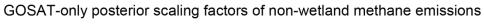
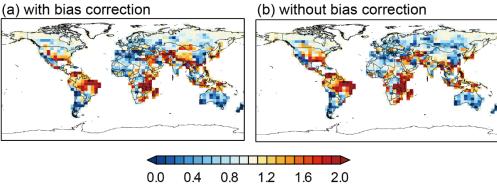
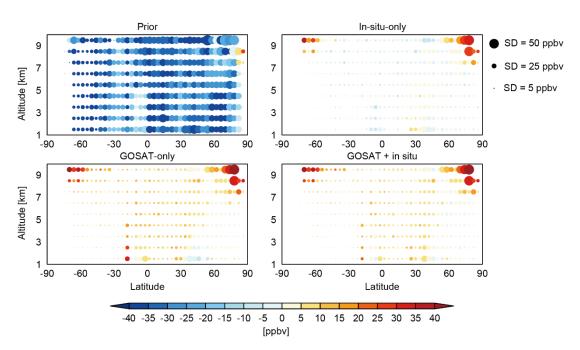
Supplement of Atmos. Chem. Phys., 21, 4637–4657, 2021 https://doi.org/10.5194/acp-21-4637-2021-supplement © Author(s) 2021. CC BY 4.0 License.

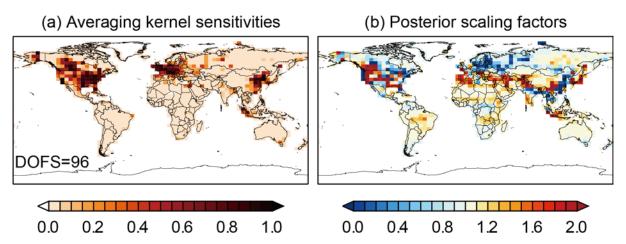

Supplement of


Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH_4 ObsPack) and satellite (GOSAT) observations

Xiao Lu et al.


Correspondence to: Xiao Lu (xiaolu@g.harvard.edu) and Yuzhong Zhang (zhangyuzhong@westlake.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.



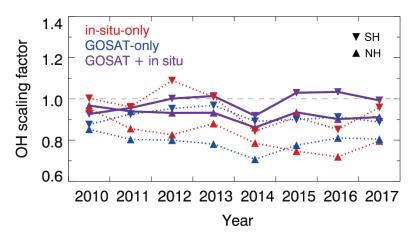

Figure S1. Posterior scaling factors of non-wetland methane emissions from GOSAT-only inversion (a) with GOSAT stratospheric bias corrections and (b) without GOSAT stratospheric bias corrections.

Figure S2. Differences between simulated and observed aircraft methane concentrations from the GLOBALVIEWplus ObsPack data product using GEOS-Chem with prior estimates and with posterior estimates from the in-situ-only, GOSAT-only, and GOSAT + in situ inversions. The size of the dots represents the standard deviation (SD).

Figure S3. Same as Figure 8a and 8b but from a sensitivity inversion using only surface and tower methane observations.

Figure S4. OH scaling factors for the Southern Hemisphere (SH) and the Northern Hemisphere (NH) from the three inversions.