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Abstract. We use satellite (GOSAT) and in situ (GLOB-
ALVIEWplus CH4 ObsPack) observations of atmospheric
methane in a joint global inversion of methane sources, sinks,
and trends for the 2010–2017 period. The inversion is done
by analytical solution to the Bayesian optimization problem,
yielding closed-form estimates of information content to as-
sess the consistency and complementarity (or redundancy)
of the satellite and in situ data sets. We find that GOSAT
and in situ observations are to a large extent complementary,
with GOSAT providing a stronger overall constraint on the
global methane distributions, but in situ observations being
more important for northern midlatitudes and for relaxing
global error correlations between methane emissions and the
main methane sink (oxidation by OH radicals). The in-situ-
only and the GOSAT-only inversions alone achieve 113 and
212 respective independent pieces of information (DOFS) for
quantifying mean 2010–2017 anthropogenic emissions on
1009 global model grid elements, and respective DOFS of 67
and 122 for 2010–2017 emission trends. The joint GOSAT+
in situ inversion achieves DOFS of 262 and 161 for mean
emissions and trends, respectively. Thus, the in situ data in-
crease the global information content from the GOSAT-only

inversion by 20 %–30 %. The in-situ-only and GOSAT-only
inversions show consistent corrections to regional methane
emissions but are less consistent in optimizing the global
methane budget. The joint inversion finds that oil and gas
emissions in the US and Canada are underestimated relative
to the values reported by these countries to the United Na-
tions Framework Convention on Climate Change (UNFCCC)
and used here as prior estimates, whereas coal emissions in
China are overestimated. Wetland emissions in North Amer-
ica are much lower than in the mean WetCHARTs inventory
used as a prior estimate. Oil and gas emissions in the US in-
crease over the 2010–2017 period but decrease in Canada and
Europe. The joint inversion yields a global methane emis-
sion of 551 Tg a−1 averaged over 2010–2017 and a methane
lifetime of 11.2 years against oxidation by tropospheric OH
(86 % of the methane sink).
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1 Introduction

Methane (CH4) is the second most important anthropogenic
greenhouse gas and plays a central role in atmospheric chem-
istry as a precursor of tropospheric ozone and a sink of hy-
droxyl radicals (OH). It is emitted from many natural and
anthropogenic sources that are difficult to quantify (Saunois
et al., 2020). Atmospheric methane observations from satel-
lites and in situ (surface, tower, shipboard, and aircraft) plat-
forms have been used extensively to infer methane emissions
and their trends through inverse analyses (Houweling et al.,
2017). However, the information from satellite and in situ ob-
servations does not always agree (Monteil et al., 2013; Bruh-
wiler et al., 2017) and is hard to compare because of large
differences in observational density, precision, and the ac-
tual quantity being measured (Cressot et al., 2014). Here we
use an analytical solution to the Bayesian inverse problem
to quantitatively compare and combine the information from
satellite (GOSAT) and in situ (GLOBALVIEWplus CH4 Ob-
sPack) observations for estimating global methane sources
and their trends over the 2010–2017 period, including contri-
butions from different source sectors and from the methane
sink (oxidation by tropospheric OH).

Inverse analyses of atmospheric methane observations us-
ing chemical transport models (CTMs) provide a formal
method for inferring methane emissions and their trends
(Brasseur and Jacob, 2017). Global satellite observations of
atmospheric methane columns from the shortwave infrared
SCIAMACHY and GOSAT instruments have been widely
used for this purpose (Bergamaschi et al., 2013; Wecht et
al., 2014; Turner et al., 2015; Maasakkers et al., 2019; Miller
et al., 2019; Lunt et al., 2019). Other inverse analyses have
relied on in situ methane observations that have much higher
precision, are more sensitive to surface emissions, and may
include isotopic information, but are much sparser (Pison et
al., 2009; Bousquet et al., 2011; Miller et al., 2013; Patra et
al., 2016; McNorton et al., 2018).

A number of inverse analyses have combined in situ and
satellite observations (Bergamaschi et al., 2007, 2009, 2013;
Fraser et al., 2013; Monteil et al., 2013; Cressot et al., 2014;
Houweling et al., 2014; Alexe et al., 2015; Ganesan et al.,
2017; Janardanan et al., 2020), but few of them have com-
pared the information from the two data streams and then
mostly qualitatively. Bergamaschi et al. (2009, 2013), Fraser
et al. (2014), and Alexe et al. (2015) found that surface
and satellite methane observations provided consistent con-
straints on global methane emissions but that satellite ob-
servations achieved stronger regional constraints in the trop-
ics. No study, to our knowledge, has compared the ability
of satellite and in situ observations to attribute long-term
methane trends.

An analytical solution to the inverse problem, as used here,
provides closed-form error characterization as part of the so-
lution and, from there, allows derivation of the information
content from different components of the observing system

(Rodgers, 2000). Application to satellite observations has
been used to determine where the observations can actually
constrain the inverse solution (Turner et al., 2015). The ma-
jor obstacle to this analytical solution in the past has been the
need to construct the Jacobian matrix for the CTM forward
model, but this is now readily done using massively parallel
computing clusters (Maasakkers et al., 2019). Such a method
provides a means to quantify the differences in information
content between different data streams (e.g., satellite vs. in
situ) and, from there, to contribute to the design of a better
observing system.

Here, we apply satellite observations of atmospheric
methane columns from the GOSAT instrument together with
an extensive global compilation of in situ observations (in-
cluding surface, tower, shipboard, and aircraft methane mea-
surements) from the GLOBALVIEWplus CH4 ObsPack v1.0
data product (Cooperative Global Atmospheric Data Inte-
gration Project, 2019), to quantify the global distribution of
methane emissions, loss from reaction with OH, and related
trends for the 2010–2017 period. For this purpose, we use an
analytical inversion method that formally characterizes the
information content from the two data streams, whether that
information is consistent, and whether it is complementary
or redundant (Rodgers, 2000; Jacob et al., 2016). Our work
provides a comprehensive global perspective on the sources
contributing to 2010–2017 methane emissions and trends, as
well as a general framework for synthesizing the information
from satellite and in situ observations.

2 Methods

Figure 1 summarizes the components of our analytical inver-
sion system, which builds on previous inversions of GOSAT
satellite data by Maasakkers et al. (2019) and Zhang et
al. (2021) but adds the in situ observations. We apply ob-
servations y from GLOBALVIEWplus observations and/or
GOSAT (Sect. 2.1), with the GEOS-Chem CTM as the for-
ward model (Sect. 2.3), to optimize the state vector x of our
inverse problem. The state vector has dimension n= 3378
including mean 2010–2017 non-wetland methane emissions
on the GEOS-Chem 4◦× 5◦ global grid (n1 = 1009), 2010–
2017 linear trends for these emissions on that grid (n2 =

1009), monthly mean wetland methane emissions for indi-
vidual years in 14 subcontinental regions (n3 = 12×8×14=
1344), and tropospheric OH concentrations in each hemi-
sphere for individual years (n4 = 2× 8= 16). Section 2.2
describes the prior state vector estimates (xA) and the prior
error covariance matrix (SA). We derive posterior estimates
x̂ of the state vector and the associated error covariance
matrix Ŝ by analytical solution to the Bayesian optimiza-
tion problem (Sect. 2.4). We present results from three in-
versions using in situ observations only (in-situ-only inver-
sion), GOSAT observations only (GOSAT-only inversion),
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and both GOSAT and in situ observations (GOSAT+ in situ
inversion).

2.1 Methane observations

The GLOBALVIEWplus CH4 ObsPack v1.0 data prod-
uct compiled by the National Oceanic and Atmospheric
Administration (NOAA) Global Monitoring Laboratory in-
cludes worldwide high-accuracy measurements of atmo-
spheric methane concentrations from different observational
platforms (surface, tower, shipboard, and aircraft) (Cooper-
ative Global Atmospheric Data Integration Project, 2019).
Here, we use the ensemble of GLOBALVIEWplus observa-
tions for 2010–2017. For surface and tower measurements,
we use only daytime (10:00–16:00 LT, local time) observa-
tions and average them to the corresponding daytime mean
values. We exclude outliers at individual sites that depart by
more than 3 standard deviations from the mean. In this man-
ner, we obtain 157 054 observation data points for the inver-
sion, including 81 119 from 103 surface sites, 27 433 from 13
towers, 827 from 3 ship cruises, and 47 675 from 29 aircraft
campaigns. Figure 2a shows the mean methane concentra-
tions in 2010–2017 from the in situ data. The data are rela-
tively dense in North America and western Europe, with also
a few sites in China, but otherwise mainly measure back-
ground concentrations. The number of available surface and
tower observations increases from 10 493 in 2010 to 19 657
in 2017 with the largest changes in Europe and Canada.

GOSAT is a nadir-viewing satellite instrument launched in
2009 that measures the backscattered solar radiation from a
sun-synchronous orbit at around 13:00 LT (Butz et al., 2011;
Kuze et al., 2016). Observing pixels are 10 km in diameter
and separated by about 250 km along-track and cross-track in
normal observation mode, with higher-density data collected
in targeted observation modes. Methane is retrieved in the
1.65 µm absorption band. We use dry column methane mix-
ing ratios from the University of Leicester version 9.0 Proxy
XCH4 retrieval (Parker et al., 2020). The retrieval has a
single-observation precision of 13 ppb and a regional bias of
2 ppb (Buchwitz et al., 2015). We use GOSAT data for 2010–
2017 including 1.6 million retrievals over land, as shown in
Fig. 2b. We do not use glint data over the oceans and data
poleward of 60◦ because of seasonal bias and the potential
for large errors (Maasakkers et al., 2019).

2.2 Prior estimates

Table 1 summarizes the prior estimates of the mean 2010–
2017 methane emissions used for the state vector, and Fig. 3
shows the spatial patterns. Natural sources include the en-
semble mean of the WetCHARTs inventory version 1.2.1
(Bloom et al., 2017) for wetlands, open fires from the Global
Fire Emissions Database version 4s with seasonal and inter-
annual variability (van der Werf et al., 2017), termites from
Fung et al. (1991), and seeps from Etiope et al. (2019) with

global scaling to 2 Tg a−1 from Hmiel et al. (2020). The
default anthropogenic emissions are from EDGAR v4.3.2
(Janssens-Maenhout et al., 2019) and are superseded for
fugitive fuel emissions (oil, gas, coal) by the Scarpelli et
al. (2020) inventory which spatially allocates national emis-
sions reported by countries to the United Nations Frame-
work Convention of Climate Change (UNFCCC). US an-
thropogenic emissions are further superseded by the grid-
ded version of Inventory of U.S. Greenhouse Gas Emissions
and Sinks from the Environmental Protection Agency (EPA
GHGI) (Maasakkers et al., 2016). The WetCHARTs wet-
lands inventory includes seasonal and interannual variability
that is optimized in the inversion through correction to the
monthly emissions. Seasonality from Zhang et al. (2016) is
imposed for rice emissions, and temperature-dependent sea-
sonality is applied to manure emissions (Maasakkers et al.,
2016). Other emissions are aseasonal.

We assume a 50 % error standard deviation for all an-
thropogenic and non-wetland natural emissions on the 4◦

latitude× 5◦ longitude grid, with no spatial error covari-
ance so that their prior error covariance matrix is diagonal,
which is a reasonable assumption for anthropogenic emis-
sions (Maasakkers et al., 2016). We assume 0± 10 % a−1 as
a prior estimate for the linear 2010–2017 emission trends
on the 4◦× 5◦ grid; a sensitivity test using 0± 5 % a−1 is
also performed. The inclusion of linear trends in state vec-
tors allows us to identify the direction of emission change for
each 4◦× 5◦ grid in the 8-year period, but it would not cap-
ture high-frequency interannual variability. Prior estimates
of monthly mean wetland methane emissions for individ-
ual years in 14 subcontinental regions, along with their er-
ror covariance matrix, are from the WetCHARTs v1.2.1 in-
ventory ensemble (Bloom et al., 2017). The prior methane
emissions total 533 Tg a−1, at the low end of the current top-
down estimates (550–594 Tg a−1) for 2008–2017 (Saunois et
al., 2020), and this largely reflects the downward revision of
global seep emissions by Hmiel et al. (2020).

Prior monthly 3-D fields of global tropospheric OH con-
centrations are taken from a GEOS-Chem simulation with
full chemistry (Wecht et al., 2014) that yields a methane life-
time τOH

CH4
due to oxidation by tropospheric OH of 10.6 years

and an interhemispheric OH ratio (North to South) of
1.16. The methane lifetime is consistent with the value of
11.2± 1.3 years inferred from methyl chloroform observa-
tions (Prather et al., 2012), while the interhemispheric OH
ratio lies between the observed range of 0.97± 0.12 (Patra et
al., 2014) and the recent multi-model estimates of 1.3± 0.1
(Zhao et al., 2019). We assume no interannual variability in
this prior OH field. We assume 10 % as the prior error stan-
dard deviation for the hemispheric OH concentrations in in-
dividual years, based on Holmes et al. (2013), and also con-
duct a sensitivity test assuming 5 %. Corrections to OH in the
inversion are applied as a hemispheric scaling factor for indi-
vidual years, without changing the spatial or temporal pattern
of the original fields. Zhang et al. (2018) conducted methane
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Figure 1. Analytical inversion framework. The inversion is applied to GOSAT and GLOBALVIEWplus in situ observations for 2010–2017.
GEOS-Chem is the chemical transport model (CTM) used as the forward model for the inversion. γ is a regularization factor in the Bayesian
cost function (see text).

Figure 2. Mean 2010–2017 methane observations from the GLOB-
ALVIEWplus ObsPack data product and from GOSAT. The GLOB-
ALVIEWplus in situ data are local dry mixing ratios and are aver-
aged over the 4◦× 5◦ model grid for visibility. The GOSAT data
are dry column mixing ratios on a 1◦× 1◦ grid from the University
of Leicester version 9 Proxy XCH4 retrieval (Parker et al., 2020),
excluding observations over oceans and poleward of 60◦ N. Note
the difference in color scale between panels.

inversions with 12 different OH fields from the Atmospheric
Chemistry and Climate Model Intercomparison Project (AC-
CMIP) model ensemble (Naik et al., 2013) and found no sig-
nificant difference in results with the GEOS-Chem OH fields
used here except for two outlier models.

2.3 Forward model

We use the GEOS-Chem 12.5.0 (http://geos-chem.org, last
access: 20 June 2020) global CTM (Bey et al., 2001; Wecht
et al., 2014; Maasakkers et al., 2019) as the forward model
to simulate atmospheric methane concentrations and their
sensitivity to the state vector elements. The model is driven
by the Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2) reanalysis meteorologi-

cal fields from the NASA Global Modeling and Assimilation
Office (GMAO) (Gelaro et al., 2017). The methane sink is
computed within the model from 3-D tropospheric oxidant
fields including OH (optimized in the inversion), Cl atoms
(Wang et al., 2019), 2-D stratospheric oxidant fields (Murray
et al., 2012), and soil uptake (Murguia-Flores et al., 2018).
We conduct GEOS-Chem model simulations for 2010–2017
at a global 4◦× 5◦ resolution with 47 vertical layers extend-
ing to the mesosphere.

GEOS-Chem has excessive methane in the high-latitude
stratosphere, a flaw common to many models (Patra et
al., 2011), especially at coarse model resolution. Following
Zhang et al. (2021), we compute correction factors to GEOS-
Chem stratospheric methane subcolumns as a function of
season and equivalent latitude to match the measurements
from the solar occultation Atmospheric Chemistry Experi-
ment Fourier transform spectrometer (ACE-FTS) v3.6 instru-
ment (Waymark et al., 2014; Koo et al., 2017). As shown
in Zhang et al. (2021), the correction can be up to 10 % at
high latitudes during winter and spring. We apply the correc-
tion factors before the inversion to avoid wrongly attributing
this model transport bias to methane emissions and loss. Fig-
ure S1 shows that the systematic differences in the posterior
scaling factors of non-wetland emissions with and without
bias correction are more prominent at the northern high lati-
tudes, as also shown in Stanevich et al. (2020), but the global
total emissions only differ by 1 %.

Initial GEOS-Chem methane concentrations on 1 Jan-
uary 2010 are adjusted to have an unbiased zonal mean rel-
ative to GOSAT observations for January 2010, and we find
that the resulting model values are also unbiased relative to
the GLOBALVIEWplus in situ observations in January 2010.

Atmos. Chem. Phys., 21, 4637–4657, 2021 https://doi.org/10.5194/acp-21-4637-2021
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Figure 3. Prior estimates of mean 2010–2017 methane emissions.
Panel (a) shows the non-wetland emissions on the 4◦× 5◦ grid used
for the inversion. Panel (b) shows the wetland emissions and the
14 subcontinental wetland regions used for the inversion following
Bloom et al. (2017).

In this manner, model discrepancies with observations over
the 2010–2017 period can be attributed to model errors in
emissions or OH over that period, instead of error in initial
conditions. We archive model methane dry mixing ratios at
each location and time of the in situ and GOSAT data sets for
2010–2017.

As the forward model F for the inversion, GEOS-Chem
relates the state vector x to the atmospheric concentrations
y as y = F (x) (Fig. 1). The simulation of observations with
the prior estimates of state vectors (xA) in 2010–2017 diag-
noses systematic errors in comparison to observations that
enable an improved estimate of the state vector through the
inversion. In addition, the random component of the discrep-
ancy can be used to estimate the observation error (sum of
instrument error, representation error, and forward model er-
ror) in the Bayesian optimization problem using the residual
error method (Heald et al., 2004). The method assumes that
the systematic component of the model bias (y−F (xA)) for
individual years, where the overbar denotes the temporal av-
erage in a 4◦× 5◦ grid cell (for GOSAT) or for an obser-
vation platform (for in situ observations), is to be corrected
in the inversion, while the residual term (εO = y−F (xA)−

y−F (xA)) represents the random observation error. Here,
we applied this method to construct the observation error

Table 1. Global sources and sinks of atmospheric methane, 2010–
2017a.

Priorb Posteriorc

Total sources [Tg a−1] 533 551

Natural sources

Wetlands 161 148
Open fires 14 16
Termites 12 14
Seeps 2 2

Anthropogenic sources

Livestock 117 136
Oil 42 40
Natural gas 25 30
Coal mining 31 23
Rice cultivation 38 44
Wastewater 37 42
Landfills 30 31
Other anthropogenic 25 25

Total sinks [Tg a−1] 540

Tropospheric OH 468 456
Stratospheric lossd 33 33
Soil uptaked 34 34
Tropospheric Cld 5 5

a The 8-year mean values for 2010–2017. b Prior natural
source estimates (2000–2017 means) are from Bloom et
al. (2017) for wetlands, Etiope et al. (2019) and Hmiel et
al. (2020) for seeps, Fung et al. (1991) for termite emissions,
and van der Werf et al. (2017) for open fire emissions. Prior
anthropogenic source estimates for 2012 are from EDGAR
v4.3.2 (Janssens-Maenhout et al., 2017) except for fuel
exploitation (oil, gas, coal), which is from Scarpelli et
al. (2020), and are overwritten for the US with the gridded EPA
inventory of Maasakkers et al. (2016). The prior tropospheric
OH concentration field is from Wecht et al. (2014) and yields a
methane lifetime against oxidation by tropospheric OH of
10.6 years. c Posterior estimates are from the joint inversion of
GOSAT and in situ data. d These minor sinks are not optimized
by the inversion.

covariance matrix SO from the statistics of εO For in-situ
observations, we derive εO separately for the ensemble of
background surface sites (Dlugokencky et al., 1994), non-
background sites, tower sites, shipboard measurements, and
aircraft measurements, while for GOSAT observations εO is
calculated for each 4◦× 5◦ grid cell.

We find that the mean standard deviation of the random ob-
servation error (εO) for the GLOBALVIEWplus in situ data
averages 36 ppbv (20 and 45 ppbv for background and non-
background surface observations, 68 ppbv for tower obser-
vations, 10 ppbv for shipboard observations, and 24 ppbv for
aircraft observations), compared with 13 ppbv for GOSAT.
The observation error for in situ observations is dominated
by the forward model error, whereas it is dominated by the
instrument error for GOSAT. The forward model error is
higher for surface concentrations near source regions than for
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columns or other in situ observations measuring background,
because the amplitude of methane variability is much higher
(Cusworth et al., 2018) and more challenging for a model at
4◦× 5◦ resolution to capture. We assume that SO is diago-
nal in the absence of better objective information, but in fact
some error correlation between different observations could
be expected to arise from transport and source aggregation
errors in the forward model. This is considered by introduc-
ing a regularization factor γ in the minimization of the cost
function for the inversion (Sect. 2.4).

2.4 Analytical inversion

The Bayesian solution to the state vector optimization prob-
lem assuming Gaussian prior and observation errors involves
minimizing the cost function J(x):

J(x)= (x− xA)
T S−1

A (x− xA)

+ γ (y−F(x))T S−1
O (y−F(x)) , (1)

where x is the state vector, xA denotes the prior estimate of
x, SA is the prior error covariance matrix, y is the observa-
tion vector, F(x) represents the GEOS-Chem simulation of
y, SO is the observation error covariance matrix, and γ is a
regularization factor. The need for γ in J(x) is to avoid giv-
ing excessive weighting to observations, due to the likely un-
derestimation of SO when unknown error correlations are not
included in its construction (Zhang et al., 2018; Maasakkers
et al., 2019). γ here plays the same role as the regularization
parameter in Tikhonov methods (Brasseur and Jacob, 2017)
and reflects our inability to properly quantify the magnitude
of errors.

Minimization of the cost function in Eq. (1) has an an-
alytical solution if the forward model is linear (Rodgers,
2000). The optimization of methane emission and its trends is
strictly linear by design because we use prescribed monthly
3-D OH fields as described in Sect. 2.2. There is some non-
linearity regarding the optimization of OH, because the sen-
sitivity of the methane concentration to changes in OH con-
centrations depends on the methane concentration through
first-order loss, but we assume that the variability of methane
concentration is sufficiently small that this nonlinearity is
negligible (we verify this assumption below). Thus, we ex-
press the GEOS-Chem forward model as y =Kx+ c, where
K= ∂y/∂x represents the Jacobian matrix, and c is an ini-
tialization constant. We construct the Jacobian matrix K ex-
plicitly by conducting GEOS-Chem simulations with each
element of the state vector perturbed separately. For the lin-
ear emission trend elements, this is done by perturbing the
2010–2017 emission trend in each grid cell from 0 % (the
best prior estimate) to 10 % a−1; for OH, this is done by per-
turbing yearly hemispheric OH fields by 20 % without mod-
ifying the spatial or seasonal distribution. Comparison of the
resulting Jacobian matrix to GEOS-Chem as F (x)−Kx− c

shows a negligible residual difference of 2± 3 ppb, verifying
the assumption of linearity.

Minimizing the Bayesian cost function by solving
dJ(x)/dx = 0 yields closed-form expressions for the poste-
rior estimate of the state vector x̂ with error covariance ma-
trix S:

x̂ = xA+G(y−KxA) , (2)

Ŝ=
(
γKT S−1

O K+S−1
A

)−1
, (3)

where G is the gain matrix,

G=
∂x

∂y
=

(
γKT S−1

O K+S−1
A

)−1
γKT S−1

O . (4)

From the posterior error covariance matrix one can derive
the averaging kernel matrix describing the sensitivity of the
posterior estimate to the true state:

A=
∂x̂

∂x
= In− ŜS−1

A . (5)

The trace of A quantifies the degrees of freedom for sig-
nal (DOFS), which represents the number of pieces of inde-
pendent information gained from the observing system for
constraining the state vector (Rodgers, 2000).

We choose the value of the regularization parameter γ in
order to avoid overfitting to the observations when the num-
ber m of observations is much larger than the number n of
state vector elements, and the error covariance of the obser-
vations cannot be properly quantified. Overfitting would be
implied by a highly unlikely departure of the posterior solu-
tion from the prior estimate, which can be indicated by the
posterior cost function. For a given state vector element i,the
expected value of (xi −xAi)

2 is the prior error variance σ 2
Ai .

For an n-dimensional state vector with a diagonal prior error
covariance matrix, the state component JA of the cost func-
tion is the sum of n random normal elements

JA(x)= (x− xA)
T S−1

A (x− xA)=
∑

n

(xi − xAi)
2

σ 2
Ai

, (6)

and its PDF (probability density function) is given by the chi-
square distribution with n degrees of freedom (n= 3378 in
this case), with an expected value of n and a standard de-
viation of

√
2n. One can apply the same reasoning to the

observation component JO of the posterior cost function,

JO(x)= (y−Kx)T S−1
O (y−Kx)=

∑
m

(
yi −Kxi

)2
σ 2

Oi
, (7)

whose PDF follows a chi-square distribution with m degrees
of freedom. However, this component is less sensitive to the
choice of γ because of the large random error component for
individual observations.

Figure 4 shows the dependences of JA
(
x̂
)

and JO
(
x̂
)

on
the choice of the regularization parameter γ , for the in situ
and GOSAT observations. The in situ observations are suffi-
ciently sparse that γ = 1 (no regularization) is expected. In

Atmos. Chem. Phys., 21, 4637–4657, 2021 https://doi.org/10.5194/acp-21-4637-2021
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Figure 4. Optimization of the regularization parameter γ in the
Bayesian cost function (Eq. 1). The figure shows the posterior ob-
servation component JO(x̂)= (y−Kx̂)T S−1

O (y−Kx̂) and the pos-

terior state component JA(x̂)= (x̂−xA)
T S−1

A
(x̂−xA) for the in-

situ-only and GOSAT-only inversions.

the case of GOSAT, however, γ = 1 would yield JA
(
x̂
)
=

6n� n±
√

2n which indicates overfitting, whereas γ = 0.1
yields JA

(
x̂
)
≈ n which is the expected value and is used

here. This can be explained by the high observation den-
sity of GOSAT, such that error correlation between individ-
ual observations through the forward model may be expected
and would have a large effect on the solution. Maasakkers et
al. (2019) found that γ = 0.05 and γ = 0.1 gave similar so-
lutions in their global inversions of GOSAT data. We also
conduct sensitivity tests using γ = 0.5 for in situ observa-
tions and γ = 0.05 for GOSAT observations.

The analytical solution to the Bayesian optimization prob-
lem, as done here, has several advantages relative to the more
commonly used variational (numerical) solution: (1) it finds
the true minimum in the cost function, rather than an approx-
imation that may be sensitive to the choice of initial esti-
mate; (2) it identifies the information content of the inver-
sion and the ability to constrain each state vector element;
and (3) it enables a range of sensitivity analyses, modify-
ing the prior estimates, modifying the error covariance ma-
trices, adding/subtracting observations, and so on, at mini-
mal computational cost. We will make use of these advan-
tages in comparing the ability of the in-situ-only, GOSAT-
only, and GOSAT+ in situ inversions, and to test how choices
in cost-function construction affect our conclusions, includ-
ing changing the regularization parameter γ , changing the
prior error estimates, and using different types of in-situ ob-
servations. Our analysis will focus on results from the base
inversions with the default settings, but we will use results
from the sensitivity inversions to address specific issues.

A requirement of the analytical approach is that the Ja-
cobian matrix be explicitly constructed, requiring n+ 1 for-
ward model runs. Building the Jacobian matrix for the 3378
state vectors in this 8-year period study requires about 1 mil-

lion core hours (8 cores× 36 h per simulation× 3378 simu-
lations). However, this construction is readily done in parallel
on high-performance computing clusters.

Our inversion returns posterior emission estimates and
their temporal trends on a 4◦× 5◦ grid for non-wetland emis-
sions, and monthly mean wetland emissions for individual
years in 14 subcontinental regions. We cannot separate in-
dividual sectors within a 4◦× 5◦ grid cell because they will
all have the same response function (Jacobian column). How-
ever, we can aggregate results spatially and by sector in a way
that retains the error covariance of the solution (Maasakkers
et al., 2019). Consider a reduced state vector xred represent-
ing a linear combination of the original state vector elements
that may be a sum over a particular region or the globe and
may be weighted by the contributions from individual sec-
tors following the prior distribution. The linear transforma-
tion from the posterior full-dimension state vector x to the re-
duced state vector xred is defined by a summation matrix W:

x̂red =Wx̂. (8)

The posterior error covariance and averaging kernel matrices
for the reduced state vector can then be calculated as follows:

Ŝred =WŜWT , (9)
Ared =WAW∗, (10)

where W∗ = WT (WWT )−1 (Calisesi et al., 2005). Ŝred pro-
vides a means to determine error correlations between aggre-
gates of quantities optimized by the inversion (e.g., between
global methane emissions and global OH concentrations).
Ared provides a means to determine the ability of the inver-
sion to constrain an aggregated term (e.g., emissions from a
particular sector).

3 Results and discussion

3.1 Ability to fit the in situ and GOSAT data

We will present results from three different inversions for
2010–2017: (1) using only in situ observations (in-situ-only
inversion), (2) using only GOSAT observations (GOSAT-
only inversion), and (3) using both GOSAT and in situ obser-
vations (GOSAT+ in situ inversion). Here we first evaluate
the ability of these different inversions to fit the in situ and
GOSAT observations, including when the data are not used
in the inversion (consistency check). This is done by con-
ducting GEOS-Chem simulations with posterior values for
the state vectors and comparing them to observations.

Figures 5 and 6 show the resulting comparisons for the
in situ observations, arranged by type of platform (Fig. 5),
and by latitude bands and months (Fig. 6a–d). The model
simulation with prior estimates shows a 30–60 ppb low bias
for all in situ platforms growing with time. The in-situ-only
inversion effectively corrects this bias and its trend, and it
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Figure 5. Ability of the inversions to fit the in situ methane obser-
vations. Panels (a)–(d) compare the surface, tower, shipboard, and
aircraft observations in 2010–2017 to the GEOS-Chem simulation
using the prior (black) and posterior estimates of methane emis-
sions and OH concentrations from the in-situ-only inversion (red,
dots not shown), GOSAT-only inversion (blue, dots not shown), and
GOSAT+ in situ joint inversion (purple). The numbers (N ) of ob-
servations from each platform, the mean bias (MB), and the correla-
tion coefficients (r) between the observed and simulated values are
shown inset.

also significantly improves the correlations across all plat-
forms. The GOSAT-only inversion performs comparably in
correcting the 2010–2017 trend for the independent in-situ
data (Fig. 6c) and bias for background observations (e.g.,
aircraft observations in the Southern Hemisphere; Fig. S2),
but there is a low bias at northern midlatitudes reflecting sur-
face and tower data in North America and Europe. As we
will see, the in situ observations are important for optimizing
emissions in these regions.

Figure 6e–h also compare the fits to the GOSAT observa-
tions. The GOSAT-only inversion corrects the bias and trend
in the prior simulation at all latitudes. The in-situ-only inver-
sion corrects the trends, but it biases low to the GOSAT ob-
servations by about 10 ppbv with larger bias in the Southern
Hemisphere due to the sparsity of in situ observation there.
The comparison suggests that in situ and GOSAT observa-
tions are largely consistent for informing the global methane
change but also have some complementarity for the inver-
sion. The GOSAT+ in situ joint inversion shows good agree-
ment with both the in situ and GOSAT observations.

Figure 7a further evaluates the global methane growth
rate as determined by the methane budget imbalance for
individual years in 2010–2017 from the three inversions.
The observed methane growth rate inferred from the NOAA
sites (https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last
access: 20 June 2020) averages 7.2± 2.8 ppb a−1 over the
period, peaking in 2014, and accelerating overall with higher

growth in 2015–2017 than in 2010–2013. We find that all
posterior simulations show a comparable mean methane
growth rate (7.7± 3.7 ppb a−1 for the in-situ-only inver-
sion, 8.8± 2.2 ppb a−1 for the GOSAT-only inversion, and
8.3± 1.8 ppb a−1 for the GOSAT+ in situ inversion). How-
ever, the in-situ-only inversion overestimates the increasing
trend in the methane growth rate, largely driven by the year
2017, and fails to fit its interannual variability. This may
reflect the heavy weighting of the in situ observations to-
ward northern midlatitudes. GOSAT observations in the in-
version do much better in capturing the observed methane
interannual variability and trend. Adding in situ observations
to GOSAT observations provides a better fit in 2015 than
GOSAT-only inversion but has an insignificant effect in other
years. Zhang et al. (2021) interpreted the trend and inter-
annual variability in the GOSAT-only inversion as due to a
combination of anthropogenic emissions, wetlands, and OH
concentrations.

3.2 Anthropogenic methane emissions

Figure 8 shows the averaging kernel sensitivities (diagonal
elements of the averaging kernel matrix) and posterior scal-
ing factors for the non-wetland emissions (dominated by an-
thropogenic emissions) in the in-situ-only, GOSAT-only, and
GOSAT+ in situ joint inversions. The DOFS (trace of the
averaging kernel matrix) quantify the number of indepen-
dent pieces of information from the inversion, starting from
1009 unknowns for anthropogenic emissions (Fig. 1). The
DOFS are 113 for the in-situ-only inversion, 212 for the
GOSAT-only inversion, and 262 for the GOSAT+ in situ
joint inversion. The higher DOFS from the joint inversion
indicate that the satellite and in situ observations have com-
plementarity but also some redundancy. Strict complemen-
tarity would imply a DOFS of 325= 113+212. We find that
75 % of the in situ information is at northern midlatitudes
(30–60◦ N, DOFS= 82, calculated as the sum of averaging
kernel sensitivities in that latitude band) where the obser-
vations are densest, with another 9 % (DOFS= 10) at 60–
90◦ N. GOSAT provides more information than in situ obser-
vations do at northern midlatitudes (DOFS= 96) and domi-
nates in the tropics (DOFS= 105). This dominance of satel-
lites for informing methane sources in the tropics has been
pointed out in previous studies (Bergamaschi et al., 2013;
Monteil et al., 2013; Fraser et al., 2013; Alexe et al., 2015).
We find that the DOFS from the in-situ-only inversion obser-
vations are mostly (85 %) from the surface and tower mea-
surements (Fig. S3).

We further investigate the inversion results for northern
midlatitudes where most of the information of in situ obser-
vations is contained, including for the US, Canada, Europe,
and China. Table 2 gives the optimization of anthropogenic
methane emissions (calculated as the difference between to-
tal non-wetland emissions and the non-wetland natural emis-
sions) in these regions. Figure 9 shows the optimization by
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Figure 6. Ability of the inversions to fit the in situ methane observations and GOSAT satellite observations. Panels (a)–(d) show the monthly
time series of the differences between observed and simulated in situ methane concentrations averaged over different latitude bands from
2010–2017. Panels (e)–(h) are the same as panels (a)–(d) but for GOSAT methane concentrations.

Figure 7. (a) Annual global growth rate of atmospheric methane,
2010–2017. Results from our three different inversions (in-situ-
only, GOSAT-only, and GOSAT+ in situ) are compared to the ob-
served growth rates inferred from the NOAA surface observational
network (https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last ac-
cess: 20 June 2020). Mean annual growth rates and standard devi-
ations from the different inversions are shown inset. (b) Methane
lifetime against oxidation by tropospheric OH, 2010–2017, from
the three different inversions. Mean lifetime and standard devia-
tions are shown inset. The methane lifetime in the prior estimate
is 10.6 years.

source sectors, assuming that (1) the partitioning between
sectors of non-wetland emissions in individual grid cells is
correct in the prior inventory (this does not assume that the
prior distribution of sectoral emissions is correct) and that
(2) the scaling factors are to be applied equally to all sec-

tors in a grid cell. These assumptions are adequate when the
sectors are spatially separated but are more prone to error
when they spatially overlap. Figure 9 also shows the averag-
ing kernel sensitivities of emission sectors (diagonal terms
of Ared derived from Eqs. 8 and 10), measuring the ability
of the inversion to optimize different emissions sectors, and
the DOFS for each inversion summed over the region. Wet-
land methane emissions are optimized separately as will be
discussed in Sect. 3.3.

Inspection of the DOFS shows that the in situ observations
are more effective than GOSAT for optimizing US anthro-
pogenic methane emissions (DOFS= 41 vs. DOFS= 22)
and this applies to all sectors (Fig. 9). The averaging ker-
nel sensitivities panel in Fig. 9 shows that US results from
the joint GOSAT+ in situ inversion are mostly determined
by the in situ observations. The joint GOSAT+ in situ inver-
sion increases anthropogenic US emissions from 28 Tg a−1

in the prior EPA GHGI to 36 Tg a−1, with most of the in-
crease driven by oil and gas sources in the central US. Av-
eraging kernel sensitivity for major sectors is large (0.63–
0.93), indicating that the posterior estimates are mostly de-
termined by the observations rather than by the prior esti-
mates. The underestimate of oil and gas emissions in the
EPA GHGI has been reported before in local observations
and higher-resolution inversions (Miller et al., 2013; Turner
et al., 2015; Alvarez et al., 2018; Cui et al., 2019; Maasakkers
et al., 2021).

The in situ observations are also more effective than
GOSAT in optimizing anthropogenic methane emissions in
Canada (DOFS= 21 vs. DOFS= 6), particularly in Alberta
where oil and gas emissions are high (Fig. 8). This reflects
in part our exclusion of GOSAT data poleward of 60◦ N. Oil
and gas emissions in Canada increase by a factor of 2 in the
GOSAT+ in situ inversion to 4.5 Tg a−1 compared with the
UNFCCC prior estimate, with an averaging kernel sensitiv-

https://doi.org/10.5194/acp-21-4637-2021 Atmos. Chem. Phys., 21, 4637–4657, 2021

https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/


4646 X. Lu et al.: Global methane budget and trend

Figure 8. Optimization of mean 2010–2017 non-wetland (mainly anthropogenic) emissions. The in-situ-only inversion uses in situ observa-
tions, the GOSAT-only inversion uses GOSAT satellite observations, and the GOSAT+ in situ inversion uses both. Panels (a), (c), and (e)
show the averaging kernel sensitivities (diagonal elements of the averaging kernel matrix) for each inversion, with the degrees of freedom
for signal (DOFS, defined as the trace of the averaging kernel matrix) given inset. Panels (b), (d), and (f) show the correction factors to the
prior emissions (Fig. 3a). Wetland emissions are corrected separately (see text).

Table 2. Anthropogenic methane emissions and trends, 2010–2017a.

Inversions In-situ-only GOSAT-only GOSAT+ in situ
inversion inversion inversion

USb (prior: 28 Tg a−1)

Posterior (Tg a−1) 35 31 36
2010–2017 trend (Tg a−1 a−1) 0.5 −0.1 0.4

Canada (prior: 5 Tg a−1)

Posterior (Tg a−1) 8 5 8
2010–2017 trend (Tg a−1 a−1) −0.2 −0.0 −0.2

Europec (prior: 27 Tg a−1)

Posterior (Tg a−1) 28 17 23
2010–2017 trend (Tg a−1 a−1) 0.1 −0.6 −0.4

China (prior: 63 Tg a−1)

Posterior (Tg a−1) 45 46 43
2010–2017 trend (Tg a−1 a−1) 0.3 0.4 0.1

a Posterior estimates of mean 2010–2017 emissions and trends for the in-situ-only, GOSAT-only, and
GOSAT+ in situ joint inversions. b Including contiguous US and Alaska. c Europe is defined as west of 30◦ E,
excluding Russia.
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Figure 9. Optimization of anthropogenic methane emissions by
source sectors in the in-situ-only, GOSAT-only, and GOSAT+ in
situ inversions. The left panel shows the averaging kernel sensi-
tivities for each emission sector (see text for description), and the
right panel shows the emissions. Europe is defined as west of 30◦ E,
which excludes Russia.

ity of 0.57 (Fig. 9). Total anthropogenic emissions increase
from 5 to 8 Tg a−1.

In situ and GOSAT observations show comparable abil-
ity in optimizing the total anthropogenic emissions in Eu-
rope (DOFS= 16–18). They agree that prior anthropogenic
methane emissions are too high in northern Europe but dis-
agree in southern Europe. Averaging kernel sensitivities from
the in-situ-only inversion are slightly weaker than for the
US and Canada because of the lower density of in situ sites.
The Integrated Carbon Observation system (ICOS) network
(https://www.icos-cp.eu/, last access: 17 July 2020) has sub-
stantially increased the number of available methane obser-
vations in Europe since 2017 so that future inversions should
expect a stronger constraint from in situ observations. To-
tal European anthropogenic emissions decrease from 27 to
23 Tg a−1 in the GOSAT+ in situ joint inversion with de-

creases for all sectors, but this may reflect the inability of our
4◦× 5◦ resolution to effectively separate emission sectors.

The only other region where in situ observations provide
significant information is China, although the corresponding
DOFS of 13 is less than for GOSAT (DOFS= 22). Both in-
versions agree that emissions must be greatly decreased from
the prior estimate, and the joint inversion (DOFS= 28) has
stronger power in doing so. The posterior 2010–2017 Chi-
nese anthropogenic emission is 43 Tg a−1 in the joint inver-
sion, compared with 63 Tg a−1 in the prior estimate. Our re-
sults agree with a recent study by Janardanan et al. (2020),
which also used GOSAT and surface observations to esti-
mate a mean 2011–2017 anthropogenic methane emission in
China of 46± 9 Tg a−1. The downward correction is mainly
driven by a 40 % decrease in coal emissions from 19 to
11 Tg a−1 (Fig. 9). Previous inversions using the EDGAR in-
ventory (> 20 Tg a−1) as a prior estimate found a similar cor-
rection (Alexe et al., 2015; Thompson et al., 2015; Turner et
al., 2015; Maasakkers et al., 2019; Miller et al., 2019). In our
case, the prior estimate of coal emissions (19 Tg a−1) is the
value reported by China to the UNFCCC, and we find that it
is still too high. A recent inventory by Sheng et al. (2019)
gives a coal emission estimate of 15 Tg a−1 for China in
2010–2016.

3.3 Wetland methane emissions

The inversion optimizes wetland emissions for the 14 re-
gions of Fig. 3 and for 96 individual months covering 2010–
2017, amounting to 1344 state vector elements. Results from
the in-situ-only, GOSAT-only, and GOSAT+ in situ inver-
sions yield DOFS of 221, 183, and 301, respectively. In situ
observations provide more information for boreal wetlands,
whereas GOSAT dominates for tropical wetlands.

Zhang et al. (2021) give a detailed analysis of GOSAT-
only inversion results for tropical wetlands. Here we further
analyzed the boreal and temperate North America wetlands,
where in situ observations provide significant added infor-
mation (Fig. 10). Both in situ and GOSAT observations agree
that the prior WetCHARTs emissions are too high. The poste-
rior estimates from the GOSAT+ in situ inversion are 4.5 and
2.0 Tg a−1 for boreal and temperate North America, respec-
tively, compared with 12.8 and 6.9 Tg a−1 in WetCHARTs.
Posterior boreal wetland CH4 emissions for North America
are on the lower end but within the WetCHARTs estimates
(WetCHARTs models range 3–33 Tg a−1); however, poste-
rior temperate CH4 emissions for North America are out-
side the WetCHARTs range (3–12 Tg a−1). The correction
for boreal North America is particularly large in May–June,
which can potentially be attributed to the suppression of wet-
land emissions by either snow cover (Pickett-Heaps et al.,
2011) or frozen soils (Zona et al., 2016). The WetCHARTs
emission overestimate for temperate North America (mainly
coastal wetlands in the eastern US) has been reported before
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Figure 10. Wetland emissions in boreal and temperate North Amer-
ica (regions 2 and 3 of Fig. 3). Prior and posterior estimates of the
monthly mean wetland emissions averaged over 2010–2017 from
different inversions are shown. Annual mean emissions and the de-
gree of freedom for signal (DOFS) for monthly emissions in indi-
vidual years are shown inset. Note the differences in scale between
panels. Negative emissions are allowed statistically by the inversion
but are likely not physical.

from inversions using aircraft data (Sheng et al., 2018) and
GOSAT data (Maasakkers et al., 2021).

3.4 Anthropogenic methane emission trends

Figure 11 presents the 2010–2017 trends (% a−1) of anthro-
pogenic methane emissions from the three inversions and the
corresponding averaging kernel sensitivities. The GOSAT+
in situ inversion has a DOFS of 161 for quantifying the spa-
tial distribution of the trends. Most of that information is
from GOSAT (DOFS= 122) but in situ observations add sig-
nificant information. Information from in situ observations is
concentrated in the US, Canada, Europe, and China. Table 2
summarizes the trends for the four regions. Figure 12 shows
the trends disaggregated by sectors, using the same proce-
dure as for Fig. 9.

In situ observations provide stronger constraints than
GOSAT on anthropogenic emission trends in the US
(DOFS= 29 vs. DOFS= 12). They agree on the upward
trend in the eastern US as also found in Maasakkers et
al. (2021) which used GOSAT in a high-resolution inversion
to interpret methane trends in the US in 2010–2015. How-
ever, they show opposite trends (positive trend from in-situ-
only inversion but negative from GOSAT-only inversion) in
total emissions and in the central south US (Table 2, Fig. 11).
The GOSAT+ in situ joint inversion (DOFS= 31) estimates
that US anthropogenic methane emissions increased by
0.4 Tg a−1 a−1 (1.1 % a−1) from 2010–2017, with the largest
contribution from oil and gas emissions (0.3 Tg a−1 a−1,
2.5 % a−1). This posterior trend is much smaller than previ-
ous studies showing large increases in US oil and gas emis-
sions (2.1–4.4 Tg a−1 a−1) inferred from ethane and propane
levels (Franco et al., 2016; Hausmann et al., 2016; Helmig
et al., 2016), but it is more consistent with a recent study by
Lan et al. (2019) that reported 0.3± 0.1 Tg a−1 a−1 in 2006–
2015 based on long-term in situ measurements. The inversion
also reveals rising emissions from oil and gas in the central

south US, including the Permian Basin which is currently the
largest oil-producing basin in the US (Zhang et al., 2020).

We find that anthropogenic emissions in Canada decrease
over the 2010–2017 period by 0.2 Tg a−1 a−1 (2.5 % a−1)
in the GOSAT+ in situ joint inversion, mostly driven by
oil and gas emissions in Alberta and livestock emissions
(Figs. 11, 12). Anthropogenic emissions in Europe decrease
by 0.4 Tg a−1 a−1 (1.7 % a−1).

All three inversions show increases of 0.1–0.4 Tg a−1 a−1

(0.3 % a−1–0.9 % a−1) in Chinese anthropogenic methane
emissions over 2010–2017, but the spatial patterns and
source attributions are different. The largest difference is
for coal mining emissions in the North China Plain, where
in situ observations indicate a decrease of −0.8 Tg a−1 a−1

whereas GOSAT shows an increase of 0.1 Tg a−1 a−1. A pre-
vious GOSAT inversion study found a large increase in coal
mining emissions in China over 2010–2015 (Miller et al.,
2019). However, a recent bottom-up inventory estimates that
Chinese coal emission peaked in 2012 and decreased after-
ward, leading to no significant overall trend for 2010–2016
(Sheng et al., 2019). Our inversion assumes linear trends in
emissions over 2010–2017 but that may not be appropriate
for China.

3.5 Global methane budget for 2010–2017

Table 1 shows the optimized global anthropogenic emissions
from different sectors as determined by the joint GOSAT+
in situ inversion. Corrections to the global prior estimates
are mostly determined by GOSAT (Fig. 8). They include up-
ward corrections to livestock and rice methane emissions as
well as downward correction to the coal mining emissions
driven by overestimation in China. The joint inversion also
estimates a global increase in anthropogenic emissions of
1.7± 0.6 Tg a−1 a−1 (0.5 % a−1) in 2010–2017, dominantly
driven by trends in the tropics (Fig. 11).

A number of previous studies have analyzed surface obser-
vations to interpret global methane budgets and trends (Dlu-
gokencky et al., 2009; Bruhwiler et al., 2014; Houweling et
al., 2017). As shown in Fig. 6, our in-situ-only inversion can
fit the GOSAT observations of global methane distribution
and trend, indicating that the in situ data provide useful infor-
mation on the global budget. Here, we examine whether this
information adds to that from GOSAT. For this purpose and
following Maasakkers et al. (2019), we collapse the full state
vector to a reduced state vector (x̂red) that contains global
mean methane emissions and OH as elements, and we derive
the associated error covariance matrix (Ŝred) as introduced in
Sect. 2.4.

Figure 13 shows the joint probability density functions
(PDFs) of the mean anthropogenic methane emissions and
methane lifetime against oxidation by tropospheric OH from
the three inversions. There is strong negative correlation
(r =−0.72) between the optimization of methane emissions
and OH in the GOSAT-only inversion, and somewhat less in
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Figure 11. Same as Fig. 8 but for optimization of non-wetland (mainly anthropogenic) emission trends (% a−1) in 2010–2017.

the in-situ-only inversion (r =−0.53), although the posterior
error variance is larger due to the lower data density as indi-
cated by the axes of the ellipses. A sensitivity inversion using
only the surface and tower measurements in the in-situ-only
inversion yields r =−0.37 (Fig. 13b). It indicates that in situ
observations, in particular surface and tower measurements,
are more effective than the satellite observations in constrain-
ing methane emissions independently from the sink by OH.
A likely reason is that surface measurements in source re-
gions are more sensitive to methane emissions than column
measurements are. We also find that the in-situ-only inver-
sion yields a larger interannual variability of posterior OH
concentrations and, thus, methane lifetime than the GOSAT-
only inversion (Figs. 7b, S4). This is because the number and
location of the observations varies from year to year, partic-
ularly for aircraft campaigns and ship cruises.

Comparison of the posterior PDFs between the GOSAT-
only and in-situ-only inversions implies that the two are in-
consistent in optimizing global methane budgets, as the 99 %
probability contours do not overlap (Fig. 13a). A possible
cause is that the posterior error covariance matrix underesti-
mates the actual error variance due to its assumption of in-
dependent identically distributed (IID) observational errors
(Brasseur and Jacob, 2017), and this would particularly affect
the global budget which sums emission results for individual
grid cells. Remarkably, the solution from the GOSAT+ in
situ joint inversion is more in agreement with in situ obser-

vations than GOSAT and does not lie between these two solu-
tions. Inspection of Fig. 6c shows that the GOSAT-only inver-
sion is biased low relative to in situ observations at northern
midlatitudes and biased high in the Southern Hemisphere,
implying that both emissions and OH concentrations are too
low. On the other hand, Fig. 6f indicates either underesti-
mation of emissions or overestimation of OH concentrations
in the in-situ-only inversion; the former is more likely, as
GOSAT measurements used here are over land which should
be more sensitive to emissions than OH loss. Thus, inges-
tion of both observations in the GOSAT+ in situ inversion
enhances both the methane emissions and OH concentra-
tions compared with the in-situ-only and GOSAT-only in-
version to correct these biases. It also narrows the posterior
error of mean anthropogenic emissions and methane life-
time against tropospheric OH by 20 % and 50 % compared
with the GOSAT-only and in-situ-only inversions, respec-
tively (Fig. 13a). Therefore, we find that the GOSAT and
in situ observations are complementary in quantifying the
global budget.

Table 3 summarizes the global mean methane budget in
2010–2017. The GOSAT+ in situ joint inversion estimates a
total methane emission of 551 Tg a−1, 371 Tg a−1 of which
is anthropogenic, and a total sink of 529 Tg a−1. The to-
tal emission is within the 550–594 Tg a−1 range of top-
down estimates but lower than the 594–881 Tg a−1 range of
bottom-up estimates reported for the 2008–2017 decade by
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Figure 12. Optimization by sector of regional anthropogenic methane emission trends in 2010–2017. Bars and diamonds represent trends in
gigagrams per annum per annum (Gg a−1 a−1, bottom axis) and percent per annum (% a−1, top axis) over the 2010–2017 period from the
GOSAT+ in situ joint inversion.

the Global Carbon Project (Saunois et al., 2020). Our joint
inversion yields a methane lifetime against OH oxidation of
11.2 years, consistent with the observationally based esti-
mate of 11.2± 1.3 years (Prather et al., 2012), and pushes
the Northern to Southern hemispheric OH ratio (1.06 in
GOSAT+ in situ inversion vs. 1.16 in prior estimate) closer
to the values of 0.97± 0.12 inferred from methyl chloroform
observations (Patra et al., 2014).

In Fig. 13b, we examine the sensitivity of the global
methane budget optimization to the choice of different reg-
ularization parameter γ (and, therefore, observation error
SO) and prior error of methane emission trends and OH
concentrations. We find that reducing γ or prior errors of
trend and OH by 50 % yields consistent estimates of anthro-
pogenic emissions and OH concentrations as compared to the
default inversion, with differences within 3 %. Decreasing
the weighting of observations in the inversion (i.e., assum-
ing larger observation error) enlarges the posterior error and
pushes the posterior estimates closer to the prior estimates.
Assuming a lower prior error for the OH concentration from
10 % to 5 % results in a lower methane lifetime (closer to the
prior) and higher emissions; it also reduces the error correla-
tion between the optimization of methane emissions and OH,
whereas assuming a lower prior error for non-wetland emis-
sion trends leads to an opposite effect. Our results are consis-

tent with Maasakkers et al. (2019), who showed that different
assumptions with respect to error distribution and magnitude
in their analyses had relatively small results. We also find
that having the shipboard and aircraft measurements in the
in-situ-only inversion pushes the estimate to be more con-
sistent with the GOSAT-only inversion (Fig. 13b), implying
that the shipboard and aircraft measurements – by emphasiz-
ing the methane in the remote atmosphere – play a similar
role to satellite measurements in global methane budget op-
timization.

4 Conclusions

We quantified and attributed global sources, sinks, and trends
of atmospheric methane for 2010–2017 by inversions of
GOSAT satellite data and the GLOBALVIEWplus in situ
methane observations from surface sites, towers, ships, and
aircraft. The inversions use an analytical solution to the
Bayesian optimization problem including closed-form er-
ror covariance matrices from which the detailed information
content of the inversion can be derived. We conduct inver-
sions using GOSAT and in situ data separately and combined.
In this manner, we are able to quantify the consistency and
complementarity (or redundancy) of the satellite and in situ
observations.
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Figure 13. Joint probability density functions (PDFs) of global mean anthropogenic methane emission and methane lifetime against oxi-
dation by tropospheric OH optimized by different inversions. Panel (a) shows the results from the prior and the three base inversions. The
prior estimates are shown in gray with bars representing the prior error standard deviation. The thick contours show probabilities of 0.99
(outermost), 0.7, 0.5, 0.3, and 0.1 (innermost). The error correlation coefficients are given inset. Panel (b) shows the 0.99 probability contours
from the three base inversions along with the same contours for 10 additional sensitivity inversions using reduced values of the regularization
parameter γ (0.05 instead of 0.1 for GOSAT and 0.5 instead of 1 for in situ); reduced errors for the methane emission trends on the 4◦× 5◦

grid (5 % a−1 instead of 10 % a−1); reduced errors on annual hemispheric mean OH concentrations (5 % instead of 10 %); or surface and
tower data only in the in-situ-only inversion.

Table 3. Optimized global methane budget, 2010–2017.

Inversions In-situ-only GOSAT-only GOSAT+ in situ
inversion inversion inversion

Total sources [Tg a−1] 515 504 551

Anthropogenica 359 333 371
Seeps, termites 15 15 16
Open fires 15 16 16
Wetlands 126 140 148

Total sinks [Tg a−1] 496 480 529

Tropospheric OHb 423 408 456
Other lossesc 73 72 73

Mean imbalance [Tg a−1] 19 24 22

a See Table 1 for sectoral breakdown from the joint inversion. b Methane lifetime against oxidation by
tropospheric OH is 11.2± 0.1 years in the GOSAT+ in situ inversion. c Soils, stratosphere, and
oxidation by tropospheric Cl.

We find that the GOSAT-only inversion can generally fit
the in situ data and the in-situ-only inversion can generally
fit the GOSAT data, indicating consistency between the two
data sets. However, the GOSAT-only inversion has difficulty
fitting the in situ observations in source regions (US and Eu-
rope), whereas the in-situ-only inversion cannot reproduce
the interannual variability of the methane growth rate due to
the heavy weighting of in situ data to northern midlatitudes.
The GOSAT+ in situ inversion shows the best fit to the en-
semble of observations.

GOSAT and in situ observations have complementarity
in constraining global emissions. GOSAT provides stronger
constraints than in situ observations for the tropics, whereas

in situ observations are more important in the US, Canada,
Europe, and northern China where observations are most
dense. The GOSAT-only and in-situ-only inversions also
show consistent corrections to regional methane emissions
in the US, Europe, and China. The joint GOSAT+ in situ
inversion indicates large underestimates of oil and gas emis-
sions in the US and Canada as well as large overestimates
of coal emissions in China, relative to the national invento-
ries reported to the United Nations Framework Convention
on Climate Change (UNFCCC) and used here as prior esti-
mates for our inversions. Emissions from boreal wetlands are
overestimated in the mean WetCHARTs inventory used as a
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prior estimate, particularly in May–June when snow cover
and frozen soils inhibit methane emission.

Our inversions indicate increasing trends in US anthro-
pogenic emissions driven by oil and gas production but de-
creasing trends in Canada (oil and gas) and Europe. Joint in-
version of GOSAT+ in situ data shows a weak decreasing
trend in Chinese coal emissions for 2010–2017, consistent
with a recent bottom-up inventory (Sheng et al., 2019).

We find that GOSAT and in situ observations are also com-
plementary in constraining the global methane budget. While
the global budget information relies more on GOSAT obser-
vations, information from the in situ observations at north-
ern midlatitudes avoids the large error correlations between
methane emissions and sink from OH and also corrects the
underestimation of both emission and OH in the GOSAT-
only inversion. Our joint GOSAT+ in situ inversion yields
global methane emissions and loss of 551 and 529 Tg a−1 a−1

averaged over 2010–2017 as well as a methane lifetime of
11.2 years.

Our study presents a framework to integrate satellite and
in situ data in analytical inversions. We conclude that on the
basis of the present observation system, in situ and satel-
lite observations are complementary for constraining global
methane budgets and regional emissions. Satellite observa-
tions of atmospheric methane are presently expanding with
the new availability of global daily data from the Tropo-
spheric Monitoring Instrument (TROPOMI) launched in Oc-
tober 2017 (Hu et al., 2018). This will call for a re-evaluation
of the role of in situ observations for constraining regional
and global methane budgets, as can be done with the meth-
ods presented here. In situ observations will in any case con-
tinue to play a critical role for documenting long-term trends
of methane with consistent calibration, for observation of
oceanic and polar regions where satellites have limited ca-
pability, for high-frequency measurements in source regions
giving insight into the magnitude and intermittency of local
emissions, and for independent validation of satellite-based
inversions.

Data availability. The GLOBALVIEWplus CH4 Ob-
sPack v1.0 data product is available at https://www.esrl.
noaa.gov/gmd/ccgg/obspack/data.php?id=_obspack_ch4_1_
GLOBALVIEWplus_v1.0_2019-01-08 (Cooperative Global
Atmospheric Data Integration Project, 2019). The GOSAT
Proxy satellite methane observations are available at
https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb
(Parker and Boesch, 2020). (last access: 17 July 2020). Mod-
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