that the
model accurately reproduced the interannual variability of
DSW and T 2, and the correlation coefficients of DSW and
T 2 anomaly between the simulation and observation reached
0.77 and 0.88, respectively. The trends in growing-season-
averaged T 2 and DSW from model results as well as in situ
measurements are presented in Fig. 3. The model and the in
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Figure 1. The cover fractions of different PFTs for the year 2016.

situ measurements show similar patterns of T 2. For instance,
the model and observations both show an increasing trend in
regions like the Tibetan Plateau and southern China as well
as a decreasing trend in eastern and northeastern China. For
DSW, the model presented a dimming trend in northeastern
and eastern China and a brightening trend in southeastern and
central China, and the limited number of radiation observa-
tion sites show a similar pattern of trend as model results. In
general, the WRF simulation successfully captured the long-
term meteorological variabilities and is reasonable to use for
estimating the impact of climatic variability on BVOC emis-
sion in China for this study.

2.4 Satellite formaldehyde (HCHO) observations

The satellite HCHO VC used in this study is from the Bel-
gian Institute for Space Aeronomy (BIRA-IASB) and was re-
trieved using the differential optical absorption spectroscopy
(DOAS) algorithm (De Smedt et al., 2012, 2015). We used
the monthly Level-3 HCHO VC product with 0.25◦× 0.25◦

spatial resolution, and the rows affected by the row anomaly
since June 2007 have been filtered in this product (De Smedt
et al., 2015; Jin and Holloway, 2015). Since the OMI instru-
ment is temporally stable (Dobber et al., 2008; De Smedt
et al., 2015), the OMI HCHO VC product is suitable for
long-term analysis (Jin and Holloway, 2015) and was used to
primarily validate our estimation of isoprene emission vari-
ability. The major sources of tropospheric HCHO are bio-
genic VOCs, anthropogenic VOCs and open fires (Zhu et al.,

Figure 2. The comparison of monthly anomaly of downward short-
wave (DSW) radiation (a) and 2 m temperature (T 2) (b) for model
simulation and in situ observation, and the filled areas present the
standard deviations among 98 sites for DSW and 697 sites for T 2.

2017a). Since biogenic isoprene is the dominant source of
HCHO over forests in summertime (Palmer et al., 2003), we
used HCHO as the proxy of isoprene to validate the interan-
nual variability of isoprene estimates.

Atmos. Chem. Phys., 21, 4825–4848, 2021 https://doi.org/10.5194/acp-21-4825-2021
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Figure 3. The trend of growing-season-averaged 2 m temperature (T 2) and downward shortwave radiation (DSW). Panels (a) and (b) are for
in situ T 2 and DSW, respectively, and the sites with a statistically significant trend are marked by black circles. Panels (c) and (d) are for the
WRF-simulated T 2 and DSW, respectively, and the regions with statistically significant trends are illustrated by shadow.

2.5 Scenarios and analysis method

We designed five scenarios (S1–S5) to investigate the impact
of land cover change and climatic conditions on BVOC emis-
sion. The configurations of the five scenarios are shown in
Table 1.

1. S1 was considered as the standard or full scenario.

2. S2 was used to investigate the impact of the ecosystem
and land cover variability on BVOC emission.

3. S3 and S4 characterize the effect of climate variability
and compare the difference of BVOC emission induced
by vegetation change between 2001 and 2016.

4. S5 investigates the contribution of solely the LAI trend
to the BVOC emission trend.

The climatic variability can affect the growth of vegetation
and then affect LAI values (Piao et al., 2015). In this study,

Table 1. Description of different scenarios used to estimate the
BVOC emission.

Land cover LAIv Meteorological
conditions

S1 Annually updated Annually updated Annually updated
S2 Annually updated Annually updated Year 2001
S3 Year 2001 Year 2001 Annually updated
S4 Year 2016 Year 2016 Annually updated
S5 Year 2001 Annually updated Year 2001

the interaction between climate and ecosystem is not con-
sidered in offline MEGAN, which means that the meteoro-
logical conditions, e.g., precipitation, will not affect the LAI
values or phenology of vegetation.

The chemical species emissions estimated by MEGAN
were grouped into four major categories including iso-
prene, monoterpene, sesquiterpene and other VOCs since

https://doi.org/10.5194/acp-21-4825-2021 Atmos. Chem. Phys., 21, 4825–4848, 2021
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the terpenoids account for the majority of total BVOC
emission and have known impacts on atmospheric oxidants
and SOA (Wang et al., 2011). The trend analysis in this
study was done following the Theil–Sen trend estimation
method, and the results were tested by the Mann–Kendall
non-parametric trend test (MK test) (Gilbert, 1987). The
trend analysis and the MK tests in this study were im-
plemented using the trend_manken (https://www.ncl.ucar.
edu/Document/Functions/Built-in/trend_manken.shtml, last
access: 25 March 2021) function of the NCAR Com-
mand Language (NCL, https://www.ncl.ucar.edu/, last ac-
cess: 25 March 2021).

3 Results and discussion

3.1 The variability of BVOC emission in China from
2001–2016

As shown in Table 2, the average annual emissions from
2001–2016 of isoprene, monoterpene, sesquiterpene and
other VOCs estimated from S1 are 15.94 (±1.12), 3.99
(±0.17), 0.50 (±0.03) and 13.84 (±0.78) Tg, respectively.
Isoprene is the dominant species and accounts for about half
of the total BVOC emission in China. As shown in Fig. 4,
the estimated BVOC emission in S2 has a statistically signifi-
cant increasing trend without considering the annual variabil-
ity of meteorological conditions. The increasing rates of iso-
prene, monoterpenes, sesquiterpenes and total BVOC emis-
sion in S2 scenarios are 0.64, 0.44, 0.39 and 0.50 % yr−1,
respectively. The S1 scenario considers the impact of an-
nual meteorological variability as well as the surface vege-
tation change, and the BVOC emission in S1 shows an up-
ward trend but did not pass the significance test of p<0.1.
There is no significant trend of BVOC emission for S3 or
S4, with fixed land cover and annually updated meteorologi-
cal conditions, which demonstrates that meteorology was not
the direct driver of the BVOC emission trend in China dur-
ing this period. Climatic conditions could affect the BVOC
emission indirectly by affecting the growth of vegetation and
controlling BVOC emission (Peñuelas et al., 2009), which
is not considered in the model used in this study. The es-
timated total BVOC emission in S5 also has a statistically
significant increasing trend of 0.26 % yr−1 (p<0.05) without
considering the annual variability of meteorological condi-
tions, which is purely caused by the increase in LAI from
2001–2016. The changing trend of BVOC in the full sce-
nario cannot be treated by the linear summation of trends in
other one-factor scenarios. On the one hand, the response of
isoprene emission to meteorological conditions is nonlinear
(Guenther et al., 1993). On the other hand, the calculation of
national-scale total emission amount is affected by the spa-
tial variabilities of vegetation types as well as climatic con-
ditions, and it should not be a linear combination of the two
aspects.

We also tested the impact of first 2 years on the trend es-
timation of the national-scale BVOC emission. After remov-
ing the first 2 years, the scenarios other than S2 did not show
statistically significant trends for most species; however, sce-
nario S2 with the fixed climate inputs of 2001 and the annu-
ally updated land cover still showed statistically significant
increasing trends for all species (p<0.05), which means the
change of land cover is not dominated by the first 2 years.

The surface vegetation change had a significant influence
on BVOC emissions in China from 2001–2016 according
to our estimation. In S2, the interannual variability of total
BVOC emission is primarily determined by the surface veg-
etation change resulting in a nearly linear increasing trend
of BVOC emission. The average annual emission of total
BVOC from 2009–2016 is 3.9 % (1.29 Tg) higher than that
from 2001–2008 in S2, and the average annual emissions of
isoprene, monoterpene and sesquiterpene during the previ-
ous 8 years are 5.0 % (0.75 Tg), 3.5 % (0.13 Tg) and 3.1 %
(0.02 Tg) higher than those during the next 8 years, respec-
tively. The comparison of S3 and S4 results further demon-
strates the importance of vegetation development on BVOC
emission considering the interannual variability of meteo-
rological conditions. S3 and S4 adopted the same annually
updated meteorological field but with the fixed land cover
information of the years 2001 and 2016, respectively. The
fluctuation of meteorological factors leads to an interannual
variability of BVOC emission in S3 and S4, but the increase
in vegetation cover rate in 2016 results in BVOC emissions
that are much higher than those in 2001. As presented in Ta-
ble 2, the average total BVOC emissions are 31.77 (±1.54)
and 35.48 (±1.76) Tg in S3 and S4, respectively, and the total
BVOC emission in S4 is 11.7 % (3.71 Tg) higher than that in
S3. The emissions of isoprene, monoterpene and sesquiter-
pene with the land cover information of the year 2016 are
14.1 % (2.07 Tg), 9.0 % (0.34 Tg) and 8.5 % (0.04 Tg) higher
than those estimated based on the land cover information of
the year 2001, respectively.

3.2 The regional variability of BVOC emission in
China

The hotspots of BVOC emission are mainly located in north-
east, central and south China where the forest is widely dis-
tributed and the climate is warm and favorable for emitting
BVOCs as shown in Fig. 5. The Changbai Mountains, the
Qin Mountains, the southeast and southwest China forest re-
gions, southeast Tibet, and Hainan and Taiwan islands are
the regions with the highest BVOC emission in 2001. The
spatial patterns of statistically significant (p<0.1) chang-
ing trends in S1–S5 are also presented for individual cate-
gories in Fig. 5. The spatial distributions of trends of dif-
ferent species in S2 all show a significantly increasing trend
in the regions including northeast, central and south China
since the vegetation development is the main driver of the in-
creasing trend of BVOC emission (c, i, o and u in Fig. 5). In
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Table 2. The mean annual emission (Tg) of different species in China from 2001 to 2016. The scenarios S1 to S5 are described in Table 1.

S1 S2 S3 S4 S5

Isoprene 15.94 (±1.12) 15.40 (±0.66) 14.63 (±0.76) 16.70 (±0.89) 15.29 (±0.54)
Monoterpenes 3.99 (±0.17) 3.91 (±0.10) 3.78 (±0.12) 4.12 (±0.14) 3.9 (±0.08)
Sesquiterpenes 0.50 (±0.03) 0.48 (±0.02) 0.47 (±0.02) 0.51 (±0.03) 0.48 (±0.02)
Other VOCs 13.84 (±0.78) 13.95 (±0.34) 12.89 (±0.66) 14.15 (±0.73) 13.95 (±0.34)
Total BVOCs 34.27 (±2.06) 33.74 (±1.10) 31.77 (±1.54) 35.48 (±1.76) 33.63 (±0.95)

Figure 4. Annual BVOC emissions in China from 2001 to 2016 for five scenarios (S1–S5) described in Table 1. The increasing trends and
the probabilities (p) using the Mann–Kendall test are shown in the legend.

the full scenario of S1, the area with statistically significant
trend is less than that in S2 considering the impact of meteo-
rological variability. S5 also shows a nationwide significantly
increasing trend of BVOC emission but with smaller rates
compared to S2 (f, l, r and x in Fig. 5). A positive increasing
trend induced by meteorology is also found in Tibet, west-
ern Sichuan and southeastern Yunnan Province in S3 and S4,
which is induced by the warming climate and stronger DSW
as presented in Fig. 3.

The spatial patterns of changing trends of total BVOC
emission and land cover parameters are presented in Fig. 6.
The cover fraction of broadleaf trees shows a strong increas-
ing trend in the regions including northeastern, central and
southern China. Meanwhile, the grass and crop cover frac-
tions show a decreasing trend in these regions. The crop
cover rate also shows an increasing trend in northeastern
China, Shan Xi, Gansu and Xinjiang provinces by replacing
the grass there. Besides the change of PFTs, a nationwide in-
creasing trend of LAIv was also found for most regions in
China.

In order to understand the regional discrepancies of the
changing trend of BVOC emission and its drivers, we chose

six regions of interest to further analyze. Our selection is
based on the changing trends we found from Figs. 5 and 6.
We did not use the geographical boundaries as the criteria
to select the regions of interest, and we chose the hotspots
with positive trends and investigated the drivers of trends in
these regions. As shown in (a) of Fig. 6, the six regions in-
clude (1) northeastern China (orange frame in Fig. 6a, 45.5–
54◦ N, 118–130◦ E), (2) Beijing and its surrounding areas
(black frame in Fig. 6a, 39–42.5◦ N, 114–120◦ E), (3) Qin
Mountains (red frame in Fig. 6a, 30–34◦ N, 105.5–112◦ E),
(4) Yunnan Province (blue frame in Fig. 6a, 21–27◦ N, 97.5–
106◦ E), (5) Guangxi–Guangdong provinces (purple frame
in Fig. 6a, 21–25◦ N, 106–117◦ E), and (6) Hainan island
(green frame in Fig. 6a, 17.5–20.5◦ N, 108–112◦ E). The
annual changes of vegetation conditions (PFTs and LAIv),
annual emission flux, growing-season-averaged temperature
and DSW are presented in Figs. 7 and 8, and the averaged
values and trends of the above variables are listed in Tables 3
and 4. In general, six regions all show that woody vegetation
replaced herbaceous vegetation with a significantly increas-
ing trend of annual LAIv. Since the broadleaf trees tend to
have a higher emission potential than grass or crop (Guenther
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Figure 5. The horizontal distributions of isoprene, monoterpenes, sesquiterpenes and total BVOCs emissions of China in 2001 are shown in
panels (a), (g), (m) and (s), respectively. The rest of the rows present the changing trend of isoprene (b–f), monoterpenes (h–l), sesquiterpenes
(n–r) and total BVOCs (t–x) in S1, S2, S3, S4 and S5, respectively. The Mann–Kendall test was used to mark the grids where p is smaller
than 0.1.

et al., 2012), the transformation of land cover from grass or
crop to broadleaf tree is expected to enhance the emission of
BVOC by increasing the landscape average emission factor.
As shown in Tables 3 and 4, the broadleaf tree cover fraction
increased at a rate of 0.15 % yr−1–0.32 % yr−1, and the grass
cover fraction decreased at a rate of 0.11 % yr−1–0.37 % yr−1

among the six regions from 2001–2016. Except for the region
of northeastern China that we defined, the other five regions
all show a decreasing trend of 0.04 % yr−1–0.26 % yr−1 for

the crop cover fraction. As a result, the total tree cover frac-
tion during the last 4 years (2013–2016) is 11.0 %, 82.5 %,
6.1 %, 5.7 %, 5.9 % and 8.0 % higher than that during the first
4 years (2001–2004) for northeastern China, Beijing and its
surroundings, Qin Mountains, Yunnan Province, Guangxi–
Guangdong provinces, and Hainan Island, respectively, and
the LAIv for these regions also increased by 14.8 %–26.4 %.
Correspondingly, the annual BVOC emission flux in all six
regions shows a significantly increasing trend without con-
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Figure 6. Spatial distribution of total BVOC emission in 2001 (a) and the changing trends of annual emission flux (S1, S2 and S5) and cover
fractions of the main PFTs and LAIv. The Mann–Kendall test was used to filter the grids where p is greater than 0.1.
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sidering the variability of meteorology in S2. The mean an-
nual BVOC emission flux for the last 4 years (2013–2016)
is 8.6 %–9.8 % higher than that for the first 4 years (2001–
2004) in the regions defined above except for Beijing and
its surrounding areas, where the change of the annual BVOC
emission flux reached 19.3 %, with the tree cover fraction in-
creasing by 82.5 %. If we only consider the contribution of
LAI change, as described in scenario S5, the above subre-
gions except for Guangxi–Guangdong provinces still show
a statistically significant increasing trend of BVOC emis-
sion without considering the variability of meteorology, and
the increasing trend of contributions of the LAIv change to
BVOC emission is about 25 %–66 % in these regions.

The changing trend of the annual BVOC emission flux is
different in S1 when the impact of meteorological variabil-
ity is taken into account. The simulated T 2 and DSW during
the growing season do not show a significant trend in most
regions we chose. As shown in Figs. 7 and 8, the variabil-
ities of the temperature and DSW during the growing sea-
son controlled the variability of BVOC flux in S1. When the
meteorological variability is considered, there are still three
regions we defined above that show a significantly increas-
ing trend of BVOC emission: (1) Beijing and its surrounding
areas, (2) Guangxi–Guangdong provinces, and (3) Hainan is-
land. In Beijing and its soundings, the changing trend of the
annual BVOC emission flux is 0.03 g m−1 yr−1 in S1, and
the mean annual BVOC emission flux in the last 4 years still
shows a large increase of 16.6 % compared to that in the first
4 years in this region. A significantly increasing trend of tem-
perature of 0.03 ◦C yr−1 was found in southwestern China;
therefore, the increasing trend of the annual BVOC emission
flux is 0.1 g m−1 yr−1 in S1, which is higher than that in S2 of
0.04 g m−1 yr−1. The BVOC flux in the last 4 years is about
17.2 % higher than that in the first 4 years in southwestern
China. In Hainan island, the changing trend of the annual
BVOC emission flux is 0.12 g m−1 yr−1 in S1, and the an-
nual BVOC emission flux in the last 4 years is 11.0 % higher
than that in the first 4 years.

The estimated increase in BVOC in regions like the Qin
Mountains and southern China is expected to affect regional
air quality. For the Qin Mountains and surrounding areas, as
estimated by Li et al. (2018) using the WRF-Chem model,
the average contribution of BVOC to O3 could reach 16.8 ppb
for the daily peak concentration and 8.2 ppb for the 24 h con-
centration in the urban region of Xi’an, one of the biggest
cities near the Qin Mountains suffering from poor air quality
in recent years (Yang et al., 2019). For Guangxi–Guangdong
provinces, Situ et al. (2013) reported that BVOC emission
could contribute an average 7.9 ppb surface peak O3 concen-
tration for the urban area in the Pearl River Delta region, and
the contribution from BVOC even reached 24.8 ppb over the
Pearl River Delta (PRD) in November. Since BVOC plays an
important role in local air quality, the change of BVOC emis-
sion may have an even greater effect on the local ozone pol-
lution. For instance, the simulation study by Li et al. (2018)

also found that the urban region of Xi’an is VOC-limited be-
cause of the abundant NOx emissions there. Therefore, the
increase in BVOC emission in the Qin Mountains would fur-
ther favor the formation of O3 in the urban region of Xi’an.

3.3 Comparison of estimates of isoprene emission and
satellite-derived formaldehyde column
concentration

The OMI HCHO VC product from 2005–2016 developed by
BIRA-IASB (De Smedt et al., 2015) was used in this study.
The interannual variability of isoprene emission estimated in
this study was evaluated by comparing the summer-averaged
(June–August) isoprene emission with the summer-averaged
HCHO VC.

The annually averaged LAI from 2005–2016 presented in
Fig. 9 indicates the spatial distribution of vegetation in China.
However, the spatial pattern of estimated isoprene emission
(Fig. 9b) differs from the spatial distribution of vegetation
because of the variability of emission potentials among dif-
ferent PFTs in MEGAN as well as the climatic conditions.
The spatial pattern of average summertime HCHO VC ob-
served by the OMI sensor from 2005–2016 is also presented
in Fig. 9c. The highest summer HCHO concentrations in
the US are mainly distributed in rural forest regions domi-
nated by biogenic emission (Palmer et al., 2003), while the
highest summer HCHO concentrations in China are mainly
distributed in developed regions like the North China Plain
where HCHO concentration is dominated by anthropogenic
sources (Smedt et al., 2010). There is a moderate HCHO
VC of about 6–10× 1015 molec. cm−2 in the vegetation-
dominated regions of China.

The grid level correlation coefficients between the average
summer HCHO VC and isoprene emission estimated in our
study are shown in Fig. 9d, and the grids with statistically sig-
nificant correlations (p<0.1, N = 12) are marked with black
dots. A correlation is found in northeast, central and south
China where there are relatively high vegetation cover rates
and low anthropogenic influence. In contrast, there is almost
no statistically significant correlation in the high-HCHO-VC
regions like the North China Plain, which is dominated by
anthropogenic emissions. However, the distribution of sta-
tistically significant positive correlated points is not com-
pletely consistent with the vegetation distribution indicated
by LAI due to the absence of consideration of physical and
chemical processes, including transportation, diffusion and
chemical reactions. The grids with significant correlation are
mostly distrusted in or near rural regions with high vegeta-
tion biomass, indicating that our estimations can represent
the annual variation in isoprene emission.

The increasing trends of isoprene and HCHO VC from
2005–2016 are presented in e and f of Fig. 9, and the sta-
tistically significant (p<0.1) grids are marked with black
dots. The increasing trend pattern of isoprene emission from
2005–2016 is basically consistent with that from 2001–2016,
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Figure 7. The annual changes of PFTs and the annual emission amount of BVOC and LAI in (a) northeastern China, (b) Beijing and its
surroundings, and the (c) Qin Mountains. The solid, dashed and marked lines represent the mean emission flux rate of total BVOC in S1, S2
and S5, respectively.

which has been described in Sect. 3.2, and it is clear that
southern China is the region with the strongest positive trend.
For HCHO, developed regions such as the North China Plain
have an increasing trend because of the increase in human ac-
tivities (Smedt et al., 2010), there is also an obvious increas-
ing trend of HCHO VC at Yunnan and Guangxi provinces
in the south of China. Moreover, these regions, especially
Guangxi Province, also show a statistically significant pos-
itive correlation between isoprene emission and HCHO VC
as presented in Fig. 9d. This implies that biogenic emissions
might be the main driver of the increased HCHO in Guangxi
Province; however, the absence of physical and chemical
processes like transport led to a large uncertainty to this
conclusion. Here we conducted a primary comparison be-
tween HCHO VC and isoprene emission, and a more thor-
ough study by using a chemical transport model may help
to further explain the relationship between the variability of
HCHO VC and isoprene emission in the future.

3.4 Comparison with other studies and discussion of
uncertainties

The comparison of isoprene and monoterpene emission esti-
mations between our study and previous studies is presented
in Table 5. The estimations of isoprene emission range from
4.65 to 33.21 Tg, and the estimations of monoterpene emis-
sion range from 3.16 to 5.6 Tg in China. Multiple factors in-
cluding emission factor, meteorology and land cover inputs
can lead to the discrepancy of these estimations. We listed
the inputs of these estimations in Table 6 to fully understand
the discrepancies between our results and other estimations.

The setting of inputs in this study is relatively close to
the study by Stavrakou et al. (2014) and CAMS-GLOB-
BIO biogenic emission inventories (https://eccad3.sedoo.
fr/#CAMS-GLOB-BIO, last access: 25 March 2021) that
adopted the method described by Sindelarova et al. (2014).
However, the estimation of isoprene emission in this study
is about 86.6 %–122.3 % higher than their estimations, and
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Figure 8. The annual changes of PFTs and the annual emission amount of BVOC and LAI in (a) southwestern China, (b) southern China and
(c) Hainan island. The solid, dashed and marked lines represent the mean emission flux rate of total BVOC in S1, S2 and S5, respectively.

Table 5. Comparison of isoprene and monoterpene emissions (Tg) in China with previous studies.

Data source Isoprene Monoterpene Study period Method or model

This study 15.94 (±1.12) 3.99 (±0.17) 2001–2016 MEGAN

Stavrakou et al. (2014) 7.17 (±0.30) – 2007–2012 MEGAN–MOHYCAN

Li et al. (2013) 23.4 5.6 2003 MEGAN

Li et al. (2020) 33.21 6.35 2008–2018 MEGAN

CAMS-GLOB-BIO v1.1
(Sindelarova et al., 2014)

7.67 3.04 2001–2016 MEGAN

CAMS-GLOB-BIO v3.1
(Sindelarova et al., 2014)

8.54 3.23 2001–2016 MEGAN

Fu and Liao (2012) 10.87 3.21 2001-2006 GEOS-Chem–MEGAN

Tie et al. (2006) 7.7 3.16 2004 Guenther et al. (1993)

Klinger et al. (2002) 4.65 3.97 2000 Guenther et al. (1995)

Guenther et al. (1995) 17 4.87 1990 Guenther et al. (1995)
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Figure 9. Comparison of estimated isoprene annual emission with the satellite-derived tropospheric HCHO vertical column concentration
by OMI from 2005–2016. Panels (a), (b) and (c) illustrate the spatial patterns of annual mean LAIv, isoprene emission and HCHO vertical
columns (VC) by OMI, respectively. Panel (d) presents the spatial distribution of the correlation coefficient between summertime isoprene
emission and HCHO VC. Panels (e) and (f) show the increasing trend of isoprene and HCHO VC from 2005–2016.
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the estimation of monoterpene emission is about 23.5 % and
31.3 % higher than that from CAMS-GLOB-BIO v3.1 and
v1.1, respectively. We further compared our results with
two versions of CAMS-GLOB-BIO inventories. Figures 10
and 11 present the trends of isoprene emission and monoter-
pene emission, respectively, from S1 and S3 in this study and
the CAMS-GLOB-BIO inventory v1.1 and v3.1 from 2001–
2016. As shown in Figs. 10 and 11, S3 shows similar spa-
tial patterns and magnitude of the changing trend of isoprene
and monoterpene emissions as CAMS-GLOB-BIO v1.1 and
CAMS-GLOB-BIO v3.1, e.g., three datasets all showed a
strong increasing trend in Yunnan Province, and S1 shows
much stronger changing trends comparing with the other
three datasets with annually updated LAI and PFT datasets.
The meteorological inputs for CAMS-GLOB-BIO v1.1 and
v3.1 are ERA-Interim and ERA-5 reanalysis data, respec-
tively, and the WRF model used in this study was also driven
by ERA-Interim reanalysis data. Therefore, the four datasets
have the same source of meteorological inputs. In addition,
these estimations all adopted the same PFT-level emission
factors from Guenther et al. (2012). Therefore, the poten-
tial reason for the differences of isoprene and monoterpene
emission among the datasets in Figs. 10 and 11 is the dis-
crepancies of PFT and LAI inputs. CAMS-GLOB-BIO also
adopted the annually updated LAI inputs developed by Yuan
et al. (2011) based on the MODIS MOD15A v5 LAI product,
but the two versions of the CAMS-GLOB-BIO inventory did
not show the same level of strong increasing trend as S1. The
increasing trend of LAI in China is confirmed by multiple
LAI products but with different rates (Piao et al., 2015; Chen
et al., 2020). In this study, we adopted the latest MODIS
LAI product of version 6, and a strong increasing trend of
LAI in China has been found by using this product (Chen
et al., 2019). Therefore, an increasing trend of BVOC emis-
sion induced by LAI should be seen in the estimation with
annually updated LAI inputs, but the magnitude of this trend
is also affected by the magnitude of changing trend of LAI
products. The PFT map used in this study is coming from
the MODIS land cover product, which is a mesoscale satel-
lite product with the highest resolution of 500 m. Besides the
quality of the product, the method for converting the original
land cover classification system to a PFT classification sys-
tem is also important. Hartley et al. (2017) illustrated that the
cross-walking table for converting land cover class maps to
PFT fractional maps can lead to 20 %–90 % uncertainties for
gross primary production estimation in land surface models
by using different vegetation fractions for mixed pixels, and
the BVOC emission estimation has the same issue. In this
study, we assumed that the pixels that were assigned as vege-
tation are 100 % covered by that kind of vegetation (Table S1
in the Supplement). Therefore, this will lead to an overesti-
mation of vegetation cover rate for mixed pixels, which can
lead to higher BVOC emission.

The emission factor is also an important source of uncer-
tainties, and it decided the spatial patterns of emission rates

together with the PFT distribution. In order to understand the
role of the emission factor, the flux measurements of isoprene
and monoterpenes from the campaigns conducted from 2010
to 2016 in China (Bai et al., 2015, 2016, 2017) were col-
lected and compared with model results in this study. The
details of these campaigns are provided in Table 7, and the
emission factors that were retrieved from the observations
are also listed for these sites. Most samples were collected
during the daytime every 3 h according to the descriptions of
the measurements (Bai et al., 2015, 2016, 2017); therefore,
we averaged the model results from 08:00 to 20:00 in local
time with a 3 h interval for comparison. As shown in (a) and
(b) of Fig. 12, the modeled fluxes of isoprene and monoter-
penes with the default emission factors in this study did not
capture the variability of the observations. The ME, MB and
RMSE are 1.60, 1.59 and 2.31 mg m−2 h−1 for isoprene and
0.21, −0.003 and 0.32 mg m−2 h−1 for monoterpenes. When
we adopted the emission factors retrieved from observations
(Bai et al., 2015, 2016, 2017), the simulated isoprene and
monoterpene fluxes showed relatively good consistence with
the observations by using the same activity factor from the
model (γ in Eq. 1) as shown in (c) and (b) of Fig. 12. The
ME, MB and RMSE are 0.44, 0.41 and 0.57 mg m−2 h−1 for
isoprene and 0.32, 0.14 and 0.49 mg m−2 h−1 for monoter-
penes after adopting the observation-based emission fac-
tors, and the statistic parameters for isoprene simulation are
largely improved. Although the MB and ME of monoterpene
simulation increased, the simulated monoterpene flux shows
better agreement with observations (Fig. 12). Therefore, it is
clear that our calculation of activity factors is in a reasonable
range, but the emission factor is the main source of uncer-
tainties. The PFT-level emission factors used in this study
from Guenther et al. (2012) represent the globally averaged
emission factor for PFTs, and it is relatively easy to use them
with the satellite PFT products. Therefore, most studies listed
in Table 6 adopted the PFT or land use emission factors.
Our validation showed that an accurate emission factor based
on observations could largely improve the performance of
MEGAN, but it also requires abundant efforts to conduct
measurements. However, the measurements listed in Table 7
are still very limited for describing the spatial discrepancies
of ecosystems in China, so we still used the default emis-
sion factors in MEGAN for our national-scale estimation.
The estimations by Li et al. (2013, 2020) used the species-
level emission factors and vegetation atlas of China for 2007
to describe the spatial distribution of BVOC emission poten-
tials, and they concluded the reason why their estimations
were far higher than other studies is the high emission fac-
tors they adopted. Therefore, the same validations by using
canopy-scale BVOC flux measurements are also needed for
these studies to validate and constrain the emission factors
they used.

Meteorological input is also a source of uncertainties
for BVOC emission estimation. As shown in Fig. 12, the
modeled isoprene and monoterpene fluxes are still gener-
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Figure 10. Comparison of the trend of isoprene emission between this study (S1) and other estimations from 2001–2016. Panels (a) and (b)
are for S1 and S3, respectively, in this study, and (c) and (d) are for CAMS-GLOB-BIO v1.1 and CAM-GLOB-BIO v3.1, respectively. The
Mann–Kendall test was used to mark the grids where p is smaller than 0.1.

Table 7. Detailed descriptions of the flux measurements used in this study and corresponding campaigns.

Reference Site location Sample collection periods Ecosystem Isoprene emission Monoterpene emission
type factor (mg m−2 h−1) factor (mg m−2 h−1)

Bai et al.
(2015)

Changbai
Mountain
(42◦24′ N,
128◦6′ E)

28 June–9 July 2010;
19 July–30 July 2010;
12 Aug.–25 Aug. 2010;
19 June–30 June 2011;
10 July–16 July 2011;
22 July–29 July 2011;
5 Sep.–8 Sep. 2011.

Mixed forest 4.3 0.32

Bai et al.
(2016)

An Ji, Zhejiang
(30◦40′15′′ N,
119◦40′15′′ E)

7 July–13 July 2012;
20 Aug.–26 Aug. 2012;
25 Sep.–1 Oct. 2012;
28 Oct.–5 Nov. 2012.

Moso bamboo forest 3.3 0.008

Bai et al.
(2017)

Taihe, Jiangxi
(26◦44′48′′ N,
115◦04′13′′ E)

22 May–28 May 2013;
29 June–6 July 2013;
6 Aug.–13 Aug. 2013;
7 Sep.–11 Sep. 2013;
18 Jan.–19 Jan. 2014;
23 July–27 July 2014;
2 Nov.–7 Nov. 2015;
31 Dec. 2015–4 Jan. 2016.

Subtropical Pinus forest 0.71 1.65
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Figure 11. Comparison of the trend of monoterpene emission between this study (S1) and other estimations from 2001–2016. Panels (a) and
(b) are for S1 and S3, respectively, in this study, and (c) and (d) are for CAMS-GLOB-BIO v1.1 and CAM-GLOB-BIO v3.1, respectively.
The Mann–Kendall test was used to mark the grids where p is smaller than 0.1.

ally higher than observations when observation-based emis-
sion factors were used. One potential reason for this phe-
nomenon is the overestimation of temperature and radiation
as described in Sect. 2.3. The sensitivity tests by Wang et
al. (2011) showed that the 1.89 ◦C discrepancy of temper-
ature can result in −19.2 % to 23.2 % change of isoprene
emission and −16.2 % to 18.5 % change of monoterpene
emission for the Pearl River Delta region in July, which
is also a hotspot for BVOC emission in this study. They
also found that 115.8 W m−2 discrepancy of DSW can re-
sult in −31.4 % to 36.2 % change of isoprene emission and
−14.3 % to 16.8 % change of monoterpene emission for the
same region. The BVOC emission in this study might be
overestimated because of the overestimated temperature and
DSW in meteorological inputs. However, inaccurate emis-
sion factors could lead to over 100 % uncertainties, which is
more significant than the uncertainties induced by meteoro-
logical inputs.

4 Conclusion

Satellite observations have shown that China has led the
global greening trend in recent decades (Chen et al., 2019). In
this study, we investigated the impact of this greening trend
on BVOC emission in China from 2001 to 2016. We used
long-term satellite vegetation products as inputs in MEGAN.
According to the estimation of the model, we found the
greening trend of China is leading a national-scale increase
in BVOC emission. The BVOC emission level in 2016 could
be 11.7 % higher than that in 2001 because of higher tree
cover fraction and biomass. The comparison among differ-
ent scenarios showed that vegetation changes resulting from
land cover management are the main driver of BVOC emis-
sion change in China. Climate variability contributed signifi-
cantly to interannual variations but not much to the long-term
trend during the study period.

On regional scales, there are strong increasing trends in (1)
northeastern China, (2) Beijing and its surrounding areas, (3)
the Qin Mountains, (4) Yunnan Province, (5) Guangdong–
Guangxi provinces, and (6) Hainan island. A strong increas-
ing trend of broadleaf tree cover fractions and LAIv was
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Figure 12. Validation of the model with flux measurements in China. Panels (a) and (b) show the performance of MEGAN with the default
emission factors (N = 19). Panels (c) and (d) show the performance of MEGAN with the emission factors derived from observations (N =
19).

found in these regions. The mean total tree cover fraction
during the last 4 years (2013–2016) is 5.7 %–82.5 % higher
than that of the first 4 years (2001–2004) for these regions,
and the LAIv from 2013–2016 increased by 14.8 %–26.4 %
compared to that from 2001–2004 in these regions. Conse-
quently, the average BVOC emission flux for the last 4 years
(2013–2016) is 8.6 %–19.3 % higher than that for the first 4
years (2001–2004) in the subregions we defined driven by
the same meteorological inputs. In the standard scenario of
S1, a statistically significant increasing trend could still be
found in the subregions including Beijing and its surround-
ings, Yunnan Province, and Hainan island when the climate
variability was considered.

We used the long-term record of satellite HCHO VC from
the OMI sensor to assess our estimation of isoprene emis-
sion in China from 2005–2016. The results indicated statisti-
cally significant positive correlation coefficients between the

isoprene emission estimate and satellite HCHO VC in sum-
mer over the regions with a high vegetation cover fraction
including northeast, central and southern China. In addition,
isoprene emission and HCHO VC both had a statistically
significant increasing trend in the south of China, mainly
Guangxi Province, where there was a statistically significant
positive correlation supporting the estimated variability of
BVOC emission in China. However, the absence of the phys-
ical and chemical processes, e.g., transport, led to a large un-
certainty in this conclusion, and a more thorough study using
a chemical transport model may help to further explain the
relationship between the variability of HCHO VC and the
isoprene emission.

We conclude that uncertainties of this study mainly come
from the emission factor, PFT and LAI inputs through com-
paring our results with other studies and flux measurements
from 2010–2016 in China. The validation with flux measure-
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ments suggested that using the observation-based emission
factor could largely improve the performance of the model,
but it also requires much more effort. Our results suggest that
the continued increase in BVOC will enhance the importance
of considering BVOC when making policies for controlling
ozone pollution in China along with ongoing efforts to in-
crease the cover fraction of forest.

Data availability. The source code of MEGAN v2.1 is available
at https://bai.ess.uci.edu/megan/data-and-code/megan21 (last ac-
cess: 25 March 2021; Guenther et al., 2006, 2012). The MODIS
MCD12C1 land cover product Version 6, MODIS MCD15A2 LAI
Version 6 and MODIS MOD44B VCF Version 6 datasets are
available on the website of the Land Processes Distributed Ac-
tive Archive Center (LP DAAC) at https://lpdaac.usgs.gov/dataset_
discovery/modis/modis_products_table (last access: 25 March
2021). The version 14 Level 3 OMI HCHO VC products were
downloaded from the website of the Tropospheric Emission Mon-
itoring Internet Service (TEMIS) at http://h2co.aeronomy.be (last
access: 25 March 2021; De Smedt et al., 2012, 2015).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-4825-2021-supplement.
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