

Supplement of

A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability

Hui Wang et al.

Correspondence to: Qizhong Wu (wqizhong@bnu.edu.cn) and Lanning Wang (wangln@bnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Name	Value	Description	Main Category
			Percentage
Needleleaf	1	Dominated by evergreen conifer	100% NET
Evergreen Forest		trees (canopy >2m).	
Broadleaf	2	Dominated by evergreen broadleaf	100% BET
Evergreen Forest		and paintate trees (canopy -2m).	
Needleleaf	3	Dominated by deciduous needleleaf	100% NDT
Deciduous Forest		(larch) trees (canopy >2m).	
Broadleaf	4	Dominated by deciduous broadleaf	100% BDT
Deciduous Forest		trees (canopy ~2m).	
Mixed Forests	5	Dominated by neither deciduous nor $(40, 60\% \text{ of each})$ tree	100% Mixed Forests
		type (canopy $>2m$).	
Closed Shrublands	6	Dominated by woody perennials (1- $2m$ height) >60% against	100% Shrub
		Zin neight) >00% cover.	
Open Shrublands	7	Dominated by woody perennials (1-	60% Shrub
		2111 height) 10-00% cover.	40% Grass
Woody Savannas	8	Tree cover 30-60% (canopy >2m).	60% Mixed Forest
			20% Shrub
			20% Grass
Savannas	9	Tree cover 10-30% (canopy >2m).	30% Mixed Forest
			35% Shrub
			35% Grass
Grasslands	10	Dominated by herbaceous annuals (<2m).	100% Grass

 Table S1. Look-up table for mapping the IGBP legend to eight main vegetations categories.

Permanent	11	Permanently inundated lands with	40% Grass	
/		30-60% water cover and >10%		
Wetlands		vegetated cover.		
Croplands	12	At least 60% of area is cultivated	100% Crop	
1		cropland.	1	
Urban and Built-up	13	At least 30% impervious surface	None	
1	-	area including building materials,		
Lands		asphalt, and vehicles.		
Cropland/Natural 14		Mosaics of small-scale cultivation	60% Crop	
1		40-60% with natural tree, shrub, or	1	
Vegetation Mosaics		herbaceous vegetation.	20% Shrub	
			20% Grass	
		At logat 600/ of area is accord by		
Permanent Snow	15	At least 00% of area is covered by	None	
and Ice		snow and ice for at least 10 months		
		of the year.		
Barren 16		At least 60% of area is non-	None	
		vegetated barren (sand, rock, soil)		
		areas with less than 10% vegetation.		

Table S2. The climatic criteria for mapping main vegetation categories to CLM PFTs.

Main Category	Mapping Condition	CLM PFT
NET	T_c >-19 °C and GDD > 1200	100% NET Temperate
	$T_c \le -19 \ ^{\circ}C \text{ or } GDD \ \le 1200$	100% NET Boreal
BET	T _c >15.5 °C	100% BET Tropical
	T _c ≤15.5 °C	100% BET Temperate
NDT	None	100% NDT
BDT	T _c >15.5 °C	100% BDT Tropical
	-15.5 °C <t<sub>c\leq15.5 °C or</t<sub>	100% BDT Temperate
	GDD>1200	
	$T_c \le -15.5$ °C or GDD ≤ 1200	100% BDT Boreal
Mixed Forest	T _c >15.5 °C	50% BET Tropical

		50% BDT Tropical
	-15.5 °C <t<sub>c\leq15.5 °C and</t<sub>	33.33% NET Temperate
	GDD>1200	33.33% BET Temperate
		33.33% BDT Temperate
	$T_c \leq -15.5$ °C or GDD ≤ 1200	33.33% NDT
		33.33% NET Boreal
		33.33% BDT Boreal
Shrub	T_c >-19 °C and GDD > 1200	100% BDS Temperate
	$T_c \leq -19 \ ^{\circ}C \text{ or } GDD \leq 1200$	100% BDS Boreal
Grass	GDD<1000	100% C3 Arctic
	GDD>1000 and (Tc \leq	100% C3
	22°C or Pmon≤25 mm)	
	GDD>1000 and Tc > 22°C	100% C4
	and Pmon >25 mm	
Crop	None	100% Crop

Table S3. MEGAN2.1 biogenic emission classes and emission factors (ug m-2 h-1) for each of the plant functional types (Guenther et al., 2012). $EF_1 \sim EF_{15}$ represents different PFTs, and they are needle evergreen temperate trees (EF_1), needle evergreen boreal trees (EF_2), needle deciduous boreal trees (EF_3), broadleaf evergreen tropical tree (EF_4), broadleaf evergreen temperate tree (EF_5), broadleaf deciduous tropical tree (EF_6), broadleaf deciduous temperate tree (EF_7), broadleaf deciduous boreal tree (EF_8), broadleaf evergreen temperate shrub (EF_9), broadleaf deciduous

temperate shrub (EF10), broadleaf deciduous boreal shrub (EF11), arctic C3 grass (EF12), cool C3 grass (EF13), warm

$C = g_{1}a_{5} (L1 14) and Clop (L1 15)$	C4 grass	(EF_{14})	and	crop	(EF_{15})
---	----------	-------------	-----	------	-------------

Compound Class	EF ₁	EF ₂	EF ₃	EF ₄	EF ₅	EF ₆	EF ₇	EF ₈	EFo	EF10	EF ₁₁	EF12	EF ₁₃	EF14	EF ₁₅
Isoprene	600	3000	1	7000	10,000	7000	10,000	11,000	2000	4000	4000	1600	800	200	1
Myrcene	70	70	60	80	30	80	30	30	30	50	30	0.3	0.3	0.3	03
Sabinene	70	70	40	80	50	80	50	50	50	70	50	0.7	0.7	0.7	0.7
Limonene	100	100	130	80	80	80	80	80	60	100	60	0.7	0.7	0.7	0.7
3-Carene	160	160	80	40	30	40	30	30	30	100	30	0.3	0.3	0.3	0.3
t-β-Ocimene	70	70	60	150	120	150	120	120	90	150	90	2	2	2	2
β-Pinene	300	300	200	120	130	120	130	130	100	150	100	1.5	1.5	1.5	1.5
α-Pinene	500	500	510	600	400	600	400	400	200	300	200	2	2	2	2
Other Monoterpenes	180	180	170	150	150	150	150	150	110	200	110	5	5	5	5
α-Farnesene	40	40	40	60	40	60	40	40	40	40	40	3	3	3	4
β -Caryophyllene	80	80	80	60	40	60	40	40	50	50	50	1	1	1	4
Other Sesquiterpenes	120	120	120	120	100	120	100	100	100	100	100	2	2	2	2
232-MBO	700	60	0.01	0.01	0.01	0.01	0.01	2	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Methanol	900	900	900	500	900	500	900	900	900	900	900	500	500	500	900
Acetone	240	240	240	240	240	240	240	240	240	240	240	80	80	80	80
CO	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600
Bidirectional VOC	500	500	500	500	500	500	500	500	500	500	500	80	80	80	80
Stress VOC	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
Other VOC	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140

Table S4. The physical schemes for the WRF simulation.

Physical mechanism	Scheme
Microphysics	WSM 3-class simple ice scheme
Long-wave radiation	RRTM scheme
Short-wave radiation	Duhbia scheme
Land Surface	Noah Land Surface Model
PBL Sche	YSU scheme
Cumulus parameter	Kain-Fritsch (new Eta) scheme

Figure S1. The trend of growing season averaged 2-meter temperature (T2) and downward shortwave radiation (DSW). (a) and (b) are for in-situ T2 and DSW, respectively, and the sites with statistically significant trend are marked by black circles. (c) and (d) are for the WRF simulated T2 and DSW, respectively, and the regions with statistically significant trend are illustrated by shadow. The boxes represent the sub-regions chosen for the regional validation of meteorology, and these regions include Northeastern (black), Central (purple), Eastern (green), Southeastern (red) and Southern (blue) China.

Figure S2. Validations of the daily 2-meter temperature in different regions.

 Table S5. The statistic parameters for the validation of the region averaged 2-meter temperature in different regions.

 MB, ME and RMSE are shorts for mean bias, mean error and root mean square error, respectively.

	R	MB(°C)	ME(°C)	RMSE(°C)
Northeast	0.99	-0.71	1.31	1.60
Centre	0.99	-0.89	1.12	1.42
East	0.99	0.50	0.95	1.13
Southeast	0.99	-4.70	4.70	4.80
South	0.99	-0.71	0.88	1.13

Figure S3. Validations of the daily downward shortwave radiation in different regions.

	R	MB (W m ⁻²)	ME (W m ⁻²)	RMSE (W m ⁻²)
Northeast	0.96	21.93	24.94	35.37
Centre	0.95	53.60	53.66	59.66
East	0.95	48.99	49.01	54.34
Southeast	0.87	31.91	37.61	46.38
South	0.90	64.26	64.51	71.13

regions. MB, ME and RMSE are shorts for mean bias, mean error and root mean square error, respectively.

Table S6. The statistic parameters for the validation of the region averaged downward shortwave radiation in different

Reference

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geoscientific Model Development, 5, 1471-1492, 10.5194/gmd-5-1471-2012, 2012.