

Supplement of

Measurement report: $PM_{2.5}$ -bound nitrated aromatic compounds in Xi'an, Northwest China – seasonal variations and contributions to optical properties of brown carbon

Wei Yuan et al.

Correspondence to: Ru-Jin Huang (rujin.huang@ieecas.cn)

The copyright of individual parts of the supplement might differ from the article licence.

25	Table S1.	List of	input	compounds	and	their	abbreviations	measured	in 1	this s	tudy	for	PMF

26 source apportionment.

Compounds	Abbreviation
NACs	
4-Nitrophenol	4NP
4-Nitro-1-naphthol	4N1N
2-Methyl-4-nitrophenol	2M4NP
3-Methyl-4-nitrophenol	3M4NP
2,6-Dimethyl-4-nitropheol	2,6DM4NP
4-Nitrocatechol	4NC
3-Methyl-5-nitrocatechol	3M5NC
4-Methyl-5-nitrocatechol	4M5NC
3-Nitrosalicylic acid	3NSA
5-Nitrosalicylic acid	5NSA
PAHs	
Fluoranthene	FLU
Pyrene	PYR
Chrysene	CHR
Benzo(a)anthracene	BaA
Benzo(a)pyrene	BaP
Benzo(b)fluoranthene	BbF
Benzo(k)fluoranthene	BkF
Indeno[1,2,3-cd]pyrene	IcdP
Benzo(ghi)perylene	BghiP
Picene	PI
MOPs	
Syringyl acetone	SyA
Vanillin	VAN
Vanillic acid	VaA
Hopanes	
$17\alpha(H), 21\beta(H)-30$ -Norhopane	HP1
17α(H),21β(H)-Hopane	HP2
$17\alpha(H), 21\beta(H)-(22S)$ -Homohopane	HP3
$17\alpha(H), 21\beta(H)-(22R)$ -Homohopane	HP4
Others	
Levoglucosan	LEV
Phthalic acid	o-ph

27 Table S2. Method performance parameters for nitrated aromatic compounds, including GC

28 retention time (min), instrument detection limit (IDL), instrument quantitation limit (IQL),

Nitrated	Retention	Quan.	Linear	Linear	IDL	IQL	Extraction
aromatic compounds	time	Ion	range (ug	regression	(ug L ⁻¹)	(ug L ⁻¹)	recovery
	(min)	(m/z)	L-1)	\mathbb{R}^2			(%)
4NP-2,3,5,6-d4 (IS)	11.4	200	-	-	-	-	-
4NP	11.5	196	50-5000	0.999	16.4	55	85(7.2)
3M4NP	12.0	210	10-3000	0.999	2.9	9.8	102(5.4)
2M4NP	12.5	210	10-5000	0.999	3.2	10.7	84(3.3)
2,6DM4NP	13.9	224	50-5000	0.999	20	68	79(0.8)
4NC	14.1	73	10-3000	0.997	1.9	6.4	81(2.8)
4M5NC	14.4	313	10-5000	0.997	2.2	7.3	76(3.3)
3NSA	14.8	312	50-3000	0.996	21	69	88(5.1)
3M5NC	15.0	73	10-3000	0.997	3.5	11.5	87(4.5)
5NSA	15.6	312	100-2000	0.996	53	176	74(7.9)
4N1N	16.7	229	50-3000	0.996	16.8	56	95(4.4)

29 and mean extraction recoveries (n = 3).

- 30 **Table S3.** F matrix elements constrained in the ME-2/chemical species 4 factors solution. The
- 31 profiles are normalized to the Abs_{365,MSOC}. The 0s value denote the $f_{h,j}$ values constrained in

Species	Secondary	Biomass burning	Coal Burning	Vehicle emission
	Formation			
4NP	-	-	-	-
2M4NP	-	-	-	-
3M4NP	-	-	-	-
2,6DM4NP	-	-	-	-
4NC	-	-	-	-
3M5NC	-	-	-	-
4M5NC	-	-	-	-
3NSA	-	-	-	-
5NSA	-	-	-	-
4N1N	-	-	-	-
o-ph	-	0	0	0
HP1	0	0	-	-
HP2	0	0	-	-
HP3	0	0	-	-
HP4	0	0	-	-
PI	0	-	-	-
FLU	0	-	-	-
PYR	0	-	-	-
CHR	0	-	-	-
BaA	0	-	-	-
BaP	0	-	-	-
BbF	0	-	-	-
BkF	0	-	-	-
IcdP	0	-	-	-
BghiP	0	-	-	-
LEV	0	-	0	0
VaA	0	-	0	0
VAN	0	-	0	0
SyA	0	-	0	0

32 ME-2c, while hyphens denote unconstrained elements.

Table S4. Seasonal and annual mean concentrations and standard deviation (value in
parentheses) of measured individual NACs in this study and the percentage of NACs to OC
and Abs_{NACs,365} to Abs_{BrC,365}.

Compound(ng m-3)	Spring	Summer	Fall	Winter	Annual
	Ave(SD)	Ave(SD)	Ave(SD)	Ave(SD)	Ave(SD)
4NP	1.19(0.36)	0.45(0.28)	3.6(2.6)	15.6(6.6)	5.2(7.1)
2M4NP	0.24(0.08)	0.10(0.10)	0.73(0.54)	4.5(1.72)	1.38(2.0)
3M4NP	0.18(0.05)	0.07(0.06)	0.44(0.35)	3.4(1.52)	1.02(1.59)
2,6DM4NP	-	-	-	0.55(0.39)	0.55(0.39)
4NC	0.28(0.18)	0.16(0.11)	3.9(4.0)	15.5(7.4)	4.9(7.5)
3M5NC	-	-	1.23(1.34)	6.4(3.7)	3.8(3.8)
4M5NC	-	-	1.35(1.24)	6.2(2.9)	3.8(3.3)
3NSA	-	-	-	0.84(0.56)	0.84(0.56)
5NSA	0.15(0.15)	0.29(0.41)	1.72(2.3)	2.3(2.4)	1.12(1.92)
4N1N	-	-	-	1.16(0.53)	1.16(0.53)
Total NPs	1.61(0.46)	0.61(0.41)	4.7(3.5)	24(10.0)	7.7(10.9)
Total NCs	0.28(0.18)	0.16(0.11)	6.5(6.5)	28(13.8)	8.7(13.7)
Total NACs	2.1(0.58)	1.06(0.82)	12.9(11.6)	56(23)	18.1(26)
NACs/OC(%)	0.02(0.01)	0.01(0.01)	0.05(0.02)	0.14(0.05)	0.11(0.11)
$Abs_{NACs,365}/Abs_{BrC,365}(\%)$	0.14(0.04)	0.09(0.06)	0.36(0.22)	0.91(0.30)	0.38(0.38)

Table S5. Correlations between individual nitroaromatic compounds measured in this study.

R	4NP	4N1N	2M4NP	3M4NP	2,6DM4NP	4NC	3M5NC	4M5NC	3NSA	5NSA
4NP	1									
4N1N	0.78	1								
2M4NP	0.98	0.75	1							
3M4NP	0.98	0.72	0.99	1						
2,6DM4NP	0.87	0.81	0.93	0.90	1					
4NC	0.95	0.80	0.92	0.92	0.77	1				
3M5NC	0.90	0.80	0.87	0.88	0.79	0.98	1			
4M5NC	0.90	0.76	0.89	0.90	0.78	0.97	0.97	1		
3NSA	0.35	0.51	0.15	0.12	0.21	0.50	0.49	0.38	1	
5NSA	0.36	0.08	0.32	0.29	0.34	0.45	0.20	0.20	0.54	1

	Spring	Summer	Fall	Winter
NACs (µg m ⁻³)	2.1	1.06	12.9	56
Source contribution to NACs (%)				
Vehicle emission	41	34	23	12
Coal burning	13	14	2	39
Secondary formation	26	45	30	13
Biomass burning	20	7	45	36
Source contribution to NACs (µg m ⁻³)				
Vehicle emission	0.84	0.36	3.0	6.8
Coal burning	0.27	0.15	0.26	22
Secondary formation	0.53	0.48	3.9	7.3
Biomass burning	0.41	0.07	5.8	20

Table S6. Seasonal average concentrations of NACs and the source contributions.

Figure S1. Factor profiles for the 4-factor solution in spring, summer, fall, and winter.

43

Figure S2. Correlations between NAC concentrations and Abs₃₆₅ of brown carbon in four
seasons.

46

47 Figure S3. UV-Vis Spectra of individual NAC standards in methanol solution.