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Abstract. The anthropogenic emission of sulfur dioxide
(SO2) over China has significantly declined as a conse-
quence of the clean air actions. In this study, we have de-
veloped a new emission inversion system based on a four-
dimensional local ensemble transform Kalman filter (4D-
LETKF) and the Weather Research and Forecasting model
coupled with Chemistry (WRF-Chem) to dynamically up-
date the SO2 emission grid by grid over China by assimi-
lating the ground-based hourly SO2 observations. Sensitivity
tests for the assimilation system have been conducted firstly
to tune four system parameters: ensemble size, horizontal
and temporal localization lengths, and perturbation size. Our
results reveal that the same random perturbation factors used
throughout the whole model grids with assimilating observa-
tions within about 180 km can efficiently optimize the SO2
emission, whereas the ensemble size has only little effect.
The temporal localization by assimilating only the subse-
quent hourly observations can reveal the diurnal variation of
the SO2 emission, which is better than updating the magni-
tude of SO2 emission every 12 h by assimilating all the obser-
vations within the 12 h window. The inverted SO2 emission
over China in November 2016 has declined by an average
of 49.4 % since 2010, which is well in agreement with the
bottom-up estimation of 48.0 %. Larger reductions of SO2
emission are found over the a priori higher source regions

such as the Yangtze River Delta (YRD). The simulated SO2
surface mass concentrations using two distinguished chemi-
cal reaction mechanisms are both much more comparable to
the observations with the newly inverted SO2 emission than
those with the a priori emission. These indicate that the newly
developed emission inversion system can efficiently update
the SO2 emissions based on the routine surface SO2 obser-
vations. The reduced SO2 emission induces the sulfate and
PM2.5 surface concentrations to decrease by up to 10 µg m−3

over central China.

1 Introduction

China and India are the top two emitters of anthropogenic
sulfur dioxide (SO2) in the world (C. Li et al., 2017). SO2 is a
toxic air pollutant and the precursor of sulfate aerosol which
leads to the acidification of the atmosphere and the current
heavy haze problem in China (G. Wang et al., 2016; Huang
et al., 2014; Yao et al., 2018). Sulfate aerosol can further per-
turb the radiative energy budget on Earth through directly
scattering solar radiation (Goto et al., 2011) and the hydro-
logical cycle by aerosol–cloud interactions (Ramanathan et
al., 2001; Sato et al., 2018; Rosenfeld et al., 2019). Sulfate
coating on dust leads to a shorter lifetime of dust by increas-
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ing the deliquescence of the mixed dust, inducing a great im-
pact on radiative properties and climate modelling (Zhang et
al., 2003; Bauer et al., 2007; Fu et al., 2009; Wang et al.,
2013; Qi et al., 2013; Penner, 2019). Hydrophilic polluted
continental aerosols such as sulfate and mixed dust serve
as cloud condensation nuclei (CCN) and thus have a sub-
stantial effect on cloud properties and the initiation of pre-
cipitation (Rosenfeld et al., 2008). The liquid and ice water
paths of dust-contaminated clouds were found to be signif-
icantly smaller than those of dust-free conditions over East
Asia (Huang et al., 2006a, b). Asian dust altering cloud mi-
crophysics and precipitation was revealed by observations
and model simulations (Liu et al., 2019a, b, 2020). This,
in turn, plays a key role in the climate system. To miti-
gate climate change and control air quality, the emission
control policies, especially for SO2 implemented by China
since 2006, cover all the major source sectors and have be-
come increasingly stringent over time (Zhang et al., 2012).
Consequently, the decreasing trends of SO2 loading over
China have been revealed by satellite observations, demon-
strating that SO2 emissions in China declined by 75 % dur-
ing 2007–2016 (Wang et al., 2018; C. Li et al., 2017). The
relative change rate of SO2 emission in China during 2010–
2017 is also estimated to be −62 % using a bottom-up emis-
sion inventory (Zheng et al., 2018).

Timely precise emission inventories such as for SO2 are
the primary inputs to models for air quality prediction and
mitigation. All atmospheric chemistry and aerosol models
rely on their descriptions of the emissions virtually, which
are mostly from bottom-up emission inventories. Bottom-up
emission inventories are compiled based on indirect informa-
tion such as activity data and emission factors (Zhang et al.,
2009; Kurokawa et al., 2013; Zheng et al., 2018). Due to the
uncertainties of the activity rates and emission factors, large
discrepancies of global and regional emissions are identified
among different emission inventories (Li et al., 2018; Granier
et al., 2011). This demonstrates that there is still no consen-
sus on the best estimates for the emissions of atmospheric
compounds. Moreover, bottom-up anthropogenic emission
inventories often lag several years behind the present and
may quickly become outdated (Zheng et al., 2018), leaving
the model without up-to-date emission inventories.

The emission inversion approach can feed historical and
near-real-time observations into the models, providing a top-
down approach to estimate and update the primary emissions
of air pollutants in a timely way (Streets et al., 2013). Gen-
erally speaking, variational and ensemble data assimilation
approaches are the two most widely used methodologies to
estimate the emission fluxes of gases (such as NOx , CO,
VOCs) (Tang et al., 2011; Qu et al., 2017; Wu et al., 2020;
Miyazaki et al., 2012b; Cheng et al., 2010; Feng et al., 2020a)
and/or aerosols (Dai et al., 2019a; Cohen and Wang, 2014;
Peng et al., 2017; Yumimoto et al., 2008). NOx emission
changes over China during the COVID-19 epidemic were in-
ferred from surface NO2 observations based on an ensemble

data assimilation approach (Feng et al., 2020b). The emission
reductions during the 2015 China Victory Day Parade were
successfully detected with an ensemble data assimilation sys-
tem (Chu et al., 2018). SO2 emission inventories over China
were updated on monthly or seasonal timescales, assuming
a linear relationship between SO2 emissions and satellite-
observed SO2 column amounts (Koukouli et al., 2018; Lee
et al., 2011), known as the mass balance approach (Mar-
tin, 2003), although the sulfur chemistry, especially in pol-
luted areas as well as in the interactions of clouds, should be
non-linear (Goto et al., 2011; Liao et al., 2003). Fioletov et
al. (2015) described a new mass balance approach to simulta-
neously estimate the SO2 lifetimes and emissions from large
SO2 point sources using satellite measurements. Based on
the variational data assimilation approach in the framework
of the GEOS-Chem adjoint model, Y. Wang et al. (2016) de-
veloped a new sophisticated inverse modelling (IM) method
to update monthly anthropogenic SO2 emissions in a timely
way by assimilating the Ozone Monitoring Instrument (OMI)
SO2 satellite measurements. The non-linear full sulfur chem-
istry and life cycle in the atmosphere were accounted for
for the first time to conduct the top-down estimation of the
anthropogenic SO2 emissions from the GEOS-Chem adjoint
model (Y. Wang et al., 2016). However, a great limitation to
the application of the variational data assimilation approach
is the requirement of developing the complicated adjoint
model (Henze et al., 2007; Liang et al., 2020). The ensemble
data assimilation approach requires neither linearization of
the observation operator and nor an adjoint model; therefore
it is much more easily implemented and flexible (Evensen,
2003). Additionally, the ensemble data assimilation and the
variational data assimilation use the flow-dependent and pre-
calculated model error covariances respectively (Descombes
et al., 2015; Zang et al., 2016). Based on the ensemble square
root filter (EnSRF) approach (D. Chen et al., 2019), the re-
cent SO2 emission changes from the year 2010 in China were
successfully updated to improve the model forecast skill. An
ensemble Kalman filter data assimilation system was devel-
oped to simultaneously optimize the chemical initial condi-
tions and emissions including SO2 with multi-species chem-
ical observations (Peng et al., 2018). The effects of meteo-
rological assimilation on SO2 emission inversions were also
studied recently (Peng et al., 2020).

Retrievals of SO2 from satellite-based spectrometers are
often contaminated by factors such as interference between
ozone and SO2, and there are significant regional differences
between different satellite instruments (Fioletov et al., 2013).
This subsequently induces the inconsistency of the inversed
regional emissions by assimilating different satellite obser-
vations (Lee et al., 2011). Meanwhile, satellite observations
are usually assimilated on the monthly timescale due to data
availability. Compared with satellite observations, the sur-
face SO2 observations have higher accuracy and temporal
frequency. Therefore, the assimilation of intensive direct sur-
face SO2 observations can provide more spatial–temporal
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characteristics of emissions (D. Chen et al., 2019). The
China National Environmental Monitoring Centre (CNEMC)
started to monitor hourly concentrations of PM2.5 (particu-
late matter with diameter≤ 2.5 µm), PM10, SO2, NO2, CO
and O3 in 2012, and it had included 1436 monitoring sites
from 369 cities by March 2017 (Wu et al., 2018). Those im-
portant direct intensive surface SO2 observations provide a
new chance to estimate the more spatial–temporal character-
istics of the SO2 emission in China (D. Chen et al., 2019).

Due to the limited ensemble members, the ensem-
ble Kalman filter (EnKF) generally has a spurious long-
distance correlation problem (Houtekamer and Mitchell,
2001; Miyazaki et al., 2012a). Compared with the EnKF, the
local ensemble transform Kalman filter (LETKF) can assimi-
late measurements simultaneously over different model grids
in the parallel architecture (Miyoshi et al., 2007; Hunt et al.,
2007). Generally speaking, the LETKF computational time
is robust with increasing observations, while that of most
other ensemble Kalman filters is essentially proportional to
the number of observations (Miyoshi et al., 2007). Moreover,
the global analysis consists of linear combinations of ensem-
ble members in different regions, which is not confined to
the limited ensemble members and provides better results in
many cases (Ott et al., 2004). A four-dimensional LETKF
(4D-LETKF) was recently developed to assimilate hourly
aerosol optical properties observed by satellite, which can
avoid frequent switching between the assimilation and the
ensemble aerosol forecasting to significantly reduce compu-
tational load (Dai et al., 2019b). In the current study, we im-
plement a 4D-LETKF in the Weather Research and Forecast-
ing model coupled with Chemistry (WRF-Chem). Our ma-
jor objectives are to investigate whether 4D-LETKF together
with the intensive CNEMC SO2 observations can be applied
to quantitatively estimate the spatially resolved changes of
SO2 emissions in China and how sensitive the estimated SO2
emissions are to the system parameters of the 4D-LETKF.

The remainder of the paper is organized as follows. In
Sect. 2, the methodology of our emission inversion system
is described in detail. Section 3 presents our experimental
design and purposes. The emission inversion results and val-
idations are provided in Sect. 4, before concluding in Sect. 5.

2 Methodology

In order to optimize the SO2 emissions in this study, we need
to formally minimize a scalar cost function J in a Bayesian
framework (Hunt et al., 2007; Huneeus et al., 2012). J can be
formulated as the sum of the departures of a potential grid-
ded SO2 emissions x and the corresponding simulated SO2
surface mass concentrations to the a priori SO2 emissions xf

and the CNEMC-observed surface SO2 concentrations yo:

J (x)= 1/2
(
x− xf

)T
B−1

(
x− xf

)
+ 1/2

(
H(x)− yo)TR−1 (H(x)− yo), (1)

where H is the observation operator that forwards the SO2
emissions to the simulated CNEMC measurements; and
B and R are the covariance matrix of the error statistics of
the a priori SO2 emissions and CNEMC observations.

2.1 Forward model and observation operator

The relationship between the emission and the surface con-
centration of the short-lived reactive gas SO2 is mainly deter-
mined by the atmospheric chemical reactions, transport, and
deposition. The fully coupled “online” Weather Research and
Forecasting model coupled with Chemistry (WRF-Chem)
version 4.1.2 (Grell et al., 2005) serves as the forward model
to relate the SO2 emissions to the simulated observations
of surface mass concentration in the current study, which
can reflect the complex non-linear relationship between at-
mospheric chemical concentrations and emissions. Our pri-
mary aim is to understand how sensitive the estimated SO2
emissions are to the parameters of the assimilation system,
which requires huge computing resources for sensitivity ex-
periments as described later. Therefore, the model is con-
figured with a domain covering most of China as shown
in Fig. 1, with a relatively low horizontal resolution of
50 km and 32 vertical levels (Snyder et al., 2015). A state-
of-the-art and highly non-linear gas-phase chemical mecha-
nism named the second- generation Regional Acid Deposi-
tion Model (RADM2) (Stockwell et al., 1990) coupled with
the Goddard Global Ozone Chemistry Aerosol Radiation
and Transport (GOCART) aerosol model (Chin et al., 2000,
2002) (i.e. chem_opt= 303) is adopted to simulate the at-
mospheric sulfur cycle. The RRTMG radiation scheme with
prognostic aerosols is selected to consider the aerosol direct
effect on atmospheric radiation and photolysis calculations
(Iacono et al., 2008). The other main selected physics are
identical to those of Dai et al. (2019a). The initial and lat-
eral boundary meteorological conditions are from the NCEP
Final (FNL) analysis. To reduce the uncertainties associated
with the meteorological fields and facilitate a more straight-
forward comparison of simulations and observations, the pre-
dicted wind (u, v), temperature (t), and specific humidity (q)
by the WRF dynamical core are also nudged to the NCEP
FNL analysis every 6 h (Dai et al., 2018). The meteorological
fields in the planetary boundary layer (PBL) are not nudged.
The WRF-Chem simulated surface gridded SO2 volume mix-
ing ratios in the unit of parts per million (ppmv) are firstly
converted to micrograms per cubic metre (µg m−3) for com-
parison to the observations (D. Chen et al., 2019) and then
linearly interpolated to the CNEMC site locations.
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Figure 1. WRF-Chem model computational domain with the to-
pography. The locations of the assimilated and independent verifi-
cation observation sites of the China National Environmental Mon-
itoring Centre (CNEMC) are shown by the black circles and red
squares, respectively. The three magenta boxes mark the North
China Plain (NCP), the Yangtze River Delta (YRD), and the Pearl
River Delta (PRD) subregions, where relatively dense observation
sites are available.

2.2 SO2 observations and uncertainties of CNEMC

The quality-assured and quality-controlled measurements of
hourly SO2 surface mass concentration from the CNEMC,
which is partly purposefully built for assimilation (Wu et
al., 2018), are used to minimize the cost function J . There
are a total of 1424 sites in November 2016, and those sites
span most of central and eastern China and are primarily lo-
cated in urban and suburban areas (Peng et al., 2017). Due
to unresolved emission variations between urban and sub-
urban areas, the model may have large representativeness er-
rors. To overcome the spatial-scale gaps and to produce more
representative observations, super-observations are adopted
to average all observations located within a model grid cell
(Miyazaki et al., 2012a). Altogether, 463 of 7221 model grid
cells are covered by the super-observations (Fig. 1). The lo-
cations of the super-observations are assumed to be the loca-
tions of the covered model grid cells. To independently verify
the assimilation results, we further randomly eliminate the
super-observations located in 155 of the 463 grid cells to be
assimilated. In other words, the assimilated and independent
verification observation sites are randomly decided. The ob-
servation error covariance matrix R is assumed diagonal. In
other words, the observational error covariance is assumed
uncorrelated. The observation error of CNEMC is calculated

the same as in D. Chen et al. (2019), which contains both the
measurement and representativeness errors. In the assimila-
tion data quality control process, an SO2 observation leading
to absolute innovation exceeding 3 times of the prior total
spread is considered to be an outlier and discarded. The in-
novation is calculated as the observation minus the model-
simulated ensemble mean observation determined from the
first-guess field, and the prior total spread is the square root
of the sum of the background ensemble variance and the ob-
servational error variance (D. Chen et al., 2019; Rubin et al.,
2016).

2.3 4D-LETKF

The 4D-LETKF assimilation approach generalizes a flow-
dependent B from ensemble simulation and finds the mini-
mum of the cost function J through the following five for-
mulas (Cheng et al., 2019):

xa
= xf
+Xfwa (2)

wa
= P̃ a

(
Yf
)T

R−1f (r)
(
yo
− yf

)
(3)

P̃ a
=

[
(k− 1)I/ρ+

(
Yf
)T

R−1f (r)Yf
]−1

(4)

Xa
= XfW a (5)

W a
=

[
(k− 1)P̃ a

]1/2
, (6)

where xf and xa represent the ensemble mean of the first-
guess (a priori) and analysis (a posteriori) SO2 emissions in
this study; the ensemble perturbation matrix X is calculated
as x(i)− x, {i = 1, 2, . . . , k}, which k represents the ensem-
ble size; the matrix wa is the Kalman gain, which specifies
the increment between the first guess and the analysis; the
vector yf represents the first-guess SO2 surface concentra-
tions averaged over the ensemble members; the matrix Yf

is calculated as yf(i)− yf, {i = 1, 2, . . . , k}; I represents the
identity matrix. The ensemble analyses are calculated as the
sum of the xa and each of the columns ofXa, which serves as
part of a priori emission information for the next analysis as
described later. The multiplicative inflation factor ρ is used
to avoid the filter divergence, which is fixed at 1.1 to inflate
the analysis covariance the same as in our previous studies
(Dai et al., 2019b; Cheng et al., 2019). In our implementa-
tion of the 4D-LETKF, the temporal and spatial localizations
are achieved by multiplying the R−1 by a factor f (r) as de-
scribed in Sect. 3, which makes the effect of an observation
on the analysis decay smoothly to zero as the time and phys-
ical distance of the observation from the analysis grid point
increase (Hunt et al., 2007).

As shown in Fig. 2, each assimilation cycle with 4D-
LETKF includes two steps: a first guess and a state anal-
ysis. In our implementation, the first guess is the WRF-
Chem ensemble forecasting for 12 h with hourly model out-
put. The state analysis optimizes the SO2 emissions in the

Atmos. Chem. Phys., 21, 4357–4379, 2021 https://doi.org/10.5194/acp-21-4357-2021



T. Dai et al.: Revealing the sulfur dioxide emission reductions in China by assimilating surface observations 4361

Figure 2. Flow chart of the WRF-Chem/4D-LETKF SO2 emission inversion system by assimilating the SO2 observations.

past 12 h. The advantages of 4D-LETKF used here are three-
fold: (1) each member of the ensemble WRF-Chem sim-
ulations is continuously integrated for 12 h; therefore, this
avoids frequent switching between the ensemble WRF-Chem
forecasts and the assimilation (Peng et al., 2017; D. Chen et
al., 2019). (2) The asynchronous observations can be assim-
ilated to optimize the current state (Hunt et al., 2007; Dai et
al., 2019b). (3) The assimilation time window of 12 h could
avoid filter convergence and divergence by finite ensemble
samples, since more frequent assimilation forces the experi-
ments more closer together, inducing the underestimation of
the model spread and overconfidence in the first-guess state
estimate (Schutgens et al., 2010; Miyazaki et al., 2012a; Hunt
et al., 2007).

2.4 State variable and forecast model for emission

In this study, the state variable to be optimized is the SO2
emission. A forecast model for emission is required to prop-
agate observation information and determine the first guess
for the next assimilation cycle (Miyazaki et al., 2012a). We
adopt the same forecast model for SO2 emission proposed
by D. Chen et al. (2019). The forecast model for SO2 emis-
sion weights 75 % and 25 % toward the SO2 emission ensem-
ble Ea

tn
from the previous analysis and the static initial prior

ensemble Et0 as in the following formula:

Ef
tn+1
= 0.75×MEa

tn
MT
+ 0.25×Et0 , (7)

where M is the identity matrix. The optimized SO2 emis-
sion ensembleEa

tn
has SO2 emissions at 12-hourly time slots,

which are used to calculate the first-guess SO2 emission en-
semble Ef

tn+1
in sequence for the next assimilation cycle.

The SO2 emission inversion depends on the forecast model;
therefore, sensitivity experiments for various different emis-
sion forecasts are conducted to tune the assimilation sys-
tem as given in Table 1. The detailed settings of the sensi-
tivity experiments will be described in the next section. As
shown in Figs. S1 and S2 in the Supplement, the temporal
and spatial distributions of the ensemble spread of the fore-

cast emissions Ef
tn+1

are significantly sensitive to the assimi-
lation system parameters. The initial prior ensemble of SO2
emission is generated by perturbing the freely available MIX
Asian inventory S for November 2010 (M. Li et al., 2017).
For example, the SO2 emission for ensemble member i at a
given location (x,y) is calculated as fi(x,y)S(x,y) (Rubin
et al., 2016), and the perturbation fi(x,y), {i = 1, 2, . . . , k},
follows a log-normal distribution in the k-dimensional space.
The mean and the variance of the perturbations f (x,y) are
equal to 1 and the MIX SO2 uncertainty (i.e. 35 %) (M. Li
et al., 2017). The horizontal perfectly correlated and ran-
dom uncorrelated perturbations are both created to generate
the initial prior ensemble Et0 and the associated first-guess
SO2 emission ensemble Ef

tn+1
as described later. The spa-

tial distribution of the ensemble spread of the Et0 with ei-
ther horizontal perfectly correlated or random uncorrelated
perturbations has a similar pattern to the MIX Asian inven-
tory S, which is generally equal to 35 % multiplied by S.
In the MIX inventory, anthropogenic emissions are aggre-
gated into five sectors: power, industry, residential, trans-
portation, and agriculture. However, only the combined to-
tal emission is used in the model and updated in the anal-
ysis. This aims to decrease the degree of freedom in the
analysis (Miyazaki et al., 2012a). A total of 10 chemical
species including both gaseous and aerosol species are in-
cluded in the MIX inventory (M. Li et al., 2017). The origi-
nal monthly MIX anthropogenic emissions with a horizontal
resolution of 0.25◦× 0.25◦ are remapped to the model res-
olution of 50 km. The residential, transportation, and agri-
culture emissions are allocated in the lowest model layer,
whereas the power and industry emissions are allocated in
the lowest seven model layers with the vertical profiles of
the emission factors from the Model Inter-Comparison Study
for Asia (MICS-Asia) phase III (L. Chen et al., 2019). An
improved speciation framework for mapping Asian anthro-
pogenic emissions of non-methane volatile organic com-
pounds (NMVOCs) to multiple chemical mechanisms (Li
et al., 2014) is adopted to prepare the initial hourly anthro-
pogenic emissions every 12 h with two separated emission
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files (i.e. io_style_emissions= 2). We do not apply any diur-
nal variation for the MIX emissions. Therefore, the initial a
priori emissions are identical throughout the 24 h. The emis-
sions of aerosol species for WRF-Chem are prepared accord-
ing to the study of Peng et al. (2017). Notably, only the SO2
emission is perturbed and optimized by CNEMC SO2 obser-
vations in this study.

The chemical initial conditions (i.e. atmospheric SO2 con-
centrations) for the next forward simulation of the WRF-
Chem ensemble also need to be updated with the optimal
emission ensemble from the previous analysis (Peng et al.,
2015; Peters et al., 2005), and this is achieved by recalcula-
tion of the WRF-Chem ensemble with the optimized emis-
sions (Fig. 2). In other words, the WRF-Chem ensemble is
performed twice in one assimilation cycle. Theoretically, the
uncertainties of the forecast SO2 concentrations by recal-
culation of the WRF-Chem ensemble are dependent on the
optimized emissions. Lower uncertainties of the initial SO2
conditions for the next assimilation cycle should be found
with higher accurate optimized SO2 emissions, which in turn
makes the SO2 emission inversion more reasonable. Sensitiv-
ity experiments for the SO2 emission inversions as described
in the next section are performed to choose the best assimi-
lation system parameters.

3 Experimental design

The effectiveness of 4D-LETKF is highly dependent on hav-
ing sufficient spread in the ensemble members in order for
the observations to impact the first guess (Rubin et al., 2016;
Dai et al., 2019b; Hunt et al., 2007). The ensembles repre-
sent the uncertainty in the model first guess; therefore, the
method for generating the ensemble is an important consid-
eration for an optimal top-down emission inversion. Mean-
while, 4D-LETKF allows a flexible choice of observations
to be assimilated for a specific grid point through horizontal,
vertical, and temporal observation localizations (Miyoshi et
al., 2007; Dai et al., 2019b; Cheng et al., 2019). The obser-
vation localization gradually reduces the effect of an obser-
vation as the increasing departure from the analysis grid. In
this study, the horizontal localization factor is calculated as
the Gaussian function (Miyoshi et al., 2007):

f (r)= exp
(
−r2/2σ 2

)
(8)

where σ is the localization length, and r is defined as the
physical distance between the observation and the analysis
grid, and we force the localization factor to zero at 3.65 times
the localization length (Zhao et al., 2015). In other words, we
ignore observations beyond the cut-off distance. The tune-
able horizontal and temporal localization lengths are defined
in physical distance (km) and time (h), respectively. The ver-
tical localization is not applied for the SO2 emission inver-
sion in this study. In other words, we trust the vertical profiles

of the emission factors from the Model Inter-Comparison
Study for Asia (MICS-Asia) phase III (L. Chen et al., 2019).

A correct choice of the assimilation system parameters
such as the ensemble size and correlation length is impor-
tant to improve the data assimilation performance (Miyazaki
et al., 2012b). A series of sensitivity experiments are per-
formed to tune the assimilation system as listed in Table 1. A
control experiment assuming the same emissions in Novem-
ber 2016 as in November 2010 (i.e. the standard MIX emis-
sions) is conducted as the deterministic simulation to as-
sess the influence of data assimilation. Considering the GO-
CART aerosol scheme uses a simple representation of the
aerosol chemistry for reducing the computational load, we
also conduct another deterministic simulation using a more
sophisticated aerosol chemical scheme named Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC),
coupled with the “lumped-structure” Carbon Bond Mecha-
nism (CBMZ) (Zaveri et al., 2008) (i.e. chem_opt= 9) to
investigate the effects of different chemistry and aerosol
schemes on SO2 oxidation. The data assimilation experi-
ments are divided into three groups. In the first group, the
same random perturbation factor throughout the whole do-
main emission grids including vertical and temporal spaces
per member is applied to the MIX SO2 emission to generate
10 ensemble members for the WRF-Chem ensemble forward
simulation. The spatial correlation coefficients among the
initial prior ensemble of SO2 emissions over every two model
grids are equal to 1, and this makes the spatial correlations
among the grid points of the forecast emissions also equal
to 1. The same random perturbation factor generates a per-
fect correlation of emission in both the spatial and temporal
spaces; however, this should not be seen as overly restrictive
(Schutgens et al., 2010). Firstly, the bottom-up SO2 emission
inventories are to a large extent based on the used activity
rates and emission factors (Li et al., 2018). Therefore, with
the same random perturbation factors, we effectively cre-
ate an ensemble of inventories derived with different activity
rates and emission factors. Secondly, the same emission stan-
dards for SO2 emission mitigation are implemented in China
(Zheng et al., 2018), and this causes the SO2 reductions to
be correlated to a certain extent in both spatial and tempo-
ral spaces. Thirdly, the analysis is conducted locally in 4D-
LETKF, and the analysis at two grids separated by a distance
over about 7.3 times the localization length is mostly inde-
pendent (Schutgens et al., 2010). In this group, the strongest
temporal localization is applied to assimilate only the obser-
vations within 1 h of the analysis time. In other words, the
hourly SO2 emission is optimized using only the CNEMC
SO2 observation within the subsequent 1 h, making the in-
verted SO2 emission variable hour by hour. The difference of
the experiments in this group is only the horizontal localiza-
tion length, which is assumed to be 10, 30, 50, and 100 km
respectively. The purpose of the experiments in this group
is to investigate the effects of horizontal localization length
on SO2 emission inversion. Based on the results in the first
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Table 1. Experimental design in this study.

Experiment Design and purpose of the simulation

Control FR Free run using RADM2/GOCART (FR) and CBMZ/MOSAIC (FR_CM)
experiments FR_CM mechanisms with the MIX emission inventory in November 2010 to

investigate the effects of different chemistry and aerosol schemes on SO2
simulations and provide a reference to evaluate the effects of data
assimilation

Data H10kmT1hE10Ps Same random perturbation factors throughout the whole domain emission
assimilation H30kmT1hE10Ps grids and 12 h to generate 10 ensembles with assimilated
experiments H50kmT1hE10Ps observations within 1 h. Experiments with horizontal localization lengths of

H100kmT1hE10Ps 10, 30, 50, and 100 km respectively are performed to investigate the effects
of horizontal localization length on SO2 emission inversion.

H50kmT12hE10Ps Same random perturbation factors throughout the whole domain emission
H50kmT12hE20Ps grids and 12 h to generate 10, 20, and 40 ensembles with assimilated
H50kmT12hE40Ps observations within 12 h and horizontal localization length of 50 km based

on the above tests. Experiments in this group are performed to investigate the
effects of ensemble size on SO2 emission inversion.

H50kmT12hE10Pi Horizontal independent random perturbation factors in each emission grid
H50kmT12hE20Pi but same throughout 12 h to generate 10, 20, and 40 ensembles with
H50kmT12hE40Pi assimilated observations within 12 h and horizontal localization length of

50 km. Experiments in this group together with the above group are performed
to investigate the effects of ensemble size and perturbation factors on SO2
emission inversion.

Recalculation CBMZ/MOSAIC with Deterministic simulation with sophisticated CBMZ/MOSAIC scheme is
experiment posterior emission recalculated with the updated SO2 emission to verify the updated SO2

emissions with an independent mechanism and the associated effects of
SO2 emission reduction.

group as described later in Sect. 4, the second group of exper-
iments by fixing the horizontal localization length of 50 km is
subsequently performed with 10, 20, and 40 ensemble mem-
bers to investigate the effects of ensemble size on SO2 assim-
ilation. In this group, we remove the temporal localization to
investigate the effects of temporal localization on the SO2
emission inversion. In other words, the hourly SO2 emission
is optimized using all the CNEMC SO2 observations within
the 12 h assimilation window, making the inverted SO2 emis-
sion constant within every 12 h. In the third group, the ex-
periments are performed the same as those of the second
group except that the ensembles are generated by indepen-
dently perturbing the emission in horizontal space but depen-
dently in vertical and temporal spaces. These last two groups
of experiments are used to investigate the effects of the en-
semble size and perturbation factor on SO2 emission inver-
sion. The sensitivity data assimilation experiments are all
performed for 10 d over the period of 00:00 UTC 8 Novem-
ber to 00:00 UTC 18 November 2016. The global model
MOZART-4/GEOS-5 provides the initial and lateral bound-
ary conditions used in this study (https://www.acom.ucar.
edu/wrf-chem/mozart.shtml, last access: 10 August 2020).
Since we do not know the uncertainties of the global model
MOZART-4/GEOS-5, the initial and lateral boundary chem-

ical fields are not perturbed in this study. The first 3 d is used
as the spin-up of the data assimilation system, and the subse-
quent simulation results for 1 week are analysed in the next
section. Based on the sensitivity tests of the SO2 emission
inversion system, the experiment H50kmT1hE10Ps, which
generally performed better than other experiments, is ex-
tended to 00:00 UTC on 1 December 2016. This provides
a longer period of 20 d to further validate the assimilation
system. We also perform a recalculation experiment with the
sophisticated CBMZ/MOSAIC scheme and the updated SO2
emissions to verify the new SO2 emission and the associated
effects of SO2 emission reduction.

4 Results

4.1 Sensitivity of the inverted SO2 emission to the
assimilation parameters

The spatial distribution of the MIX SO2 emission in
November 2010 at the model lowest layer is shown in
Fig. 3a, which serves as the base of the initial a priori
SO2 emission for our experiments in November 2016. The
hotspots of anthropogenic SO2 emission are found over
the economically developed areas such as the North China
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Figure 3. Spatial distributions of the MIX SO2 emission in November 2010 (a) and the MEIC SO2 emission in November 2016 (b) in the
model’s lowest layer. Spatial distributions of the inverted SO2 emissions in November 2016 in various data assimilation experiments (c–l).

Plain (NCP), the Yangtze River Delta (YRD), and the Pearl
River Delta (PRD). The Multi-resolution Emission Inven-
tory for China (MEIC; http://www.meicmodel.org, last ac-
cess: 15 February 2021) developed by Tsinghua University
can provide the updated SO2 emission for November 2016

(Fig. 3b), which is used as the independent bottom-up SO2
emission to validate our inverted SO2 emission. It is appar-
ent that significant negative changes of SO2 emission are
found over the a priori higher source regions such as the NCP,
YRD, and PRD between the years 2010 and 2016, which is
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Figure 4. Comparisons of the MIX SO2 emissions in November 2010 (a) and the inverted SO2 emission in November 2016 in various data
assimilation experiments (b–k) to the MEIC SO2 emissions in November 2016.

in agreement with the changes of the column SO2 concentra-
tions observed by satellites (Wang et al., 2018). As a conse-
quence of the clean air actions (Zheng et al., 2018), the SO2
emissions over most areas of China showed a systematic de-
cline from the year 2010 to 2016 (Fig. 4a). Can we reveal the
reductions of the SO2 emission by assimilating the CNEMC-
observed surface SO2 concentration?

As shown in Figs. 3c–f and 4b–e, both spatial distribu-
tion and magnitude of the inverted SO2 emission in Novem-
ber 2016 firstly become closer to the independent MEIC ones
but get worse subsequently as the horizontal localization
length of the assimilation system increases. The inverted SO2
emissions of each assimilation experiment are obtained by
averaging the ones over the ensemble members. The spatial
distributions of the mean differences of the MIX and inverted
SO2 emissions minus the MEIC ones are shown in Fig. S3,
and the spatial distributions of the mean ratios between the
inverted SO2 emissions and the MIX ones are shown in

Fig. S4. The time series of the hourly SO2 emissions aver-
aged over China of the initial MIX prior, the forecast, and
the analysis of the assimilation experiment H50kmT1hE10Ps
from 00:00 UTC 8 November to 23:00 UTC 17 Novem-
ber 2016 are also shown in Fig. S5, which illustrates the ad-
justment of SO2 emissions with data assimilation. The ex-
periment with the smallest horizontal localization length (i.e.
10 km) only optimizes the SO2 emission over the specific
grids where there are observations to be assimilated. In such
a case, the significant reductions of the SO2 emission over
the grids with no observation sites are unable to be revealed,
such as Shandong province in the NCP. With a larger local-
ization length, an observation can constrain the emissions
in more grids surrounding the observation, and the obser-
vation error more gently increases as the distance from the
observation location increases (Hunt et al., 2007). It is ob-
vious that the systemic SO2 emission reductions especially
over the Shandong province are detected by increasing the
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horizontal localization length. However, the perfect correla-
tions of the emission perturbations over the domains with
too large a horizontal localization length cause spurious er-
ror covariance, causing the more local emission changes to
be undetectable. This is demonstrated by the inverted SO2
emissions with a localization length of 100 km tending to be
lower than the independent MEIC ones, with a mean bias of
−0.44 mol km−2 h−1. Generally speaking, the inverted SO2
emissions with a horizontal localization length of 50 km are
best in agreement with the MEIC ones, with a mean bias of
−0.15 mol km−2 h−1 and root mean square error (RMSE) of
5.34 mol km−2 h−1.

With a horizontal localization length of 50 km, the spa-
tial distribution of the inverted SO2 emission by removing
the temporal localization is shown in Fig. 3g. It is clearly
found that the inverted SO2 emissions over the Shandong
province, YRD, and PRD without temporal localization are
lower than those with temporal localization, inducing a larger
negative bias and RMSE (Fig. 4f). This demonstrates that it
is important to reveal the diurnal variations of the SO2 emis-
sion (Wang et al., 2010). The experiment with temporal lo-
calization can reveal the hourly variation of the SO2 emis-
sion by assimilating only the subsequent hourly observations,
whereas the experiment without temporal localization only
adjusts the magnitude of SO2 emission every 12 h by assim-
ilating all the observations within the 12 h window.

As shown in Figs. 3g–i and 4f–h, there are no significant
differences of the horizontal distribution and magnitude of
the inverted SO2 emission between 10, 20, and 40 ensem-
ble members. This indicates that the ensemble size has little
effect on the SO2 emission inversion when randomly corre-
lated perturbing the emissions. The ensemble forecast with
10 members seems feasible to reveal the SO2 reductions in
China, although the inverted emissions have not converged
properly. This in turn significantly reduces the required com-
putational resources and time for the forward calculation of
the ensemble model, making the dynamical update of air pol-
lutant emissions affordable when assimilating near-real-time
observations.

The inverted SO2 emission with horizontal random un-
correlated perturbations becomes closer to the independent
MEIC one as the number of the ensemble members is in-
creased (Figs. 3j–l and 4i–k). However, the performances
of the horizontal distribution and magnitude of the inverted
SO2 emission using 40 ensemble members with horizontal
random uncorrelated perturbations are clearly even worse
than those using 10 ensemble members with horizontal cor-
related perturbations. This demonstrates that the indepen-
dent emission perturbations over each model grid tend to un-
derestimate the model spread due to the current limited en-
semble members and the cancellation of neighbouring cells
(Pagowski and Grell, 2012; Schutgens et al., 2010).

The mean bias and RMSE of SO2 emission over China us-
ing the MIX SO2 emission in November 2010 for Novem-
ber 2016 are 2.70 and 9.78 mol km−2 h−1, respectively

Figure 5. Reductions of the bias and root mean square er-
ror (RMSE) between the inverted SO2 emissions in various data
assimilation experiments and the MEIC ones referring to those be-
tween the MIX and MEIC SO2 emissions.

(Fig. 4a). For the inverted SO2 emission by data assimilation,
the bias and RMSE reduction rates (Miyazaki et al., 2012b)
are estimated as follows:

2.70− |BDA|

2.70
× 100 (9)

9.78− |RMSEDA|

9.78
× 100, (10)

where BDA and RMSEDA are the mean bias and RMSE be-
tween the inverted SO2 emission and the MEIC SO2 emis-
sion in November 2016. As shown in Fig. 5, it is found that
(1) the inverted SO2 emission in every assimilation experi-
ment can reduce both the bias and the RMSE; (2) the ran-
domly correlated perturbation factor is superior to the ran-
domly uncorrelated perturbation factor in reducing the bias
and RMSE, and it is generally unaffected by the ensemble
size; (3) the experiment H50kmT1hE10Ps shows the best
performance in reducing both the bias and the RMSE, de-
creasing the bias and RMSE by 94.5 % and 45.4 % respec-
tively.

4.2 Sensitivity of the surface SO2 concentration to the
emission

Figures 6 and 7 show the horizontal distributions of the bi-
ases and RMSEs between the surface SO2 concentrations
simulated in various experiments and the CNEMC-observed
ones over both the assimilated and independent sites. The
SO2 concentrations in each assimilation experiment are ob-
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Figure 6. Spatial distributions of the mean biases between the simulated surface SO2 concentrations in various experiments and the CNEMC-
observed ones over both the assimilated and independent sites. The locations of the assimilated and independent verification observation sites
of the CNEMC are shown by the circles and squares, respectively.
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Figure 7. Same as Fig. 6 but for the RMSEs.

tained by averaging the ones over the WRF-Chem ensemble
recalculations with the optimized emissions. The spatial dis-
tributions of the mean SO2 concentrations simulated with the
original MIX emissions and the updates of the simulated SO2
concentrations with the inverted SO2 emissions are shown in

Fig. S6. The spatial distributions of the mean differences of
the SO2 concentrations simulated in the FR and FR_CM ex-
periments are also shown in Fig. S6. It is apparent that signif-
icant RMSEs and positive biases are found over the a priori
SO2 emission hotspot regions such as the NCP, YRD, and
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PRD in both the two free-run experiments, whereas slight
RMSEs and negative biases are both found over northwest-
ern China. Furthermore, the horizontal distributions of both
the biases and RMSEs of the two free-run experiments are
generally similar. As given in Table 2, the relative differ-
ences of the RMSEs in the FR and FR_CM experiments
are both less than 1 % over the assimilated and independent
sites, although the mean biases in the FR_CM experiment
both tend to be slightly smaller than those in the FR experi-
ment. This demonstrates that the biases and RMSEs between
the simulated and observed surface SO2 concentrations are
not induced by the uncertainties of the different chemical
reaction mechanisms but are due to the uncertainties of the
used SO2 emissions. The simulated ensemble mean surface
SO2 concentrations by recalculating the WRF-Chem with the
inverted SO2 emissions in all assimilation experiments are
shown to be more comparable to the observations, and the
performances of the simulated SO2 surface concentrations
are clearly affected by the inputs of the different inverted
SO2 emissions due to assimilation system parameters. This
indicates that the uncertainties of the different chemical reac-
tion mechanisms in simulating SO2 concentrations are much
smaller than those of the SO2 emissions. In the first group of
data assimilation experiments, the largest biases and RMSEs
of the simulated and observed SO2 surface concentrations
over both the assimilated and independent sites are found
in the H10kmT1hE10Ps experiment. This indicates that the
SO2 emission changes existing grid correlations, and the SO2
emission inversions over only the grids with available assim-
ilated sites are not sufficient to reveal the real SO2 emission
changes in the grids without observation sites. In addition,
the largest biases and RMSEs over both the assimilated and
independent sites are still found in the third group of data as-
similation experiments, although the biases and RMSEs de-
crease with the increase of the number of ensemble members.
This further illustrates there are correlations of the gridded
SO2 emission changes, and the random perfectly correlated
emission perturbation factors over the model grids are supe-
rior to the random uncorrelated emission perturbations for
current emission inversions. The latter is probably due to the
currently limited number of ensemble members for reduc-
ing the computational resources. However, the sophisticated
random uncorrelated emission perturbations should have bet-
ter performances with large or unlimited ensemble members.
Similar to the inverted emissions, the experiments in the sec-
ond group show the ensemble size has little effect on the bi-
ases and RMSEs of the SO2 surface concentrations over both
the assimilated and independent sites when the ensemble
members are generated by perturbing the emissions perfectly
correlated over the domain grids. The reductions of the biases
of the SO2 surface concentrations in both the assimilated and
independent sites benefit from the temporal localization, al-
though the RMSEs are slightly increased. It is interesting that
the smallest RMSE of the SO2 surface concentrations over
the independent sites is also found in the H50kmT1hE10Ps

Table 2. The mean biases and root mean square errors (RMSEs)
of the simulated SO2 surface concentrations in various experiments
and the CNEMC-observed ones over all assimilated and indepen-
dent sites.

Sanity check Independent validation

Experiments B RMSE B RMSE

FR 44.03 106.04 34.72 78.03
FR_CM 36.49 106.69 27.01 77.45
H10kmT1hE10Ps 12.01 50.89 21.83 59.84
H30kmT1hE10Ps −4.06 38.20 −0.34 38.57
H50kmT1hE10Ps −5.65 38.63 −3.84 36.18
H100kmT1hE10Ps −7.36 39.66 −5.76 36.20
H50kmT12hE10Ps −9.75 37.36 −7.45 34.59
H50kmT12hE20Ps −8.80 37.54 −6.20 35.27
H50kmT12hE40Ps −8.75 37.55 −6.15 35.28
H50kmT12hE10Pi 20.42 75.96 21.62 65.75
H50kmT12hE20Pi 17.38 68.60 20.03 60.90
H50kmT12hE40Pi 13.93 60.12 18.05 57.06

experiment, with a value of 36.20, which shows that the in-
verted SO2 emissions are also best in agreement with the in-
dependent MEIC ones. This further indicates that the assim-
ilation system parameters used in this experiment are suit-
able for the SO2 emission inversion, decreasing the biases of
SO2 surface concentrations over assimilated and independent
sites by 87.2 % and 88.9 % respectively. The underestimation
of the surface SO2 concentration with the original MIX emis-
sion over northwestern China such as the Gansu province is
potentially attributable to the increasing SO2 emissions due
to energy industry expansion and relocation over northwest-
ern China (Ling et al., 2017). The SO2 emissions and surface
concentrations over the Gansu province are increased to re-
duce the negative biases in the assimilation experiments as
shown in Figs. S4 and S6, indicating that our emission in-
version system also works well when the prior emissions are
underestimated. However, the simulated surface SO2 concen-
trations with the inverted emissions are still underestimated
over the Gansu province. The reason for the underestimation
is twofold: (1) there are limited observations to be assimi-
lated over northwestern China because the observation sites
are sparse; (2) the initial a priori MIX SO2 emission over
northwestern China is small and underestimated, causing the
model uncertainty to be small relative to the observation one.
This translates to a reduced impact of the observation on the
a priori emission.

Figure 8 illustrates the frequency distributions of the devi-
ations of the simulated SO2 surface concentrations in var-
ious experiments minus the observed ones. It is expected
that the distributions of the SO2 surface concentrations de-
viations for the two free-run experiments in China and
the three subregions are all positively biased due to the
known overestimation of the SO2 emissions. The distribu-
tions of the SO2 surface concentration deviations with the
updated SO2 emissions in all the data assimilation exper-
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Figure 8. Frequency distributions of the deviations of the simulated SO2 surface concentrations in various experiments minus the observed
ones.

iments show reduced biases over both the assimilated and
independent sites. However, the distributions of the devia-
tions with the updated SO2 emissions in the third group of
experiments and the H10kmT1hE10Ps experiment are still
positively biased, whereas slightly negative biased distribu-
tions are found in the second group of experiments and the
H100kmT1hE10Ps experiment. The distributions of the SO2
concentration deviations with the updated SO2 emissions in
the H50kmT1hE10Ps experiment, as expected, show the best
performance, with a peak closer to 0 in both the assimilated
and independent sites.

4.3 SO2 reduction in China and associated effects

Based on the aforementioned sensitivity tests of the SO2
emission inversion system, the experiment H50kmT1hE10Ps
is extended to 00:00 UTC on 1 December 2016. This pro-
vides a longer period for 20 d to estimate the reduction of the
SO2 emission over China in November over the period 2010–
2016. The bottom-up and top-down estimations of the SO2
emission reduction from 2010 to 2016 are calculated by com-
paring the MEIC and inverted SO2 emissions by data as-
similation in November 2016 to the MIX SO2 emission in
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Figure 9. SO2 emission reductions in November over the pe-
riod 2010 to 2016 in China and the three subregions estimated by
the bottom-up and top-down approaches.

November 2010. As shown in Fig. 9, the top-down estima-
tion of the SO2 emission reduction over China is 49.4 %,
which is well in agreement with the bottom-up estimation
of 48.0 %. In addition, larger SO2 emission reductions over
the three subregions estimated by the bottom-up approach
are correctly revealed by the emission inversion system. The
top-down and bottom-up estimations of the SO2 emission
reduction over NCP are generally comparable, with values
of 56.0% and 52.4 % respectively. The largest SO2 emis-
sion reductions both with the top-down and bottom-up ap-
proaches are found over the YRD region, with values of
73.1 % and 61.8 % respectively. The SO2 emission reduction
using the top-down approach is 10 % higher than that using
the bottom-up approach over the PRD region. To validate the
inverted SO2 emissions and explore the possible reasons of
the overestimation of SO2 emission reduction over the YRD
and PRD using the top-down approach, the time series of
the simulated SO2 surface concentrations in various experi-
ments and the observed ones are shown in Fig. 10. The sim-
ulated SO2 surface concentrations, especially over the YRD
subregion in the two free-run experiments, show significant
positive biases over all the period, revealing the drawback of
the prescribed SO2 emissions in November 2016 being the
same as in November 2010. The simulated SO2 surface con-
centrations with the inverted SO2 emissions using both the
RADM2/GOCART and CBMZ/MOSAIC chemical reaction
mechanisms are much closer to the observations in both the
assimilated and independent sites over all the period. This
demonstrates that the WRF-Chem/4D-LETKF emission in-
version system can continuously and dynamically update the
SO2 emissions by assimilating the newly available observa-
tions as shown Fig. S5. The SO2 surface concentrations sim-
ulated by the FR_CM experiment are sometime lower than
those in the FR experiment, especially over the YRD and
PRD subregions, indicating the overestimations of the SO2
emission reduction using the top-down approach over the

YRD and PRD are probably due to the simple aerosol chem-
istry schemes used in RADM2/GOCART (Chin et al., 2000).
This is proved as the simulated SO2 surface concentrations
in YRD with the RADM2/GOCART scheme and the in-
verted SO2 emissions over the period 18–22 November 2016
are generally comparable to the observed ones, whereas the
simulated SO2 surface concentrations with the sophisticated
CBMZ/MOSAIC scheme and the inverted SO2 emissions are
lower than the observed ones. The simulated SO2 surface
concentrations at all sites with the inverted emission in both
the FR_CM and assimilation recalculation are generally un-
derestimated. This is due to the inverted emission being suffi-
cient to reduce the overestimations of SO2 concentration over
the a priori SO2 emission hotspot regions but insufficient to
eliminate the underestimations over northwestern China.

Based on the inverted SO2 emissions from 11 November
to 1 December 2016, the daily and diurnal variations of the
SO2 emission reductions over China and the NCP subregion
are estimated as shown in Fig. 11a and b respectively, and the
diurnal variations of the inverted SO2 emissions over China
and the NCP subregion are also shown in Fig. 11c. Generally
speaking, the daily variation of the SO2 emission reduction
over China is not so significant. Larger SO2 emission reduc-
tions over the period 17 to 19 November in the NCP induced
by the first orange alert for heavy winter air pollution in 2016
are clearly detected by the inverted emissions (Shi et al.,
2019). Lower SO2 emission reductions over China and NCP
from 21 to 22 November are probably contaminated by the
strong cold wind from the northwestern direction, inducing
the low SO2 concentrations and underestimating the associ-
ated ensemble spread. The latter causes the inverted emis-
sion to be overconfident in the background emission (Hunt
et al., 2007). Since the emissions are constant over time in
the a priori MIX inventory, the diurnal variations of the SO2
emission reduction over China and NCP both reveal higher
emission reductions in the night-time, causing the SO2 emis-
sions in the night-time to be lower than those in the daytime
(Fig. 11c). This is generally reasonable as fewer human and
economic activities happen in the night-time (L. Chen et al.,
2019).

Figure 12 shows the spatial distributions of the averaged
surface concentrations of the sulfate, ammonium, nitrate, and
PM2.5 over 11 November to 1 December 2016 simulated with
the CBMZ/MOSAIC mechanism and the original MIX emis-
sions and the absolute and relative changes of the associated
aerosol surface concentrations with the newly inverted emis-
sions by data assimilation. It is found that the SO2 emission
reductions cause the sulfate surface concentrations to be re-
duced by up to 10 µg m−3 (50 % over central China), and this
is due to the sulfate aerosols being dominated by the occur-
rence of in-cloud oxidation (Chin et al., 2000; Goto et al.,
2015) and more clouds being found over central China (Li et
al., 2015; Ma et al., 2014). The nitrate surface concentrations
are found slightly increased in central China with the reduc-
tion of sulfate aerosols, and this is due to the emissions of
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Figure 10. Time series of the simulated SO2 surface concentrations in various experiments and the CNEMC observations.

the nitrate precursors (i.e. NO and NO2) not being updated
in this study and because NH4NO3 is formed only in sulfate-
poor aerosols (Zaveri et al., 2008; Chen et al., 2016). The
synergy effects of sulfate–nitrate–ammonium induce slight
reductions of ammonium surface concentrations, decreasing
the PM2.5 surface concentrations by about 10 µg m−3 (10 %)
over central China.

5 Conclusions

Timely precise emission inventories are crucial to air qual-
ity prediction and mitigation. To dynamically update the

emissions of air pollutants, we have developed a new emis-
sion inversion system based on the 4D-LETKF and the fully
coupled model named WRF-Chem. Our emission inversion
system considers the complex non-linear relationship be-
tween atmospheric chemical concentrations and emissions
by ensemble forecasting with perturbed emissions. The emis-
sion inversion system is examined to update the outdated
MIX SO2 emissions in November 2010 by assimilating the
quality-assured and quality-controlled observations of SO2
surface concentration from the CNEMC in November 2016.
The inverted SO2 emissions over China by data assimilation
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Figure 11. Daily (a) and diurnal (b) variations of the SO2 emission reductions over China and the NCP subregion based on the inverted
emissions. Diurnal variations of the inverted SO2 emissions over China and the NCP subregion (c).

for November 2016 are validated with the independent MEIC
emissions in November 2016.

Sensitivity tests for the emission inversion system demon-
strate that the assumption of the covariance error matrix of
the a priori SO2 emissions has the largest effect on the in-
verted emissions. The random perfectly correlated emission
perturbations throughout the whole model grids with a hori-
zontal localization length of 50 km can best reproduce the in-
dependent MEIC SO2 emissions, decreasing the MIX emis-
sion bias and RMSE by 94.5 % and 45.4 % respectively. The
independent emission perturbations over each model grid
tend to underestimate the model spread due to the currently
limited number of ensemble members and the cancellation
of neighbouring cells. With the random perfectly correlated
emission perturbations, the ensemble size only has little ef-
fect on the inverted SO2 emissions, and the ensemble forecast
with 10 members seems feasible to reveal the SO2 reductions
in China. The temporal localization by assimilating only the
subsequent hourly observations can reveal the diurnal varia-

tion of the SO2 emission, which is better than updating the
magnitude of SO2 emission every 12 h by assimilating all the
observations within the 12 h window.

The known overestimates of the prescribed SO2 emissions
in November 2016 being the same as in November 2010
are successfully detected as the simulated SO2 surface con-
centrations, especially over the SO2 emission hotspot subre-
gions, with two distinguished chemical reaction mechanisms
both being significantly positive biased. The simulated SO2
surface concentrations with the inverted SO2 emissions in all
assimilation experiments are shown to be more comparable
to the observations, and the performances of the simulated
SO2 surface concentrations are clearly affected by the in-
puts of the different inverted SO2 emissions due to assimi-
lation system parameters. This indicates that the uncertain-
ties of the different chemical reaction mechanisms in sim-
ulating SO2 concentrations are much smaller than those of
the SO2 emissions. The smallest RMSE of the simulated and
observed SO2 surface concentrations over the independent
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Figure 12. Spatial distributions of the averaged surface concentrations of the sulfate, ammonium, nitrate, and PM2.5 over 11 November to
1 December 2016, simulated with the CBMZ/MOSAIC mechanism and the MIX emissions in November 2010, and the absolute and relative
changes of the associated aerosol surface concentrations with the updated emissions by data assimilation.

verification sites is also found in the experiment in which the
inverted SO2 emissions are best in agreement with the in-
dependent MEIC ones, decreasing the biases of SO2 surface
concentrations by 88.9 %.

The SO2 emission reduction over China in November over
the period 2010 to 2016 is estimated as 49.4 % by assimilat-
ing the observations of surface SO2 concentrations, which is
well in agreement with the bottom-up estimation of 48.0 %.
In addition, larger SO2 emission reductions over the NCP,
YRD, and PRD estimated by the bottom-up approach are cor-

rectly revealed by the emission inversion system. The largest
SO2 emission reductions both with the top-down and bottom-
up approaches are found over the YRD region, with values
of 73.1 % and 61.8 % respectively, and the simple parame-
terizations of the aerosol chemistry in the GOCART scheme
may cause the overestimates of the SO2 emission reductions
by about 10 %. The SO2 emission reductions cause the sul-
fate and PM2.5 surface concentrations to decrease by up to
10 µg m−3 over central China.
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