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Abstract. The increase in the spectral width of an initially
monodisperse population of cloud droplets in homogeneous
isotropic turbulence is investigated by applying a finite-
difference fluid flow model combined with either Eulerian
bin microphysics or a Lagrangian particle-based scheme. The
turbulence is forced applying a variant of the so-called linear
forcing method that maintains the mean turbulent kinetic en-
ergy (TKE) and the TKE partitioning between velocity com-
ponents. The latter is important for maintaining the quasi-
steady forcing of the supersaturation fluctuations that drive
the increase in the spectral width. We apply a large compu-
tational domain (643 m3), one of the domains considered in
Thomas et al. (2020). The simulations apply 1 m grid length
and are in the spirit of the implicit large eddy simulation
(ILES), that is, with small-scale dissipation provided by the
model numerics. This is in contrast to the scaled-up direct nu-
merical simulation (DNS) applied in Thomas et al. (2020).
Two TKE intensities and three different droplet concentra-
tions are considered. Analytic solutions derived in Sardina
et al. (2015), valid for the case when the turbulence integral
timescale is much larger than the droplet phase relaxation
timescale, are used to guide the comparison between the
two microphysics simulation techniques. The Lagrangian ap-
proach reproduces the scalings relatively well. Representing
the spectral width increase in time is more challenging for the
bin microphysics because appropriately high resolution in
the bin space is needed. The bin width of 0.5 pm is only suffi-
cient for the lowest droplet concentration (26 cm™3). For the
highest droplet concentration (650 cm™?), an order of magni-

tude smaller bin size is barely sufficient. The scalings are not
expected to be valid for the lowest droplet concentration and
the high-TKE case, and the two microphysics schemes repre-
sent similar departures. Finally, because the fluid flow is the
same for all simulations featuring either low or high TKE,
one can compare point-by-point simulation results. Such a
comparison shows very close temperature and water vapor
point-by-point values across the computational domain and
larger differences between simulated mean droplet radii and
spectral width. The latter are explained by fundamental dif-
ferences in the two simulation methodologies, numerical dif-
fusion in the Eulerian bin approach and a relatively small
number of Lagrangian particles that are used in the particle-
based microphysics.

1 Introduction

Cloud droplet spectra in natural ice-free clouds significantly
affect such key processes as drizzle or rain formation and the
transfer of solar radiation through the cloudy atmosphere. At
the same time, modeling of droplet spectra is cumbersome
and thus simplified approaches are often used, such as the
bulk microphysics where the shape of the droplet spectrum is
prescribed or not considered at all. When a simulation of the
droplet spectral shape is required, there are two basic model-
ing methodologies that can be used. The first one is a tradi-
tional bin approach where the Eulerian spectral density func-
tion that is continuous in space and time is used. In its nu-
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merical implementation, the spectral density function is rep-
resented by a finite number of radius (or mass) bins. Each bin
is advected in the physical space, and all bins are combined
at model grid locations to calculate the change in the spec-
tral density function due to droplet growth. Bin microphysics
are a well-established approach to modeling droplet spec-
tral evolution; see Khain et al. (2015) and references therein.
The second approach represents the multiphase nature of real
clouds by applying Lagrangian point particles. Each parti-
cle represents an ensemble of natural droplets with the same
properties, it is advected by the simulated air flow, and it
grows in response to local conditions. The Lagrangian ap-
proach, often referred to as the super-droplet method (Shima
et al., 2009), is a relatively novel modeling technique that is
gaining popularity in cloud modeling because of its fidelity,
especially for the simulation of aerosol-cloud interactions
(e.g., Andrejczuk et al., 2008; Shima et al., 2009; Riechel-
mann et al., 2012; Arabas and Shima, 2013; Unterstrasser et
al., 2017; Hoffmann et al., 2019; Dziekan et al., 2019; see
also Grabowski et al., 2019). The Lagrangian approach is re-
ferred to as the “swarm model” in the astrophysical context
(see Li et al., 2017, and references therein).

The two methodologies have their inherent limitations.
The bin microphysics are affected by the numerical diffusion
as any Eulerian approach. Advection of bins in the physi-
cal space typically leads to unavoidable numerical spreading
of regions with rapid droplet spectral changes, for instance,
near cloud edges. The diffusional growth of cloud droplets
is represented by the advection of the spectral density func-
tion in the radius (or mass) space and it is impacted by nu-
merical aspects similar to the advection in the physical space
(e.g., Sect. 3.1 in Li et al., 2017). The combined effect of the
advection in the physical space and advection in the radius
space is argued by Morrison et al. (2018) to result in artificial
broadening of the droplet spectra in cloud simulations apply-
ing bin microphysics. For the Lagrangian microphysics, an
obvious limitation is the limited and usually small number
of Lagrangian particles that can be afforded in realistic cloud
simulations, especially considering an enormous number of
cloud and precipitation particles in natural clouds. However,
the Lagrangian methodology has clear benefits when com-
pared to the bin scheme. These include the lack of numerical
diffusion, the realistic representation of the stochastic nature
of the cloud droplet growth, the possibility of including a
physically based representation of the unresolved scales’ im-
pact on droplet growth (i.e., allowing the multiscale simula-
tion of a turbulent cloud), and the provision of a better frame-
work for aerosol-cloud interactions and the representation of
ice processes. Grabowski et al. (2019) provide a review of
these benefits.

Grabowski (2020a, b; G20a and G20b, respectively) com-
pared cloud droplet activation and growth by the diffusion
of water vapor in simulations of a laboratory cloud cham-
ber and a single cumulus congestus cloud, respectively. The
laboratory cloud chamber at Michigan Technological Univer-
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sity (see http://phy.sites.mtu.edu/cloudchamber/, last access:
10 March 2021) forms a cloud because of the temperature
and humidity differences between lower and upper horizon-
tal boundaries that drive turbulent Rayleigh—Bénard convec-
tion. G20a shows good agreement between droplet spectra
predicted by the two methodologies when averaged over the
chamber volume away from boundaries. G20a argued that
the good agreement was because of the constant chamber
pressure assumed in the simulations. This agrees with the
Morrison et al. (2018) conjecture that the artificial spectral
broadening comes from the coupling between vertical advec-
tion in a stratified environment (that provides the supersatu-
ration source) and advection in the bin space that represents
the response of the droplet population to the supersaturation
forcing. The cumulus congestus case from G20b is based on
a modeling study by Lasher-Trapp et al. (2005) that consid-
ered a cloud observed by a radar and an instrumented aircraft
during the Small Cumulus Microphysics Study (SCMS) near
Cape Canaveral, Florida, during July—August 1995. A unique
aspect of the G20b study is the application of the piggyback-
ing methodology. Piggybacking refers to using two micro-
physics schemes in a single cloud simulation, one scheme
driving the dynamics and the other one piggybacking the
simulated flow; see Grabowski (2019) for a review. Oper-
ating the two schemes in the same cloud-scale flow allows
a point-by-point comparison of droplet spectra predicted by
the two schemes. A significantly larger mean spectral width
simulated by the bin scheme across the entire cloud depth
is the largest difference between the two schemes in G20b
simulations.

In this paper, we discuss differences between the two
methodologies for representing droplet spectral evolution
in numerical homogeneous isotropic turbulence. Li et
al. (2017) present similar comparisons applying dynamic and
kinematic simulations, and including collision—coalescence.
Here, we consider only diffusional growth of cloud droplets.
The direct numerical simulation (DNS) methodology (e.g.,
Vaillancourt et al., 2001, 2002; Lanotte et al., 2009; Li et al.,
2019) and scaled-up DNS technique (Thomas et al., 2020)
allow the representation of turbulence impact on the droplet
spectral width with an unprecedented fidelity. Sardina et
al. (2015) and Grabowski and Abade (2017) provide stochas-
tic model reference for such studies (see Fig. 10 in Thomas
et al., 2020). In contrast to Thomas et al. (2020), who used
a traditional spectral DNS code, we apply a finite-difference
fluid flow model that does not require small-scale dissipa-
tion to maintain computational stability. It follows that the
simulations are in the spirit of the implicit large eddy simula-
tion (ILES) where the model numerics provide the required
small-scale dissipation of the turbulent kinetic energy (TKE)
and scalar variance. Details of the fluid flow model are pre-
sented in the next section with the emphasis on the forcing
to maintain the quasi-steady turbulence, the key element of
the homogeneous isotropic turbulence DNS. Two turbulence
cases are considered; the low-TKE case (following Lanotte et
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al., 2009, and Thomas et al., 2020) and the high-TKE case,
the latter featuring 100 times larger TKE than the former.
Section 3 introduces the temperature and water vapor equa-
tions for moist simulations and presents results from simula-
tions without droplets. Section 4 introduces numerical rep-
resentation of cloud droplets applying either Eulerian bin
microphysics or Lagrangian super-droplets. Results of sim-
ulations with droplets are presented in Sect. 5 focusing on
the ability of either scheme to represent theoretical scalings
derived by Sardina et al. (2015) and on the comparison of
the droplet spectra simulated by the two schemes. Section 6
shows a grid-volume by grid-volume comparison of model
results facilitated by the simulation methodology, exposing
additional limitations of the two microphysics simulation ap-
proaches. A brief summary in Sect. 7 concludes the paper.

2 Homogeneous isotropic turbulence simulations
2.1 The model and model forcing

The EULerian—semi-LAGrangian (EULAG) anelastic finite-
difference fluid flow model (http://www.mmm.ucar.edu/
eulag/, last access: 10 March 2021) is used in this study in
the ILES mode (Margolin and Rider, 2002; Andrejczuk et al.,
2004; Margolin et al., 2006; Grinstein et al., 2007). ILES im-
plies that the model uses no explicit dissipation and removes
small-scale velocity and scalar fluctuations through numer-
ical diffusion provided by the monotone advection scheme.
The fluid flow equations for homogeneous isotropic turbu-
lence simulations are (e.g., Lanotte et al., 2009; Li et al.,
2017)

ou )
E—i—dlv(u.u):—l/pgradp—i—f, €))
divu =0, )

where u is the fluid flow velocity, p is pressure, p =
1kgm™3 is the air density, and f is the turbulence forcing
term. The forcing term ensures that the turbulence is main-
tained throughout the simulation with TKE flowing from
large scales towards the small-scale dissipation. The tradi-
tional technique to force the quasi-equilibrium homogeneous
isotropic turbulence, convenient for spectral models, is to
consider the forcing only for a few low-wavenumber modes.
However, such an approach is not practical for the finite-
difference model used here. Instead, we apply a method in
the spirit of the so-called linear forcing of Rosales and Men-
eveau (2005) and Onishi et al. (2011). In the homogeneous
isotropic turbulence, TKE increases with the eddy size L
as L?/3; that is, TKE is dominated by contributions from
the largest eddies. Hence, one can force the turbulence by
simply ensuring that the TKE does not change from one
model time step to the next one because such forcing affects
mostly large eddies. This implies that u"*D = oqu™ with
o= (Et/E(”))1/2, where n and n + 1 represent time levels,
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E™ is TKE at the n time level, and E\ is the target TKE (see
Eq. 3 in Onishi et al., 2011). The finite-difference represen-
tation of such a forcing is given by

=@ —u"y /At =u"(a—1)/At, (3)

that is, as in the case of the linear forcing of Rosales and
Meneveau (2005). The TKE dissipation rate € can be derived
assuming that the TKE does not change in time (see Eq. 5 in
Onishi et al., 2011) as

e =2E(a—1)/At. 4

Equation (4) is particularly useful in ILES because it allows
diagnosing the TKE dissipation rate that is otherwise not
known.

The forcing described above was initially applied in dry
ILESs, that is, the EULAG model solving Egs. (1) and (2).
For those tests (and for other simulations described in this pa-
per), the initial flow field (scaled-up to approximately match
the required TKE) was taken as the initial flow pattern in de-
caying turbulence simulations in Andrejczuk et al. (2004);
see Fig. 1 therein. Other parameters of the test simulations
correspond to a low-TKE setup as described in the next sec-
tion. Those initial tests forced as in Eq. (3) revealed the need
for additional forcing modifications as discussed below.

As in other studies of forced homogeneous isotropic tur-
bulence (e.g., Lanotte et al., 2009), the model applies compu-
tational domain with triply periodic lateral boundary condi-
tions. Such boundary conditions together with Eq. (2) imply
that the mean flow across the domain has to be uniform. For
instance, d < u;>y/dz (Where u; is the vertical velocity and
< .>yy is the horizontal average) has to vanish, and the same
is true for the other two spatial directions. However, the verti-
cally uniform < u;>, can evolve in time. In the initial tests,
a gradual development of the mean flow across the domain
was noticed. In other words, in addition to driving the tur-
bulence inside the computational domain, the forcing Eq. (3)
resulted in a gradual development of the mean flow across the
domain. To eliminate this undesirable behavior, an additional
forcing term is included in the model equations that controls
the mean flow across the domain. The additional forcing term
is a simple relaxation towards the vanishing mean flow; that
is,

f=(=<uy>/t,—<uy>/t,— <u; > /1), (®))

where u = (uy,uy,u;), <. > is the 3D average, and 7 is the
relaxation timescale taken as 10 model time steps. Note that
Eq. (5) does not dump the flow perturbations but only pre-
vents the mean flow development. In simulations presented
here, the mean flow across the domain after applying Eq. (5)
was limited to about 10~ 16 ms~1.

Second, although Eq. (3) maintains the mean TKE, the
TKE partitioning between the three velocity components is
allowed to evolve. As a result, the magnitude of the root
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mean square (rms) vertical velocity can vary in time and af-
fect supersaturation fluctuations and droplet growth. Thus,
Eq. (3) needs to be modified to maintain the uniform TKE
partitioning between the three components. The idea is to ap-
ply the forcing for each component separately and assuming
equipartition of the TKE between all three components. For
instance, for the x velocity component, u,, the modified forc-
ing should be

u§”+1) = axu;") with ay = [2E/3 < u)(c")z > 172,

where, as before, E is the target TKE. The forcing term for
Uy is then given by

fr=u(ay —1)/At (©)

and is similar for the two other velocity components.

To document the necessity of using the more elaborate
approach (6), two simulations applying either Eq. (3) com-
bined with Eq. (5) or Eq. (6) combined with Eq. (5) were run
(details of the simulations are provided in the next section).
Figure 1 compares TKE and rms vertical velocity in the two
simulations. The figure shows that the modified forcing, that
is, applying Eq. (6) in place of Eq. (3), maintains not only
the TKE, but also an rms vertical velocity that is uniform in
time. The latter implies an even partitioning of the TKE be-
tween the velocity components in agreement with the forc-
ing formulation. In simulations applying forcing Eq. (3), the
rms vertical velocity that fluctuates in time leads to an evolv-
ing supersaturation standard deviation in moist simulations
and thus a more complex mean droplet size evolution (not
shown). In summary, the forcing term driving the isotropic
homogeneous turbulence applied in this study is the sum of
Egs. (5) and (6).

2.2 The setup of dynamic simulations

The triply periodic computational domain is 643 m® with the
model grid length of 1 m. This is one of the domains con-
sidered in Thomas et al. (2020) and close to the turbulent
rising parcel extent of 50 m considered in Grabowski and
Abade (2017). Such a domain size is also similar to the grid
volume of large eddy simulations of natural clouds (e.g.,
Siebesma et al., 2003; Stevens et al., 2005; VanZanten et al.,
2011). For the fluid flow, we consider two turbulence inten-
sities as expressed by the prescribed TKE. The “low-TKE”
simulations assume a TKE of 5.2x 1072 m? s 2. Such a TKE
corresponds to the TKE dissipation rate of 1073 m?s™3 in
643 m3 scaled-up DNS simulations in Thomas et al. (2020)
that followed DNS simulations in Lanotte et al. (2009). The
low-TKE setup corresponds to the rms vertical velocity of
around 0.2 ms ! (see Fig. 1), an evolving maximum vertical
velocity between 0.5 and 0.8 ms~!, and an integral timescale
(see Eq. 7 in Grabowski and Abade, 2017) of 187 s or about
3 min. The model time step for the low-TKE simulations dic-
tated by the CFL (Courant-Friedrichs—Lewy) stability cri-
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Figure 1. Evolutions of the TKE and rms vertical velocity in low-
TKE simulations applying either Eq. (3) (dashed lines) or Eq. (6)
(solid lines), as part of the forcing. The nondimensional time is the
time divided by the turbulence integral time: 187 s for the low-TKE
simulations.

terion is At =0.25s. The low-TKE dry dynamics simula-
tions (i.e., solving only Eqgs. 1 and 2) and simulations with-
out droplets (Sect. 3) were run for 40 min (around 12 integral
timescales as shown in Fig. 1). Simulations with droplets
discussed in Sect. 5 were run for 20 min or about 6 inte-
gral timescales starting from minute 28 of 40 min simulations
presented in the next section. The “high-TKE” simulations
consider a 100 times larger TKE, i.e., 5.2 m? s~2. High-TKE
simulations feature 10 times larger rms and maximum ve-
locities (i.e., around 2ms~! and 5 to 8 ms~!, respectively)
together with a 10 times smaller integral timescale of about
19 s. The model time step in high-TKE simulations was pro-
portionally reduced to 0.025s. The high-TKE simulations
were run for the same number of time steps as the low-TKE
simulations, that is, for the total time of either 4 or 2 min, that
is, either 12 or 6 integral timescales. Model data were saved
every 15/1.5s for low/high-TKE simulations, and they are
used in the analysis presented here.

Equation (4) allows the estimation of the TKE dissipation
rate. The parameter « in the forcing term is monitored from
time step to time step during the simulations. The typical
value in both low and high TKE is o — 1 ~ 2 x 107, With
the target TKE E;=5.2x 1072m?s~2 and Ar =0.255s in
low-TKE simulations, the TKE dissipation diagnosed from
Eq. (4) is e~ 4 x 107*m?s~3. This value approximately
agrees with the assumed low-TKE turbulence simulation
setup. For the high TKE, the target TKE and the model time
step imply & & 4x 10~! m? s=3. This is a rather extreme TKE
dissipation rate for small camulus dynamics (e.g., Siebert et

https://doi.org/10.5194/acp-21-4059-2021



W. W. Grabowski and L. Thomas: Cloud droplet diffusional growth in turbulence 4063

10!
10°
101
107
103

10

E (m%s7?)

107
10

107

1oel| — Low TKE 1
—  High TKE

10°

101 100 101
k (m~1!)

Figure 2. Energy spectra for the fluid flow simulations without
droplets at minute 28/2.8 for low/high-TKE simulation without
droplets. The dashed line represents the —5/3 Kolmogorov slope.

al., 2006) but perhaps not unusual for deep convection as
simulated, for example, by Benmoshe et al. (2012).

Figure 1, already mentioned in Sect. 2.1, documents TKE
evolution together with the rms vertical velocity in the low-
TKE simulation. The horizontal axis shows either the real
time or the nondimensional time using the integral timescale.
As the figure shows, the forcing maintains the TKE and rms
vertical velocity as expected by the forcing design. Figure 2
shows the TKE spectra for low and high TKE at the minute
28/2.8 that are used as initial conditions for moist simula-
tions with droplets. The spectra have a classical shape char-
acteristic of a relatively low-Reynolds-number homogeneous
isotropic numerical turbulence (e.g., Fig. 2 in Rosales and
Meneveau, 2005). Spectra at different times are similar to
those in Fig. 2 (not shown).

The turbulence dynamics in moist simulations described
in the next section is exactly as described above, that is, the
impact of cloud droplets and of the latent heating on the flow
is neglected. This is because the air density is assumed to be
constant and the flow equations exclude the buoyancy term
as typical in the homogeneous isotropic DNS simulations
(see, for instance, Eq. 1 in Lanotte et al., 2009). Because
the flow is exactly the same in all simulations, one can com-
pare model results grid volume by grid volume as in the pig-
gybacking methodology (Grabowski, 2019, and references
therein). This allows a comprehensive comparison of simu-
lation results as illustrated in Sect. 6.
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3 Thermodynamics in ILES moist simulations

In addition to the momentum, the moist ILES of homoge-
neous isotropic turbulence solves the temperature 7" and wa-
ter vapor mixing ratio gy equations in the form

0T /ot +div(u T) = Ly/cp Ca—g/cp uz, @)
dqy/dt +div(u qv) = —Cqy, (8

where L, =2.5 x 10%Jkg~! is the latent heat of condensa-
tion, ¢, = 1015 Jkg~ ' K~! is the specific heat of air at con-
stant pressure, ¢ = 9.81 ms~2 is the gravitational accelera-
tion, and Cy is the condensation rate, the rate of change in
the cloud water mixing ratio resulting from the diffusional
growth of cloud droplets. Calculation of the condensation
rate depends on the microphysics scheme as explained be-
low and documented in Appendix B.

In the spirit of DNS studies of homogeneous isotropic tur-
bulence, the initial temperature and water vapor mixing ra-
tio in moist simulations are assumed to be spatially uniform.
The actual values are taken as in Thomas et al. (2020); that
is, T =283 K and ¢y at saturation assuming environmental
pressure of 1000 hPa. The spatially uniform initial condi-
tions justify the triply periodic computational domain. The
last term in Eq. (6) represents the temperature change due to
adiabatic air expansion resulting from the vertical motion in
the stratified environment. This term drives small-scale su-
persaturation fluctuations in the otherwise uniform environ-
ment; see discussion in Sect. 3 in Vaillancourt et al. (2001).
Such a modeling framework is a simplification of a truly
stratified environment where the environmental temperature
and pressure are functions of height and typically the poten-
tial temperature (an invariant for dry adiabatic vertical dis-
placements) rather than the temperature is being applied as
the model variable. In some DNS studies, the temperature
and moisture equations are combined into the supersatura-
tion equation that includes the source due to the vertical mo-
tion (as the last term in Eq. 6) and the sink due to droplet
growth (Eq. (2) in Lanotte et al. (2009) or Eq. (2) in Sardina
et al. (2015); see Eq. (10) below).

The initial test of the moist ILES framework considers a
40 min long low-TKE and 4 min long high-TKE simulations
without droplets (i.e., both up to about 12 integral timescales)
and initiated in the same way as the dry simulation illustrated
in Figs. 1 and 2. The simulations apply the fluid flow as de-
scribed above and solving Eqs. (7) and (8) without the con-
densation term Cgy. In such simulations, the largest temper-
ature change is possible when the air parcel rises across the
entire computational domain depth, that is, 64 m, with the
corresponding temperature change of about 0.64 K as given
by Eq. (7). Such a maximum temperature change leads to
the supersaturation change from the initial zero to about 4 %.
In the numerical simulation, the maximum temperature de-
viations from the uniform initial 283 K are typically smaller
than 0.5 K. The evolutions of supersaturation statistics are
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Figure 3. Evolution of the supersaturation spatial distribution statis-
tics for 40 min low-TKE (a) and high-TKE (b) moist simulations
without droplets. Stars and circles show the mean and standard devi-
ation of the spatial distribution, respectively. The extent of the color
bars shows the percentiles of the distribution: red is for 10-90th per-
centile, green is for 25-75th percentile, and blue is for 45-55th per-
centile. The nondimensional time, the same for low and high TKE,
is shown below (b).

shown in Fig. 3. Despite the dramatic difference in the TKE
levels, the statistics are similar regardless of the TKE level,
in agreement with the parcel argument. Only after including
the source due to condensation do the evolutions become dif-
ferent depending on the droplet characteristics and the TKE
level. Small differences in the evolutions in Fig. 3 come from
different flow realizations between low- and high-TKE cases.

4 TLES moist simulations with droplets

The general microphysical setup considers initially monodis-
perse population of cloud droplets with the radius of
13 um present in three different concentrations: 26, 130,
and 650cm~3. The concentration 130cm™> was consid-
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ered in Lanotte et al. (2009) and Thomas et al. (2020)
and it corresponds to the mean cloud water content of
about 1.2¢g m~3. In addition, the 5 times smaller and 5
times larger droplet concentrations are considered to docu-
ment how the two microphysics schemes represent the ex-
pected scalings. The mean cloud water content in simula-
tions with the increased (decreased) droplet concentration
is about 6.0 (0.24) gm~>. Moist simulations with droplets
start at minute 28/2.8 (low/high TKE) of the moist simula-
tion without droplets, that is, applying the flow field analyzed
in Fig. 2, together with the temperature and moisture field at
minute 28/2.8 in Fig. 3. The simulations are run for an addi-
tional 20 min for the low-TKE setup, saving data every 15s.
The high-TKE simulations are run for 2 min and the data are
saved every 1.5s. The data are used in the analysis of both
macrophysics (e.g., the supersaturation characteristics) and
microphysics (e.g., droplet spectra) simulated by the two mi-
crophysics schemes. Sardina et al. (2015) derived scalings
for the case when the droplet phase relaxation time is much
shorter than the turbulence integral timescale. This is the case
for the selected domain size and the low TKE for all droplet
concentrations. For the high TKE and low droplet concentra-
tion (i.e., 26 cm™?), the phase relaxation time (about 105s) is
the closest to the turbulence integral timescale (about 195s),
so some deviations from the theoretical scaling should be ex-
pected as shown below.

4.1 Lagrangian and Eulerian microphysics schemes

For moist simulations with droplets, Egs. (7) and (8) are sup-
plemented by the appropriate equations describing droplet
spectral evolution. The Lagrangian scheme follows the evo-
lution of so-called super-droplets, each representing an en-
semble of real droplets, with the ensemble size referred to as
the multiplicity. The bin scheme applies the Eulerian spec-
tral density function discretized into a finite number of ra-
dius bins. Details of both approaches are presented in Ap-
pendix B.

The particle-based Lagrangian scheme considers on av-
erage 40 Lagrangian particles (super-droplets) per grid vol-
ume, each featuring the initial radius of 13 um. The num-
ber of super-droplets per grid volume together with the as-
sumed droplet concentration dictates the multiplicity that is
assumed to be the same for all super-droplets. Although the
average number of super-droplets per grid volume is small
when compared to millions of real droplets within a 1 m? grid
volume, G20a and G20b document that a number as small as
10 per grid box provides physically meaningful results; see
also Li et al. (2017). At the simulation onset, each super-
droplet is placed at a random position within a grid volume.
To be consistent with the bin microphysics, super-droplets
grow in response to the mean supersaturation predicted in-
side a grid volume it occupies. Super-droplets are advected
applying a model flow field interpolated to the droplet po-
sition as in Arabas et al. (2015). The interpolation scheme
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maintains the incompressibility of the flow at subgrid scales;
see discussion of this aspect in Sect. 2.4 in Grabowski et
al. (2018). Droplet inertia and droplet sedimentation are not
considered. Condensation rate Cq at each time step is calcu-
lated by summing up the mass change in all super-droplets
present within a given grid volume.

The simulations with super-droplets are referred to as
SDS.26, SDS.130, and SDS.650 for a droplet concentrations
of 26, 130, and 650 cm 3, respectively. The three simulations
are completed for both low and high TKE. In addition, a sin-
gle simulation with 150 super-droplets per grid volume and
droplet concentration of 130 cm™> was completed for the low
TKE to test the impact of the super-droplet number fluctua-
tions within a grid volume. This simulation is referred to as
SDS.HR.130 (HR for high resolution in the radius space).

The Eulerian bin microphysics considers the spectral den-
sity function represented by 40 equally spaced bins with the
bin size modified in different simulations as described below.
The reason for modifications of the bin resolution is to match
the results from the Lagrangian microphysics as shown in
the results section. In each bin setup, there is a bin centered
at 13 um that is filled with droplets at the simulation onset.
The monodisperse initial droplet size distribution is impos-
sible to be accurately represented using the spectral density
function because the monodisperse distribution corresponds
to the delta function. However, even with a finite width of
the initial distribution, the broadening of the distribution as
time progresses (Sardina et al., 2015; Li et al., 2019; Thomas
et al., 2020) can be appropriately represented provided that
the bin width is appropriately small (see Sect. 5.3). In the
bin microphysics, each bin is independently advected in the
physical space using the same advection scheme that is ap-
plied to the momentum, temperature, and water vapor mix-
ing ratio. Neither droplet sedimentation nor droplet inertia
are regarded as in the Lagrangian scheme. All bins are com-
bined at each grid volume to calculate the evolution of the
droplet spectrum due to the local sub- or supersaturation ap-
plying a custom-designed 1D advection scheme. The scheme
combines the analytic Lagrangian solution of the conden-
sational growth with remapping of the spectral distribution
onto the original radius grid using piecewise linear func-
tions (see Sect. 3.2 in Grabowski et al., 2011). As for the
Lagrangian scheme, condensation rate Cq at each time step
is calculated from the change in the spectral density func-
tion due to the droplet growth in each grid volume; see Ap-
pendix B.

For the low TKE, eight-bin simulations with the spec-
tral density function represented by 40 bins and different
bin resolutions are considered. The selection of a specific
bin resolution is motivated by the results discussed in the
next section. The standard bin setup is similar to G20b
with a uniform 0.5 um bin width and 0 to 20 pm bin range.
These simulations are BIN.26, BIN.130, and BIN.650 for
the three droplet concentrations. The high-resolution (HR)
simulations have 0.3 um bin width and a bin layout cen-
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tered at 13 um (i.e., from 7 to 19 um). These simulations are
run for 130 and 650 cm™> concentrations and are referred
to as BIN.HR.130 and BIN.HR.650, respectively. Very high-
resolution (VHR) simulations have 0.1 um bin width, again
centered at 13 um (bin range between 11 and 15 um) and
with 130 and 650 cm~> concentration (BIN.VHR.130 and
BIN.VHR.650). Finally, an even higher bin resolution, with
0.05 um bin width and a grid centered at 13 um (i.e., bin
range between 12 and 14 um), is added for the 650 cm™> con-
centration (BIN.SHR.650; SHR for super-high resolution).
For the high TKE, only three simulations were completed:
BIN.26, BIN.VHR.130, and BIN.VHR.650. Table 1 provides
a list of all simulations in both Lagrangian and Eulerian sim-
ulations. Results of additional simulations with a smooth ini-
tial droplet spectrum are presented in Appendix A.

Droplet growth in both schemes is calculated applying a
simplified growth formula as in G20a and G20b:

dr/dt = AS/(r +ro), 9

with A =0.9152 x 107" m? s~! and ry = 1.86 um. The lat-
ter is applied to mimic the impact of kinetic effects (Mordy,
1959; see Eq. 11 in Clark, 1973, or Eq. 2.22 in Kogan, 1991).
Because of a large mean droplet size of 13 um, the solution
and curvature effects are neglected. The two schemes apply
the droplet growth Eq. (9) in different ways: as transport (ad-
vection) velocity in the Eulerian bin scheme and to calculate
individual super-droplet growth in the Lagrangian scheme;
see Appendix B.

5 Results
5.1 Lagrangian microphysics

Figure 4 shows evolutions of the supersaturation standard
deviation in low- and high-TKE Lagrangian simulations.
The supersaturation standard deviation is approximately con-
stant except for the adjustment from initial values in sim-
ulations without droplets (see Fig. 3). Standard deviations
for the SD.130 and SD.HR.130 simulations are practically
the same. Table 2 shows the standard deviation averaged
over the second half of the simulations. When the phase re-
laxation time is much smaller than the turbulence integral
timescale, the supersaturation standard deviation is propor-
tional to the product of the rms vertical velocity and the
phase relaxation time; og ~< w2>12 ¢ see Sardina et
al. (2015). The phase relaxation time is inversely propor-
tional to the product of the mean droplet radius and droplet
concentration. With the same mean droplet radius, changes
in the concentration explain shifts of a factor of about 5 be-
tween SDS.650, SDS.130, and SDS.26 for the low-TKE case
as shown in Fig. 4a and in Table 2. However, for the high
TKE, the scaling breaks down because the phase relaxation
time is no longer much smaller than the turbulence integral
timescale. For a given droplet concentration, shift from low
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Table 1. Details of Lagrangian and Eulerian simulations.

W. W. Grabowski and L. Thomas: Cloud droplet diffusional growth in turbulence

Lagrangian (super-droplet) simulations:

Low TKE:  SDS.26 26cm™3, 40 super-droplets per grid volume
SDS.130 130cm™3, 40 super-droplets per grid volume
SDS.HR.130 130cm™3, 150 super-droplets per grid volume
SDS.650 650cm 3, 40 super-droplets per grid volume

High TKE: SDS.26 26cm™3, 40 super-droplets per grid volume
SDS.130 130cm™3, 40 super-droplets per grid volume
SDS.650 650cm 3, 40 super-droplets per grid volume

Eulerian (bin) simulations:

Low TKE:  BIN.26 26.cm™3, 40 bins centered at 13 um, 0.5 um bin width
BIN.130 130 cm 3, 40 bins centered at 13 um, 0.5 ym bin width
BIN.HR.130 130 cm_3, 40 bins centered at 13 um, 0.3 um bin width
BIN.VHR.130  130cm™3, 40 bins centered at 13 pum, 0.1 um bin width
BIN.650 650 cm™3, 40 bins centered at 13 um, 0.5 um bin width
BIN.HR.650 650 cm_3, 40 bins centered at 13 um, 0.3 um bin width
BIN.VHR.650 650 cm™3, 40 bins centered at 13 pum, 0.1 um bin width
BIN.SHR.650 650 cm™3, 40 bins centered at 13 um, 0.05 pm bin width

High TKE: BIN.26 26.cm~3, 40 bins centered at 13 um, 0.5 um bin width
BIN.VHR.130  130cm™3, 40 bins centered at 13 um, 0.1 um bin width
BIN.VHR.650 650 cm™3, 40 bins centered at 13 um, 0.1 um bin width

to high TKE should result in a 10-fold increase in og be-
cause of the < w?>1/2 increase. This is approximately valid
for 650 cm™3 droplet concentration but reduces to a factor of
only about 5 for 26 cm™—> concentration.

The supersaturation standard deviation shown in Fig. 4
can be compared to the standard deviation resulting from
the quasi-equilibrium supersaturation fluctuations. The evo-
lution of the supersaturation S = gy /gys — 1 (Where gys is the
saturated water vapor mixing ratio) can be derived by com-
bining Egs. (7), (8) and (9) as

dS/dt = ajw — S/ Trelax (10)

where Trelax 1S the phase relaxation time that depends on the
mean droplet radius and concentration:

1/ Trelax = 47 pwA[1/qys + ‘ZVL%/(‘ZVSRVTZCp)]
< Nr2/(r+rp) >, (1)

where py=10°kgm™=> is the water density,
Ry, =461Jkg ' K~! is the water vapor gas constant,
and <.> in Eq. (11) depicts averaging over all droplets
within a given grid volume. The quasi-equilibrium supersat-
uration is obtained by setting the left-hand side of Eq. (10) to
zero, which leads t0 Seq = a1 wTrelax. For the mean tempera-
ture and humidity of the simulations and specific numerical
values of the relevant constants, a; = 6.54 x 1074 m™* and
the phase relaxation time for the 13 um droplets and their
concentration of 130cm™3 iS Trelax = 1.98s. The phase
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relaxation time is 5 times smaller/larger for the droplet
concentration of 650/26 cm™3. Since the quasi-equilibrium
supersaturation is proportional to the vertical velocity,
its standard deviation is proportional to the rms vertical
velocity. For the low TKE, the quasi-equilibrium super-
saturation standard deviation is 0.120%, 2.39x1072 %,
and 4.79x1073 % for 26, 130 and 650cm™3 droplet con-
centrations. These are in a relatively good agreement with
the simulated standard deviation shown in Table 2. The
values for the high TKE should be 10 times smaller and
they are approximately equal to the simulated values for
130 and 650 cm™3. The agreement between the simulated
supersaturation fluctuations and the fluctuations predicted by
the quasi-equilibrium supersaturation for the 643 m*> domain
and low TKE agrees with results presented in Thomas et
al. (2020; see Fig. 10 therein and its discussion).

Figure 5 shows the comparison between the local super-
saturation simulated by the model and the quasi-equilibrium
supersaturation calculated applying the local vertical veloc-
ity and the mean phase relaxation time for the low- and
high-TKE simulations and 26 versus 650 cm ™ droplet con-
centrations. The mean phase relaxation time is about 10s
for 26cm™> and about 0.4s for 650 cm™> droplet concen-
trations. Whether the quasi-equilibrium supersaturation is a
good approximation of the local supersaturation depends on
the relative magnitude of the phase relaxation timescale and
the eddy turnover time associated with the largest eddies.
This is because the largest eddies feature the largest verti-
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Figure 4. Evolution of the supersaturation standard deviation in
(a) four low-TKE simulations and (b) three high-TKE simulations
with super-droplets. The two simulations with droplet concentration
of 130cm™3 in panel (a), SDS.130 and SDS.HR.130, show differ-
ences within the thickness of the line.

cal velocities and provide the strongest forcing to drive the
supersaturation away from its quasi-equilibrium value. For
the low TKE, the eddy turnover time for the largest eddies
is about 1 min (i.e., velocities up to 0.8ms~! and the do-
main size of 64 m), much larger than the phase relaxation
time for both concentrations shown in Fig. 5. This is why all
points scatter around the 1 : 1 line in Fig. 5a and c. However,
the eddy turnover time is only around 8 s for the high-TKE
case. This is still much larger than the phase relaxation time
for the 650 cm ™3 droplet concentration (Fig. 5d), but close
to the phase relaxation time for the 26 cm™> concentration.
This is why data points are scattered away from the 1 : 1 line
in Fig. 5b, with the quasi-equilibrium values typically larger
(in the absolute sense) than the model-predicted supersatura-
tion.

Figure 6 shows evolutions of the radius-squared standard
deviation. Sardina et al. (2015) show that the standard de-
viation of the radius-squared distribution should increase in
time as a square root of time as long as the phase relaxation
time is much smaller than the turbulence integral time. The
rate of increase is proportional to the supersaturation stan-
dard deviation (see Eq. 13 in Sardina et al., 2015). The scal-
ing has been shown in other numerical simulations, such as
in Li et al. (2019) and Thomas et al. (2020). Figure 6 shows
that the Lagrangian microphysics reproduces the 1/? scaling
and that the differences between various simulations for the
low TKE can be explained by the differences in the super-
saturation standard deviation shown in Fig. 4 (note that on
the log—log plot the rate of increase change corresponds to
a vertical shift as shown in Fig. 6). For the high TKE, small
deviations for the expected scaling can be explained by the
phase relaxation time being no longer much smaller than the
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Table 2. Supersaturation standard deviation ( %) averaged over the
last three integral timescales for Lagrangian microphysics simula-
tions.

SDS.26 SDS.130 SDS.650
Low TKE 0.111 242x1072 498x 1073
High TKE  0.500 0.188 4.68x 1072

turbulence integral time. This is especially evident for the
high-TKE SDS.26 case in Fig. 6b. Figures. 4a and 6a show
that increasing the number of super-droplets from 40 to 150
per grid volume has virtually no impact on the results. Over-
all, the Lagrangian microphysics seem to represent expected
scalings (or departures from them) without much difficulty.

5.2 Eulerian bin microphysics

Figures 7 and 8 show the same results as Figs. 4 and 6 for
the bin microphysics. For the supersaturation fluctuations
(Fig. 7), bin simulations match Lagrangian microphysics re-
sults, and the impact of bin resolution is small, at least for
the low-TKE simulations which feature various bin resolu-
tions. However, as shown in Fig. 8, the expected ¢!/? scaling
requires appropriately high bin resolution, and the resolution
requirement changes depending on the droplet concentration.
The standard bin resolution is sufficient for the BIN.26 simu-
lation. However, 130 cm™3 simulations require a VHR setup
(bin width of 0.1 ym) to match the expected scaling. Even
the SHR setup (bin width of 0.05 um) is insufficient for the
650 cm™3 droplet concentration. There are some similarities
between Lagrangian and Eulerian results for the high-TKE
simulations, that is, when the scalings derived by Sardina
et al. (2015) may not apply. Figure 8a also shows the de-
crease in the initial radius-squared standard deviation with
the increase in the bin resolution. This comes from the ill-
posedness of the initially monodisperse droplet size distribu-
tion for the bin microphysics. The comparison between the
local supersaturation predicted by the model and the quasi-
equilibrium supersaturation calculated using the local verti-
cal velocity (i.e., Fig. 5) for the bin microphysics is similar
to that shown for the Lagrangian scheme and is not shown.

In summary, Eulerian bin microphysics are capable of ap-
propriately representing turbulent temperature and moisture
fluctuations but fail to simulate their impact on droplet spec-
tra unless an appropriately high bin resolution is used. This
is further supported by the comparison of droplet spectra dis-
cussed in the next section.

5.3 Comparison of radius-squared distributions
between Eulerian and Lagrangian simulations.

This section compares radius-squared (R?) distributions at
the end of the simulations, that is, after six turnover times, for
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Figure 5. Comparison between supersaturation simulated by the model (horizontal axes) and the quasi-equilibrium supersaturation calculated
with the local vertical velocity and the mean phase relaxation time (vertical axes) for (a, ¢) low TKE and (b, d) high-TKE simulations.
Simulations SDS.650/SDS.26 are in the lower/upper panels. Data from the last time level of all simulations with only 5 % of data points are

shown. Note different supersaturation ranges in all panels.
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(b) three high-TKE simulations with super-droplets. SDS.130 and
SDS.HR.130 in (a) differ by the thickness of the line. Dashed lines
show the expected 11/2 scaling and are spaced by the expected fac-
tor of 5. Their position is the same in (a) and (b).
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Figure 7. As Fig. 4 but for the supersaturation standard deviation in
eight simulations with bin microphysics.
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Figure 8. Evolution of the radius-squared standard deviation for
bin simulations. Dashed lines show the expected 11/2 scaling. Their
positions are exactly as in Fig. 6 for the Lagrangian microphysics.

both the low- and high-TKE simulations. As shown in Lan-
otte et al. (2009) and Sardina et al. (2015), an initial monodis-
perse distribution should evolve into a Gaussian R? spectrum
because of the parabolic cloud droplet growth equation. Al-
though the parabolic growth is only approximately valid be-
cause of the specific droplet growth equation (see Eq. 9), the
Gaussian distribution is a good fit for simulation results dis-
cussed here as shown below.

Figure 9 shows the spectra for selected super-droplet sim-
ulations. The radius-squared spectra are created by select-
ing R? bin size and binning super-droplet radii for a given
simulation into the assumed bin grid. The bin size for the
SDS.650/SDS.26 simulations (lower/upper panels in Fig. 9)
is 1/10 um?. There are two panels for each simulation: one
with the linear vertical scale and the spectrum shown as a his-
togram and the second one with the logarithmic vertical scale
and using star symbols to show the spectrum. In addition, the
logarithmic plots show the Gaussian distributions obtained
with the mean and standard deviation calculated from the
spectra.

For the SDS.650 simulations (lower panels in Fig. 9), the
spectra at the end of low- and high-TKE simulations are prac-
tically the same. This agrees with the theoretical scaling and
simulation results shown in Figs. 4 and 6. In contrast, re-
sults for SDS.26 differ drastically between the low and high
TKE. The spectrum for the low TKE is wide, with some
small droplets already evaporated because the spectrum is
truncated at the low-radius end. Nevertheless, the Gaussian
shape is still a good fit for the simulated spectrum. The high-
TKE SDS.26 spectrum is significantly narrower with small
deviations from the Gaussian fit.

Figure 10 shows the spectra for bin simulations similar to
those in Fig. 9. Since bin simulations predict the spectra di-
rectly, the radius spectra are converted to R? spectra and then
plotted at their native resolution in the R? space. This ex-
plains the change in the resolution along the horizontal axes

https://doi.org/10.5194/acp-21-4059-2021

4069

evident in the upper panels. Overall, there are some similari-
ties between Figs. 9 and 10. For instance, upper panels show
spectra for the 26 cm™> simulations with 0.5 um bin width
that are similar to those in super-droplet simulations. Spectra
for 650 cm™3 simulations with 0.1 pum bin width (i.e., from
the VHR set) are also similar between low- and high-TKE
simulations, but their spectral widths are larger than in cor-
responding panels of Fig. 9. The impact of the bin resolu-
tion is further documented in Fig. 11, which shows results
from the 650 cm™3 low-TKE HR and SHR simulations, that
is, with the bin width of 0.3 and 0.05 um, respectively. Only
the SHR simulation (i.e., the right panel in Fig. 11) resem-
bles the spectra from the Lagrangian simulations shown in
the lower panels of Fig. 9.

In summary, only extreme resolutions of the bin scheme
(e.g., as in SHR, 0.05 um bin width) allow good agreements
between Lagrangian and Eulerian results for the concen-
tration range considered here. Moreover, the ill-posed ini-
tial condition for the Eulerian scheme (i.e., the monodis-
perse initial droplet size distribution) seems irrelevant be-
cause the spectrum becomes well-resolved after some time
during the simulation. With a sufficiently high bin resolution
(e.g., 0.5um in the 26 cm™> simulations or 0.05 um for the
650 cm™> simulations), the Eulerian and Lagrangian spec-
tra compare well at the end of the simulations. This shows
the benefit of the Lagrangian scheme as one does not have
to worry about the bin size to obtain numerically converged
solutions.

6 Grid-volume by grid-volume analysis of macro- and
microphysical properties

The analysis presented in previous sections concerns
domain-averaged characteristics. Because all simulations
with either low or high TKE feature exactly the same evolv-
ing flow field, simulated thermodynamic variables (i.e., the
temperature, water vapor, and cloud droplet characteristics)
can be compared grid volume by grid volume and thus pro-
vide a comprehensive comparison of simulated local condi-
tions. Such a comparison is in the spirit of the piggybacking
methodology applied in G20b.

Figure 12 compares the temperature, water vapor, and
cloud water mixing ratios (the latter derived from the pre-
dicted droplet spectra within each grid volume) between
SDS.130 and BIN.130 low-TKE simulations at the time of
20 min. For the temperature and moisture, plots at earlier
times are similar to Fig. 12a and b except for smaller ranges
between minima and maxima. Cloud water plots at earlier
times are also similar to those shown in Fig. 12 except for
the initial couple minutes. The temperature and water va-
por values are extremely close between the two simulations:
the root mean square difference between temperatures is
2.6 x 107* K. For the water vapor mixing ratios, the root
mean square difference is 1.1 x 107 gkg~!. However, the
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cloud water mixing ratio can differ significantly between the
bin and the super-droplet simulations. This is because of sta-
tistical fluctuations in the number of super-droplets per grid
volume. With on average 40 super-droplets per grid volume,
the standard deviation of the droplet number is around 6 or
about 15 % of the mean. Assuming that one can find grid
volumes with 3 times the standard deviation, the range of the
cloud water mixing ratio can be as high as close to 50 %.
This can explain the spread seen in Fig. 12¢. With 150 super-
droplets per grid volume in SDS.HR.130, there is some im-
provement as the standard deviation is reduced to about 8 %
of the mean, but the statistical fluctuations remain signifi-
cant. In fact, panel ¢ does not change significantly if SDS.130
is replaced by SDS.HR.130 (not shown). Figure 12d shows
the outcome of a simple rescaling of the cloud water mix-
ing ratio ¢, predicted by the Lagrangian scheme based on
the number of super-droplets N being present in a given grid
volume compared to the expected mean value of 40, with the
rescaled cloud water mixing ratio given by g.40/N (i.e., in-
creased when N < 40 and reduced when N > 40). We stress
that the rescaling is done on the analyzed cloud water and
not during the model run. (That said, the application of such
arescaling might be a valuable approach to reduce the spread
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during model run as well; this aspect is left for a future in-
vestigation.) Apparently, the rescaling improves the compar-
ison significantly and documents that the scatter present in
Fig. 12c comes predominantly from the statistical fluctua-
tions in the Lagrangian scheme. An important point is that
the cloud water fluctuations are short-lived. This is because
the temperature and water vapor would feature larger scat-
ter if the fluctuations in the grid-volume super-droplet num-
ber were long-lived. These statistical fluctuations come only
from super-droplet advection by the resolved flow as the in-
ertial effects and droplet sedimentation are not considered.
Figure 13, in the format of Fig. 12, compares the grid-
volume mean radii and spectral width in two sets of low-
TKE simulations: the standard resolution (SDS.130 and
BIN.130) and the increased resolution (SDS.HR.130 and
BIN.VHR.130). For the increased bin resolution, the selected
bin microphysics are those that show the correct scaling in
Fig. 8. The mean radius comparison features some scatter
that is reduced when increased-resolution simulations are
compared. However, the scatter is asymmetric with respect
to the 1: 1 line and similar to the cloud water scatter in the
Fig. 12d. The asymmetry shows that the bin microphysics
tend to simulate larger droplets than the Lagrangian micro-
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physics for droplets smaller than the mean, and the reverse
is true for droplets larger than the mean. The spectral width
panels show that the bin simulations feature smaller spread of
the spectral width across the computational domain than the
Lagrangian scheme. This seems independent of the bin res-
olution. In other words, spectral width simulated by the bin
scheme varies less across the computational domain. In con-
trast, super-droplet simulations feature larger spread of the
spectral width across the domain, and the spread decreases
with the increase in the mean super-droplet number per grid
volume. For the SDS.130 versus BIN.130 cloud of spectral
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width points (i.e., Fig. 12b), the center of mass is above the
1:1 line. This implies that the mean spectral width for the
BIN.130 simulation is overpredicted, in agreement with the
results shown in Fig. 8. Results for similar comparisons of
other simulations (for instance, SDS.26 versus BIN.26 or
SDS.650 and BIN.SHR.650) are similar except for different
ranges of the mean radius and spectral width (not shown). As
shown in Fig. 14, the high-TKE simulations also show sim-
ilar patterns, with changes consistent with the differences in
Figs. 6b and 8b.
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ter mixing ratio comparison after the SDS.130 results are adjusted
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scales between (c) and (d). Only 5 % of data points is used.

In summary, the grid-volume by grid-volume comparison
between Eulerian and Lagrangian results shows that the sim-
ulated spatial variability is smaller in the bin microphysics
when compared to the super-droplets. Arguably, this comes
from a combination of the numerical diffusion in the bin mi-
crophysics (i.e., smoothing bin results similar to other Eu-
lerian fields) and small-scale fluctuations of the Lagrangian
microphysics due to a relatively small mean number of super-
droplets per grid volume.

7 Summary and conclusions

This paper presents a modeling study addressing the impact
of homogeneous isotropic turbulence on the broadening of
an initially monodisperse distribution of cloud droplets in re-
sponse to local fluctuations of the supersaturation field. This
problem has been considered previously in modeling studies
of Lanotte et al. (2009) applying DNS, Thomas et al. (2020)
using the scaled-up DNS, and Sardina et al. (2015) employ-
ing theoretical analysis combined with DNS and stochastic
model simulations. Sardina et al. (2015) derived scaling rela-
tionships that we use in validating model results and compar-
ing results for different droplet concentrations and contrast-
ing turbulence intensities.

Because we apply a finite-difference fluid flow model,
we had to develop a turbulence forcing scheme that led to
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the quasi-steady homogeneous isotropic turbulence similar to
that simulated by a spectral model. The forcing scheme ap-
plied here is in the spirit of the linear forcing of Rosales and
Meneveau (2005) and Onishi et al. (2011). The idea is to en-
sure that the mean turbulence kinetic energy (TKE) remains
constant in time and that the partitioning between the three
TKE components does not change. The latter is important for
the simulations of the turbulence impact on the droplet spec-
tra because the driving mechanism in the homogeneous envi-
ronment comes from the vertical velocity fluctuations affect-
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ing the local supersaturation. The simulations are in the spirit
of the implicit large eddy simulation (ILES), that is, with-
out modeling the small-scale TKE and scalar variance dissi-
pation (Margolin and Rider, 2002; Andrejczuk et al., 2004;
Margolin et al., 2006; Grinstein et al., 2007). ILES apply-
ing a finite-difference model relies on the model numerics to
provide the required dissipation, in contrast to the scaled-up
spectral model DNS in Thomas et al. (2020), where appropri-
ately scaled-up molecular dissipation coefficients have to be
used to ensure stable simulations. The TKE dissipation rate
diagnosed from the forcing algorithm (see Eq. 6) is approxi-
mately correct for the considered turbulence intensities.

There are two drastically different simulation techniques
that can be applied to investigate the impact of cloud turbu-
lence on the droplet spectra: the Eulerian bin microphysics
and the Lagrangian particle-based approach, the latter often
referred to as the super-droplet method (see review in the In-
troduction). We apply the ILES homogeneous isotropic tur-
bulence setup to compare the two techniques following Li
et al. (2017) and Grabowski (2020a, b) for the diffusional
growth of cloud droplets only. The computational domain
is 643 m3, one of the domain sizes considered in Thomas et
al. (2020) and similar to grid volumes of a typical large eddy
simulation of natural clouds. Two TKE intensities are con-
sidered, low and high, different by a factor of 100. The latter
implies that the velocity fluctuation differs by a factor of 10
and the TKE dissipation rates differ by a factor of 1000. The
TKE dissipation spans the range observed in natural clouds.

The Lagrangian approach reproduces the expected scal-
ings derived in Sardina et al. (2015) for the case when the
turbulence integral timescale is much longer that the phase
relaxation time of cloud droplets. Representing the scalings
is more challenging for the bin microphysics because appro-
priately high resolution in the bin space is needed. In fact,
the standard bin resolution, with the bin width of 0.5 um and
covering the range up to 20 um, similar to Grabowski (2020a,
b), is only sufficient for the lowest droplet concentration
(26 cm_3). For the highest droplet concentration, 650 cm™3,
even a bin size an order of magnitude smaller is not suffi-
cient to reproduce the expected scaling well. Such a bin res-
olution is impossible to use when collisional growth is also
considered as in Li et al. (2017). For the lowest droplet con-
centration (26 cm™>) and the high-TKE case, the phase re-
laxation time is about 10s and the turbulence integral time
is around 19 s, so some departures from the expected scaling
are expected. This is indeed the case, and the two simulation
methodologies represent similar supersaturation and spectral
width departures.

Because the fluid flow is the same for all simulations fea-
turing either low or high TKE, one can compare model re-
sults point by point as in the piggybacking technique of
Grabowski (2019). Such a comparison shows minuscule dif-
ferences between temperature and water vapor fields across
the computational domain and larger differences between
simulated mean droplet radii and spectral width. These are
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consistent with fundamental differences in the two simula-
tion methodologies, numerical diffusion in the Eulerian ap-
proach, and the relatively small number of Lagrangian par-
ticles (super-droplets) that can be afforded in the particle-
based microphysics. Either one can be limited by either in-
creasing the model resolution or increasing the number of
Lagrangian particles, both significantly increasing computa-
tional cost. But there are additional options for the particle-
based microphysics, for instance, assuming that a particle
within a given grid volume represents a cloud of particles
spread over a prescribed halo. We are pursuing those ideas in
ongoing research.

Atmos. Chem. Phys., 21, 4059-4077, 2021



4074

Appendix A: The impact of initial conditions

This Appendix describes results from additional Eulerian bin
and Lagrangian super-droplet low-TKE simulations for the
case of the total droplet concentration of 130 cm™3 with the
initial either monodisperse droplet spectrum (i.e., as in the
main text) or a wide spectrum that can be well represented
by the bin microphysics. For the latter, a truncated Gaussian
spectrum is used with the width of 1 um and truncated to zero
for droplet radius outside the 10 to 16 um range (i.e., 3 stan-
dard deviations). For the bin microphysics, the bin setup is
as in the BIN.HR.130 (i.e., high-resolution) simulation, that
is, with the bin width of 0.3 um. With a single bin centered
at 13 um, there are 21 non-zero bins for the truncated Gaus-
sian distribution in the 40-bin Eulerian setup. To simplify the
super-droplet setup, we use 42 super-droplets per grid vol-
ume (rather than 40 as in main-text simulations), repeating
twice the 21 super-droplet radii and multiplicities to exactly
match the non-zero 21 bins in the initial bin setup. Moti-
vated by the initial results, we extend 10 times the simulation
length, that is, up to 200 min, over 60 eddy turnover times.
The results are documented in Figs. Al and A2.

Figure A1 shows the evolution of the radius-squared stan-
dard deviation in the format of Figs. 6 and 8 of the main
text for simulations with monodisperse and with truncated
Gaussian initial conditions. Extending 10 times the length
of simulations from the main text shows that the Lagrangian
simulation continues on the expected #!/? scaling, and the bin
simulation continues to approach that scaling. The truncated
Gaussian initial droplet distribution simulations are close to
each other, and they start to approach the expected scaling
only after the initial 10 min.

To understand the results of the truncated Gaussian sim-
ulations, we show in Fig. A2 the droplet distributions at the
onset of the simulations and after 10 min from the bin sim-
ulations. (Results from Lagrangian simulations are practi-
cally the same and thus they are not shown). When apply-
ing the linear vertical scale (Fig. A2a, c), the spectra look
almost the same. However, panels with the logarithmic verti-
cal scale show that the key change during the initial 10 min of
the simulations is an expansion of the spectra into tails that
are barely visible in panels a and c. Note that formation of
the tails insignificantly affects the spectral width, which ex-
plains the evolutions shown in Fig. Al. The key point is that
formation of the spectral tails beyond the truncated Gaus-
sian initial distribution and transition to the increasing spec-
tral width proceeds gradually and in virtually the same way
in both Eulerian and Lagrangian simulations.
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Appendix B: Summary of Eulerian and Lagrangian
microphysics equations

B1 Bin microphysics

The bin scheme solves the equation for the spectral density
function ¢ (r,x) = dN(x)/dr, where dN (x) is the concen-
tration of droplets at spatial location x and in the radius in-
terval (rr 4dr). Without droplet activation, sedimentation,
and collisions, the continuity equation for v is

oY . a [dr
o +d1v(u1p)~|—8r (dtt/f>_0, BD
where u is the fluid velocity and dr/dr is the diffusional
droplet growth rate Eq. (9). In the discrete system consist-
ing of N bins of droplet sizes, the spectral density func-
tion for each bin i with the radius ) is defined as ¥ =
N(@@)/Ar®, where N (i) is the concentration of droplets in
the bin i and Ar® is the bin width. This transforms the con-
tinuous equation into a system of N coupled equations:

3 ‘ PWRG)
‘”—+div(u¢<l>): Wy (B2)
ot 0t/ cond

where the term on the right-hand side represents the conden-
sational growth term, that is, the advective transport in radius
space. It is calculated by combining all N bins at each grid
volume as explained in the main text. The condensation rate
Cq (x) is calculated as

N

4 139w ® ;
Ca=a Y [r?] (—w ) Ar®, (B3)
3p i=1 ot cond

where py = 10° kgm™3 is the liquid water density.
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B2 Super-droplets

The super-droplet scheme follows evolution in time and
space of an ensemble of point particles that move with the
flow and grow or evaporate in response to the grid-volume
supersaturation. The evolution of the jth super-droplet posi-
tion x ; is calculated as

dﬁ =u(x;t) (B4)
a7

where u is the air flow velocity predicted by the dynami-

cal model interpolated to the j super-droplet position. Each
super-droplet responds to the grid-volume supersaturation
and grows according to Eq. (9). The condensation rate is cal-

culated as

d dpow 3
Ci=— —_— N |, B5
d dt(k 3 Iy, k) (BS)

where summation is over all super-droplets within a given

grid volume, and r; and Ny are the kth super-droplet radius
and multiplicity.
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