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Abstract. Carbonyl sulfide (COS) has the potential to be
used as a climate diagnostic due to its close coupling to the
biospheric uptake of CO, and its role in the formation of
stratospheric aerosol. The current understanding of the COS
budget, however, lacks COS sources, which have previously
been allocated to the tropical ocean. This paper presents a
first attempt at global inverse modelling of COS within the 4-
dimensional variational data-assimilation system of the TM5
chemistry transport model (TM5-4DVAR) and a comparison
of the results with various COS observations. We focus on the
global COS budget, including COS production from its pre-
cursors carbon disulfide (CS;) and dimethyl sulfide (DMS).
To this end, we implemented COS uptake by soil and vege-
tation from an updated biosphere model (Simple Biosphere
Model — SiB4). In the calculation of these fluxes, a fixed at-
mospheric mole fraction of 500 pmolmol~! was assumed.
We also used new inventories for anthropogenic and biomass
burning emissions. The model framework is capable of clos-
ing the COS budget by optimizing for missing emissions us-
ing NOAA observations in the period 2000-2012. The ad-
dition of 432Gga~! (as S equivalents) of COS is required
to obtain a good fit with NOAA observations. This miss-
ing source shows few year-to-year variations but consider-
able seasonal variations. We found that the missing sources
are likely located in the tropical regions, and an overesti-
mated biospheric sink in the tropics cannot be ruled out due
to missing observations in the tropical continental boundary

layer. Moreover, high latitudes in the Northern Hemisphere
require extra COS uptake or reduced emissions. HIPPO
(HIAPER Pole-to-Pole Observations) aircraft observations,
NOAA airborne profiles from an ongoing monitoring pro-
gramme and several satellite data sources are used to eval-
uate the optimized model results. This evaluation indicates
that COS mole fractions in the free troposphere remain un-
derestimated after optimization. Assimilation of HIPPO ob-
servations slightly improves this model bias, which implies
that additional observations are urgently required to constrain
sources and sinks of COS. We finally find that the biosphere
flux dependency on the surface COS mole fraction (which
was not accounted for in this study) may substantially lower
the fluxes of the SiB4 biosphere model over strong-uptake
regions. Using COS mole fractions from our inversion, the
prior biosphere flux reduces from 1053 to 851 Gga™!, which
is closer to 738 Gga~! as was found by Berry et al. (2013). In
planned further studies we will implement this biosphere de-
pendency and additionally assimilate satellite data with the
aim of better separating the role of the oceans and the bio-
sphere in the global COS budget.
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1 Introduction

Carbonyl sulfide (COS or OCS) is a low abundant trace gas
in the atmosphere with a lifetime of about 2 years and a tro-
pospheric mole fraction of about 484 pmol mol~! (Montzka
et al., 2007). COS is regarded as a promising diagnostic
tool for constraining photosynthetic gross primary produc-
tion (GPP) of CO; through similarities in their stomatal con-
trol (Montzka et al., 2007; Campbell et al., 2017; Berry et al.,
2013; Whelan et al., 2018; Kooijmans et al., 2017, 2019;
Wang et al., 2016). COS also contributes to stratospheric
sulfur aerosols, which have a cooling effect on climate and
hence mitigate climate warming (Crutzen, 1976; Andreae
and Crutzen, 1997; Briihl et al., 2012; Kremser et al., 2016).
In recent decades, COS mole fractions in the troposphere
have remained relatively constant, which implies that sources
and sinks of COS are balanced. Whelan et al. (2018) re-
viewed the state of current understanding of the global COS
budget and the applications of COS to ecosystem studies of
the carbon cycle. The most pressing challenge currently is to
reconcile the balance of COS sources and sinks, given the
small global atmospheric trends.

Previous studies show that substantial emissions of COS
are coming from oceanic, anthropogenic, and biomass burn-
ing sources and the largest sinks are uptake by plants and
soils (Watts, 2000; Kettle et al., 2002; Berry et al., 2013).
Oceanic emissions are thought to be the largest source of
COS, both directly and indirectly, due to emissions of CS;
and possibly DMS (Lennartz et al., 2017, 2020), which can
be quickly oxidized to COS in the atmosphere (Sze and
Ko, 1980). There are considerable uncertainties related to
this indirect COS source, with reported yields of COS being
(83 & 8) % from CS, (Stickel et al., 1993) and (0.7 £ 0.2) %
from DMS under NO,-free conditions at 298 K (Barnes
et al., 1996). Blake et al. (2004) reported anthropogenic
Asian emissions for COS and CSj, which appear to have
been underestimated by 30 %—100 % due to underestimated
coal burning in China (Du et al., 2016). Zumkehr et al. (2018)
recently presented a new global anthropogenic emission in-
ventory for COS. The new anthropogenic emission estimates
are, with 406 Gga~! (as S equivalents)! in 2012, substan-
tially larger than the previous estimate of 180.5Gga™! by
Berry et al. (2013). Another recent study (Stinecipher et al.,
2019) concluded that it is unlikely that biomass burning ac-
counts for the balance between sources and sinks of COS,
due to the relatively small contribution of biomass burning to
the total emissions ((60 £ 37) Gg a1,

Suntharalingam et al. (2008) made a first attempt to sim-
ulate the global COS budget using the GEOS-Chem model
and global-scale surface measurements from NOAA. In or-

1Conventionally, the unit of COS sources or sinks is normally
written as Gg S a~! to account for the mass of sulfur. To keep clar-
ity of the physical unit, we use Gg a~ ! throughout the paper but
account only for mass of sulfur in COS, CS, and DMS.
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der to fit the observed seasonal cycle of the COS mole frac-
tion, they had to double the terrestrial vegetation uptake es-
timated in Kettle et al. (2002), reduce the southern extra-
tropical ocean source and assume an additional COS source
of 235Gga~!. Campbell et al. (2008) found that this upward
revision could be validated using direct observations from the
continental boundary layer from the intensive INTEX-NA
airborne campaign. Berry et al. (2013) implemented COS
in the global biosphere model SiB3. They inferred that, in
order to compensate for updated COS biosphere and soil
sinks of 1093 Gg a1, there must be additional COS sources
of 600 Gg a~!, which were allocated to the ocean. Glatthor
et al. (2015) and Launois et al. (2015) estimated direct COS
emissions from the ocean as 992 and 813 Gga~!, respec-
tively, and also Kuai et al. (2015) hinted at underestimated
COS sources from tropical oceans by optimizing sources us-
ing 1 month of COS satellite observations by the Tropo-
spheric Emission Spectrometer on Aura (TES-Aura). How-
ever, Lennartz et al. (2017, 2019) used COS measurements in
ocean water to show that the direct oceanic emissions were
much lower (130 Gga™') than top-down studies suggested.
It is therefore not resolved whether ocean emissions account
for the missing source.

In this paper, we address several important open questions
concerning the COS budget using inverse modelling tech-
niques, employing the TM5-4DVAR modelling system. We
focus on the closure of the COS budget, the contributions
of the potential COS precursors CS; and DMS, and evalua-
tion of the results with aircraft and satellite observations. In
Sect. 2 we will describe the observations; the implementation
of COS, CS; and DMS in TMS; and the inverse modelling
system TM5-4DVAR. In Sect. 3, we will analyse the results
of various inverse model calculations, which are discussed
further in Sect. 4.

2 Method

This study aims to close the gap in the global COS budget
by so-called flux inversions. This technique employs atmo-
spheric measurements to optimize sources and sinks of trace
gases such that mismatches between simulations and obser-
vations are minimized. In Sect. 2.1 the observations used in
this study are introduced. Section 2.2 will subsequently de-
scribe our modelling system, including new emission data
sets that have been coupled to the modelling system. The in-
verse modelling framework is discussed in Sect. 2.3.

2.1 Measurements
2.1.1 NOAA flask data

The NOAA surface flask network provides long-term mea-
surements of the COS mole fraction at 14 locations at
weekly—monthly frequencies. Most of the stations are lo-
cated in the Northern Hemisphere (NH), as shown in Fig. 1.

https://doi.org/10.5194/acp-21-3507-2021



J. Ma et al.: Global inverse modelling of COS

Table 1. The split of anthropogenic emissions in the different cate-
gories and between COS and CS, based on Zumkehr et al. (2018).
Note that we used a CS;-to-COS molar yield of 0.87 and that CSy
contains two S atoms. Averages over 2000-2012 are presented.

Emission type Total  Fraction Direct Direct
COS COSs* COoS CS;

Gga_1 % Gga_1 Gga_1
Agricultural chemicals 16.9 0.0 0.0 389
Aluminium smelting 222 88.2 19.6 6.0
Industrial coal 52.1 99.5 51.8 0.7
Residential coal 54.0 100.0 54.0 0.0
Industrial solvents 54 0.0 0.0 12.5
Carbon black 19.7 26.5 52 333
Titanium dioxide 39.4 26.5 10.5 66.6
Pulp & paper 0.1 32 0.0 0.3
Rayon yarn 41.1 0.0 0.0 94.6
Rayon staple 77.3 0.0 0.0 177.7
Tyres 15.1 43.0 6.5 19.8
Total anthropogenic 3433 - 147.5 450.2

* The fraction of COS is calculated based on the COS-to-CS; emission ratio reported in
Table 1 of Lee and Brimblecombe (2016).

Although the number of sampling sites is modest, their lo-
cations cover most latitudinal regions and sample over both
land and coastal areas. It is worth noting that there is a lack
of observations in the tropical continental boundary layer.
The observational error for each sample is relatively small (<
7 pmol mol ™ 1 ); therefore we have taken inter-annual variabil-
ity in COS from Table 1 in Montzka et al. (2007) to represent
a fixed observational-error upper limit at each site. In general,
the observational error defined in this way varies between 4—
10 pmol mol~! in the NH and between 2—4 pmol mol ! in the
Southern Hemisphere (SH). This error is used in the inverse
modelling as will be described in Sect. 2.4.

2.1.2 HIPPO aircraft and NOAA airborne data

Flask data of the HIAPER Pole-to-Pole Observations
(HIPPO) experiments (Wofsy, 2011; Wofsy et al., 2017) are
used to validate the results of the inverse modelling. There
were five HIPPO campaigns conducted from 2009 to 2011
that sampled the COS mole fraction from the North Pole
to the South Pole and from the lower troposphere up to the
stratosphere. Three different instruments were used to make
measurements of COS during HIPPO. Instrument 2 was used
by NOAA to measure COS, and instrument 1 was calibrated
consistently with the NOAA calibration standard. Results of
instrument 3 were scaled to be consistent with those of in-
strument 2, such that results from all three instruments on
HIPPO are referenced to the same NOAA scale. The proba-
bility distribution function of the mole fractions confirms that
the three instruments report consistent values, with similar
averages (see Fig. S1). Thus, HIPPO data provide valuable
data to check the consistency of the optimized COS budget.
The flight routes of the five campaigns are shown in Fig. 1.
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In some numerical experiments, HIPPO data are additionally
assimilated to investigate their impact on the optimized COS
budget. To investigate this impact on the vertical distribution
of COS, we compared model results to 2008-2011 NOAA
airborne data that are mainly available over North America
(Fig. 1). The number of aircraft sites used is 19, and the upper
altitude that was typically reached is 8 km.

2.1.3 Satellite data

Our inverse modelling results are compared to three in-
dependent satellite data sources: TES-Aura, the Atmo-
spheric Chemistry Experiment Fourier Transform Spectrom-
eter (ACE-FTS) and the Michelson Interferometer for Pas-
sive Atmospheric Sounding (MIPAS). We have selected the
period 2008-2011 for the comparison.

NASA'’s TES is both a nadir- and a limb-viewing instru-
ment that flies on the Aura satellite, which was launched in
2004 (Beer et al., 2001). TES measures the infrared radia-
tion emitted from the Earth and atmosphere in a high spec-
tral resolution for 16 orbits every other day. From these spec-
tra, abundances of tropospheric trace gases are retrieved. The
COS product used in this study is described in Kuai et al.
(2014). The COS retrievals cover the whole vertical column,
have less than 1° of freedom (DOF) and show maximum sen-
sitivity in the 300-500 hPa region. We will therefore focus
our comparisons on total COS columns. To account for the
non-uniform vertical sensitivity, we use the averaging ker-
nel (AK) in the model-satellite comparison. As described in
Kuai et al. (2014), the AK included in the TES data files is
defined in log space and should be applied as

In(X con) = In(x}p) +Alln(x ) — In(xp) + B, 6]

where X o, Xp and x,, are the convolved, prior and mod-
elled profiles, respectively, and A is the AK. 8 is a global
constant bias correction term. In Kuai et al. (2015) a 8 value
of 0.2 was derived using inverse modelling, partly to account
for the missing stratospheric decay in that study. In Sect. 3.4
the modelled profiles are convolved with the TES AK () ¢on)s
vertically integrated, and compared to the TES columns.
ACE-FTS is a high-spectral-resolution infrared Fourier
transform spectroscopy instrument that performs solar occul-
tation measurements, with the aim of sampling stratospheric
and upper tropospheric profiles of trace gases (Boone et al.,
2013). The instrument flies on SCISAT, a Canadian satellite
mission for remote sensing of the Earth’s atmosphere that
was launched in 2003. Its orbit covers tropical, mid-latitude
and polar regions. COS is one of the atmospheric trace gases
measured by the ACE-FTS instrument (Koo et al., 2017).
ACE-FTS profiles have been compared to balloon observa-
tions and have generally shown good agreement, with under-
estimations smaller than 20 % (Krysztofiak et al., 2015). We
use product version 3.6, and only observations with a qual-
ity flag of zero are used. ACE-FTS measures COS within

Atmos. Chem. Phys., 21, 3507-3529, 2021
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Figure 1. Geographical locations of the NOAA ground-based observations (shown in boxes), the five HIPPO campaign tracks and the NOAA
profile programme (inset). Note that there are no NOAA surface stations located in Asia, South America or Africa.

0-150 km vertically, but the data quality is only sufficient in
the upper troposphere and lower stratosphere (UTLS).

MIPAS is a Fourier transform spectrometer for detection
of the radiative emission of various molecules in limb ob-
servation mode in the middle and upper atmosphere (Fis-
cher et al., 2008). MIPAS flew on ESA’s Envisat platform
that operated between 2002-2012. MIPAS delivers global at-
mospheric COS profiles in the upper troposphere and strato-
sphere (Glatthor et al., 2015, 2017). Similarly to TES, the
MIPAS data product contains representative AKs and prior
profiles to facilitate comparison to modelled profiles but not
in log space, since MIPAS COS is evaluated by a linear re-
trieval:

XconZXp+A[Xm_Xp]v 2)

where x, has to be resampled on the MIPAS retrieval grid
in advance.

As for most other gases, the prior profile for MIPAS COS
retrievals is a zero profile. Equation (2) thus becomes a sim-
ple multiplication of the AK with the modelled profiles. A
detailed description of the application of MIPAS AKs on
other data sets can be found in Stiller et al. (2012).

The MIPAS product has been compared to modelled COS
distributions (Glatthor et al., 2015) and ACE-FTS (Glatthor
et al., 2017). The latter comparison showed that MIPAS re-
trieves higher mole fractions around the tropopause com-
pared to ACE-FTS. The MIPAS product has also been com-
pared to airborne measurements of the HIPPO, ARCTAS and
INTEX-B campaigns (Supplement of Glatthor et al., 2015).
Finally, MIPAS has been compared to MkIV and SPIRALE
profiles (Glatthor et al., 2017).

Atmos. Chem. Phys., 21, 3507-3529, 2021

The retrievals of TES, MIPAS and ACE-FTS v3.6 are pro-
vided on 14, 60 and 150 vertical levels in the atmosphere, re-
spectively. We map our modelled COS profiles to these levels
using a mass-conserving interpolation scheme.

2.1.4 Seasonal decomposition

In Sect. 3.1 we apply a simple seasonal decomposi-
tion method to our calculated exchange fluxes. The sea-
sonal decomposition is performed using the Python module
statsmodels, version 0.10. The time series are decomposed
into trend, seasonality and noise:

Y@ =y + ys (@) + y.(0), 3)

with y(¢) being the monthly exchange fluxes and y,, y, and
¥, the trend, seasonal and residual components, respectively.

2.2 Model description
2.2.1 Anthropogenic emissions

We have implemented the anthropogenic emissions based on
a recent global gridded emission inventory of COS (Camp-
bell et al., 2015; Zumkehr et al., 2018). Since we were aim-
ing to model COS, CS; and DMS as separated tracers, we
disentangled the reported COS emissions into COS and CS;
contributions. Here, we applied an assumed yield of 0.87
(Zumkehr et al., 2018), which means that 1 mol of CS; yields
0.87mol of COS. As a precursor of COS, CS; reacts with
OH to produce COS and has an atmospheric lifetime of about
12 d (Khalil and Rasmussen, 1984). We applied a detailed an-
thropogenic emission budget for COS and CS; from Table 1
in Lee and Brimblecombe (2016). This allows us to roughly

https://doi.org/10.5194/acp-21-3507-2021



J. Ma et al.: Global inverse modelling of COS

estimate the ratio of this budget and hence the direct and indi-
rect COS anthropogenic emissions. The converted emissions
averaged over the period 2000-2012 are summarized in Ta-
ble 1.

The total anthropogenic COS emissions are on aver-
age 343.3Gga~!, split between direct COS emissions of
147.5Gga~! and CS; emissions of 450.2Gga~'. This in-
dicates that CS; is an important precursor of COS. Figure 2
shows time series of COS and CS; anthropogenic emissions.
COS emissions are dominated by industrial and residential
coal sources, while CS, emissions are dominated by rayon
industry and TiO, production. Moreover, while COS emis-
sions remained relatively constant in the 2007-2012 period,
CS, emissions showed an increasing trend.

While Zumkehr et al. (2018) assumed a molar yield of CS,
to COS of 87 %, other reported yields are (83 & 8) % (Stickel
et al., 1993) and 81 % (Chin and Davis, 1993). We decided
to use a yield of 83 % in our modelling, while we used the
reported yield of 87 % to produce the numbers listed in Ta-
ble 1. This implies that we introduce slightly less COS into
the atmosphere compared to using the Zumkehr et al. (2018)
data as direct COS emissions. Note that we apply all categor-
ical emissions or fluxes with a monthly time resolution. It is
also worth noting that the uncertainty in the anthropogenic
inventory is much larger than the uncertainty in molar yield.

2.2.2 Biomass burning emissions

We estimated biomass burning emissions based on the
widely used GFED V4.1 data set (Randerson et al., 2018)
for six of the seven emission categories listed in Table 2.
In converting dry mass burned to COS emissions, we used
the updated emission factors reported in Andreae (2019).
For biofuel use, we base our estimates on the Community
Emissions Data System (CEDS) (Hoesly et al., 2018). We
calculated COS emissions by first converting CO emissions
to dry mass burned, which was converted to COS emissions
in a second step. Emission factors are listed in Table 2. In
this process we made a distinction between biofuel with and
without dung. Dung burning is mainly employed in south-
ern Asia (Fernandes et al., 2007), and we applied the dung
emission ratios only in the region 0—40° N and 60-100° E.
Our biomass burning emissions in the 2000-2012 period are
in the range of 118-154Gga~! (Fig. 2) and similar to the
emissions used in Berry et al. (2013) (135Gga~!) and esti-
mates reported in Campbell et al. (2015) (116 +52 Gg a—h.
The more recent biomass burning estimate from Stinecipher
et al. (2019) based on GFED 1997-2016 data reports global
emissions of 60 37 Gg a—L. Note, however, that biofuel use
is not included in this estimate. The spatial and seasonal dis-
tribution of the biomass burning emissions averaged over the
period 2000-2012 is presented in Fig. S2 in the Supplement.

https://doi.org/10.5194/acp-21-3507-2021
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Table 2. Biomass burning emission factors used in converting COS
emissions. EF COS denotes the COS emission factor from dry mass
in units of gkg_1 COS per dry mass, and EF CO denotes the CO
emission factor in gkg_1 CO per dry mass. Emission factors were
taken from Andreae (2019).

EF COS EF CO
gkg~lcos gkeg~!cCO
per dry mass  per dry mass

Savanna and grassland 0.038 -
Tropical forest 0.078 -
Temperate forest 0.035 -
Boreal forest 0.058 -
Peat fires 0.110 -
Agricultural waste burning 0.059 -
Biofuel burning without dung 0.017 83
Biofuel burning with dung 0.210 89

2.2.3 Biosphere flux

Our biosphere fluxes are based on simulations with the Sim-
ple Biosphere Model, version 4 (SiB4) (Berry et al., 2013;
Haynes et al., 2019). Currently, soil uptake is scaled to the
CO;, soil respiration term, and the implementation of specific
COS soil models (Sun et al., 2015; Ogée et al., 2016) is ongo-
ing. SiB4 was constrained by a prescribed COS mole fraction
of 500 pmol mol~! outside the canopy. This 500 pmol mol~!
is merely a placeholder and probably leads to too large fluxes
over the active biosphere, where COS mole fractions de-
cline because of strong uptake. This is further discussed in
Sect. 3.5. Meteorological data that are used as forcing for
SiB4 are taken from the Modern-Era Retrospective Analy-
sis for Research and Applications (MERRA) and are avail-
able from 1980 onwards (Rienecker et al., 2011). A spin-
up of the model was performed for the period 1850-1979
to reach an equilibrium of the carbon pools. As no MERRA
data were available for the spin-up period, the climatologi-
cal average of MERRA data over the period 1980-2018 was
used as meteorological input for the spin-up period. A fi-
nal simulation was performed for 1980-2018 with the actual
MERRA driver data. The 2000-2018 average flux to the bio-
sphere (vegetation plus soil) amounts to —1053 Gga™!, in
line with estimates of —951 Gga~! using SiB3 (Kuai et al.,
2015; Berry et al., 2013). The spatial and seasonal distribu-
tion of the biosphere uptake is shown in Fig. S3. The up-
take shows a large seasonal cycle in the NH and large uptake
over tropical forests. The biosphere fluxes were deployed on
a monthly timescale.

2.2.4 Ocean emissions
Climatological ocean emissions of COS and the COS pre-

cursors CS; and DMS are based on Suntharalingam et al.
(2008) and Kettle et al. (2002). Large quantities of COS,

Atmos. Chem. Phys., 21, 3507-3529, 2021
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Figure 2. Yearly anthropogenic emissions of COS and CS, as well as COS biomass burning emissions in the period 2000 to 2012. We
disentangled the emissions reported in Zumkehr et al. (2018) into COS and CS, emissions using their reported yield of 0.87 (see main text).
Biomass burning emissions are calculated based on the GFED V4.1 biomass burning inventory and the CEDS biofuel emission inventory

(see main text).

DMS and CS; are emitted from open oceans. The estimated
DMS emissions are about 22 Tg a—!, and we note that even
if the COS yield from oxidation of DMS is as small as 0.7 %
(Barnes et al., 1996), 156Gga~! COS has already been
formed. The CS, direct emissions from oceans are roughly
195Gga~!, yielding 81 Gga~! of COS. When the ocean wa-
ter is cold enough, oceans can turn into a sink of COS instead
of a source (Lennartz et al., 2017). Figure S4 shows the spa-
tial distribution of the January and July direct and indirect
ocean emissions of COS. Note that our estimate of all COS

Atmos. Chem. Phys., 21, 3507-3529, 2021

oceanic emissions as 277 Gga~! is substantially smaller than
the estimate of 813 Gga~! by Launois et al. (2015).

2.3 TMS5-4DVAR inverse modelling system

We have implemented three tracers (COS, CS; and DMS) in
the inverse modelling framework TM5-4DVAR (Krol et al.,
2005, 2008; Meirink et al., 2008). In brief, the TM5 model is
used to convert fluxes, collected in state vector x, to observa-
tions y:

y=H(x), “4)

https://doi.org/10.5194/acp-21-3507-2021
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For ALT, SPO and SUM, the flux-related errors are close to zero and not shown. Stations are ordered from the North Pole to the South Pole.

where H represents the global chemistry transport model
TMS. Since the relation between fluxes and observations is
currently linear, y = H (x) can be written as y = Hx.In a
flux inversion a cost function is minimized. The cost function
has the following form:

J(x) = %(x —xp) "B (x —xp)
1 Tp-—1
+5(—H)'R™\(y - Hx), Q)

where x;, represents the prior state of the fluxes and B and
R are the error covariance matrices of the fluxes and obser-
vations, respectively. B contains the errors assigned to the
fluxes, as well as their correlations in space and time (i.e. B
is a non-diagonal matrix). R contains the errors assigned to
(y — Hx). These errors are assumed to be uncorrelated and
they also include, besides the observational errors, errors re-
lated to the process of mapping coarse-scale fluxes x to lo-
calized observations y. The adjoint of the TM5 model (Krol
et al., 2008; Meirink et al., 2008) is used to calculate the gra-
dient of this cost function with respect to all elements in the
state vector:

VJx)=B '(x —x;)+ H'R™'(Hx — y). (6)

In all inversions, y is represented by COS observations
from the NOAA flask network data (Montzka et al., 2007).
Our flux space, however, in addition to COS emissions, may
represent CS; and DMS emissions from anthropogenic ac-
tivity and oceans. To map their influence on simulated COS
observations y, we need to consider chemical conversions

https://doi.org/10.5194/acp-21-3507-2021

of CS; and DMS to COS. CS, and DMS are short-lived
trace gases, with atmospheric lifetimes of approximately 12 d
(Khalil and Rasmussen, 1984) and 1.2d (Khan et al., 2016;
Boucher et al., 2003; Breider et al., 2010), respectively. For
CS, we implemented OH-initiated conversion to COS, while
for DMS we simply apply exponential decay with a lifetime
of 1.2d. COS itself is also destroyed by OH in the tropo-
sphere and by photolysis in the stratosphere. For OH, we
use monthly varying climatological OH fields (Spivakovsky
et al., 2000) and apply a correction factor of 0.92 (Naus et al.,
2019). In summary, the chemistry that is implemented there-
fore consists of the following four reactions:

COS + OH 2 products, (R1)
COS +hv ﬂ) products, (R2)
CS>+OH > f; COS + other products, (R3)
DMS 5 f>» COS + other products, (R4)

where jj is the stratospheric photolysis frequency and r; and
rp are the rate constants of COS and CS; OH oxidation, re-
spectively. The fractions f; and f; represent the molar yields
of COS from CS; (taken as 0.83; Stickel et al., 1993) and
DMS (taken as 0.007; Barnes et al., 1996). The rate r is cal-
culated according to the Arrhenius equation:

—1200K

rn=Ae T , (7

where 7T is temperature in kelvins and A is 1.13 x
1072 cm?® s~! molecule ™! (Cheng and Lee, 1986). The rate
rp is 2.0 x 1072 cm3 s~ molecule™! (Jones et al., 1983).
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Table 3. Names and error settings of the inversions performed in this study. The values correspond to grid-scale errors. Monthly flux fields
are optimized using spatial and temporal correlation lengths of 4000 km and 12 months, except for inversion S, in which multiple settings

are explored.

Biosphere Ocean Ocean Biomass Anthropogenic Unknown
COS CS, burning  COS and CS;
Su - - - - - 100 %
S1 50% 50 % 50 % 10 % 10 % -
S2 - 50 % 50 % - - -
S3  50% - - - - -

Note that this rate expression is independent of temperature
and slightly different from that of Sander et al. (2006). This
latter rate was used in Khan et al. (2017) and resulted in a
short CS; lifetime of 2.8-3.4d. However, when we imple-
ment the rate of Sander et al. (2006) in TM5, we find a CS,
lifetime of 6.2 d. This might be due to the fact that we ig-
nore CS; deposition (15 % of the loss according to Khan
et al., 2017) or that we use lower OH or higher emissions.
Rate rp =2.0 x 10712 cm3 s~ ! molecule ™! leads to an atmo-
spheric CS; lifetime of 9.4 d in TMS. Rate r3 represents an
exponential decay of 1.2d for DMS (r3 = 9.6 x 10705~ 1),
COS photolysis frequencies are calculated based on a
troposphere ultraviolet and visible (TUV) radiation model
(Madronich et al., 2003). Based on monthly climatologies
of ozone profiles and temperatures, monthly averaged pho-
tolysis frequencies are calculated on a 1km grid span-
ning 0-120km and on 180 latitude bands. Implemented
in TMS, COS loss in the stratosphere amounts to about
40Gga~!. This estimate is in line with earlier estimates of
(50+15)Gg a~! (Briihl et al., 2012; Barkley et al., 2008;
Chin and Davis, 1995; Engel and Schmidt, 1994; Weisen-
stein, 1997; Krysztofiak et al., 2015; Turco et al., 1980;
Crutzen and Schmailzl, 1983; Crutzen, 1976).
2.4 Model-data mismatch errors
The diagonal elements of the error covariance matrix R in
Eq. (5) contain contributions from observational errors, rep-
resentation errors and errors related to applying large fluxes
in the planetary boundary layer (Bergamaschi et al., 2010):

oy =+/(02+02+0P),

where oy is the total error, o, the observational error, o; the
representation error and of an error related to applying large
surface fluxes. The assumed observational error is shown in
Fig. 3. It is worth noting that observational errors are usu-
ally overwhelmed by the representation and flux errors. The
representation error is calculated by sampling the modelled
gradients in the vicinity of the sampled station (Bergamaschi
et al., 2010). Finally, the flux error in each cell is linked to
the magnitude of the monthly surface flux f (kgm=2s~!in

®)
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each cell) applied in the model as

_ fe My At

= 9
of MsAp )

Here, f represents the sum of all COS prior flux compo-
nents. In this sum, the biosphere flux is dominant over re-
gions with strong biosphere uptake. Further, g is gravita-
tional acceleration (9.8ms_2), M is the molar mass of
dry air (28.9 kgkmol_l), Ms is the molar mass of sulfur
(32.1kgkmol 1), Ap (Pa) is the thickness of the first model
layer and At is the time (s) over which the COS flux accu-
mulates (we use 1 h). Note that of is unitless and is multiplied
by 1 x 10'? to obtain units of pmol mol .

Based on the total error, we define a x2 metric to quan-
tify how well the observations are reproduced by the model
(e.g. at a particular station).

No? 7

where N is the number of individual observations. We can
calculate this metric before optimization (prior) and after op-
timization (posterior). X2 is used to diagnose whether inver-
sions are over-fitting or under-fitting the information con-
tained in the measurement network. A value of x2 ~ 1.0 in-
dicates that the inverse system is able to fit the data within the
error setting (Hooghiemstra et al., 2011). A large posterior
x? indicates that the state does not have enough degrees of
freedom to fit the observations properly (or the error settings
are too small). A small posterior x2 indicates over-fitting of
the observations (or too wide error settings).

2.5 Model settings

In this study, the TM5-4DVAR system is employed on a
global resolution of 6° x 4° (longitude x latitude). Flux fields
are coarsened from a resolution of 1° x 1°. To create a
reasonable start field for the inversions, we initially per-
formed an 11-year forward simulation starting with zero ini-
tial mole fractions and baseline surface fluxes augmented
by 432Gga~!, distributed uniformly to close a gap in
the global budget. After 11 years, sources and sinks are
roughly in balance, with atmospheric mole fractions of about
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500 pmolmol~!. Note that fluxes are used as zero-order
terms, while the COS removal by OH and photolysis are
first-order removal terms that grow as the atmospheric COS
increases.

We will present the results of four inversions. Firstly,
we optimized the missing emissions, which amount to
432 Gga~!. This inversion will be denoted by S, through-
out the paper. The aim of this inversion is to investigate
the spatial structure and temporal variability in the missing
COS emissions. This is the first time that a formal 4DVAR
approach is applied to the COS budget. To this end, we
start from an emission field of 432 Gga~! that is uniformly
distributed globally. We optimize emissions on a monthly
timescale and assign a grid-scale prior error of 100 %, which
is an arbitrary number to give fluxes enough freedom to ad-
just. In a 3-year inversion, the total number of state vec-
tor elements amounts to 97200 (36 months x 45 latitudi-
nal bins x 60 longitudinal bins). The total number of NOAA
observations is much smaller, thus rendering the inversion
under-determined. We therefore also use inversion S,, to ex-
plore different settings of the temporal and spatial correlation
lengths, which control the degrees of freedom of the state
vector. We explore spatial correlation lengths of 1000, 4000,
6000, 10 000 and 20 000 km and temporal correlation lengths
of 5.5,7, 9.5 and 12 months.

Secondly, we explore the optimization of specific cate-
gories in inversions S1-S3. In S1 we attempt to perform an
“objective” inversion, in which we assign grid-scale errors of
50 % to the biosphere and ocean (we optimize both COS and
CS») and 10 % to the anthropogenic COS and CS; emissions
and to the biomass burning emissions. Furthermore, in S2 we
only optimize ocean exchange and in S3 we only optimize
the biosphere exchange. The aim of inversions S1-S3 is to
explore whether either ocean fluxes or the biosphere fluxes
(or both) should be used to close the gap in the COS bud-
get. Note that DMS ocean emissions are not optimized. The
names and settings of the inversions are summarized in Ta-
ble 3.

The cost function is minimized with CONGRAD, an effi-
cient numerical algorithm for solving linear systems (Lanc-
70s, 1950). This minimizer has also been used in previous in-
verse modelling studies with the TM5-4DVAR system (Basu
et al., 2013; Monteil et al., 2011, 2013; Houweling et al.,
2014; Pandey et al., 2015). For convergence, we request a
gradient norm reduction of 1 x 10°, and this reduction is usu-
ally achieved within 40 iterations.

We perform flux inversions for the period 2000-2012.
To decrease computational costs, we adopt the strategy to
run parallel 3-year inversions, and we discard the optimized
fluxes of the first 6 months (spin-up) and the last 6 months
(spin-down). For example, the first inversion targets the pe-
riod 1 January 2000 to 1 January 2003, the second inversion
1 January 2002 to 1 January 2005 and so on. In the spin-
up period the fluxes in the first 6 months are used to ad-
just the imperfect initial condition. In the spin-down period,
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fluxes are less reliable, because they have not been well con-
strained by observations. The optimized fluxes in the over-
lapping years are used to check the inversion results for con-
sistency. In general, it is found that the optimized fluxes in
the overlapping periods are highly consistent.

3 Results
3.1 Closing a gap in the COS budget

In this section, we consider inversion S,,, in which a uniform
field emitting 432 Gga~! is optimized. We use different set-
tings for the spatial and temporal correlation lengths of this
field in the inversion and quantify the posterior goodness of
fit using the x2 metric (Eq. 10). As presented in more de-
tail in Fig. S5 we find, as expected, that X2 decreases with
increasing degrees of freedom (smaller correlations).

Overall, the posterior fit to NOAA surface observations
from 14 sites does not improve significantly for smaller cor-
relation lengths. If we analyse the posterior fit to the short-
term sampling programme from HIPPO, however, we find
that the X2 reaches a minimum (see Fig. S5). After this min-
imum, x? values increase again, a possible sign of over-
fitting. We therefore select 4000 km and 12 months for the
spatial and temporal correlation length, respectively, and use
these values in the remainder of this study.

Figure 4 presents the fit to observations of the prior and
posterior simulation, for the inversion with temporal and spa-
tial correlation lengths of 12 months and 4000 km, respec-
tively. Corresponding x? metrics per station are listed as la-
bels in Fig. 4. Posterior fits are by design much better than
prior fits. Only for NOAA stations THD and NWR does
the posterior x? remain larger than 3, indicating insufficient
degrees of freedom to resolve remaining discrepancies, un-
derestimated model errors or the influence of outliers (see
Fig. 4g, h). THD is a coastal site (107 ma.s.l.), and NWR
is a tundra site above the treeline (3526 ma.s.1.) in the USA
(Fig. 1), and thus the model resolution of 6° x 4° is likely
too coarse to represent these sites. The local coastal effect
might be another reason why THD vyields a larger x? (Ri-
ley et al., 2005). It is worth noting that the posterior sim-
ulation does not exhibit jumps in overlapping years from
the parallel-running inversions, indicating that our inversion
strategy works well.

The correlation settings have a large impact on the op-
timized fluxes. Figure 5 shows the spatial distribution of
the posterior flux field calculated with two different corre-
lation settings. For correlations of 1000 km and 5.5 months
(panel a) we detect a typical pattern that signals over-
fitting of the observations. In such a pattern, the opti-
mized flux displays hot spots close to measurement loca-
tions (e.g. THD, MLO, SMO). For very long spatial corre-
lations, e.g. 20000 km, posterior fits are poor ()(2 > 0; see
Fig. S5) and optimized flux patterns show irregular behaviour

Atmos. Chem. Phys., 21, 3507-3529, 2021
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Figure 4. COS prior and posterior comparison at NOAA stations. Red dots and bars are NOAA measurements with errors. Blue and black
dots represent the posterior and prior simulation, respectively. Results are shown for inversion S, in which only the unknown emission

category is optimized.

(Fig. S6). Our best inversion (4000km and 12 months)
produces a smooth optimized flux without apparent spatial
patterns near observational stations (Fig. 5b). This pattern
confirms the missing COS sources in the tropics (Sunthar-
alingam et al., 2008; Berry et al., 2013) and also requires
more uptake at high latitudes, especially in the NH.

To investigate the variation in the optimized fluxes of in-
version S, we decompose the flux components as described
in Sect. 2.1.4. The monthly fluxes and derived long-term
trend are shown in Fig. S7. The global flux was subsequently
split into eight regions, and the regional COS S,, fluxes anal-
ysed for these regions are shown in Fig. 6. Region NH1
(North America plus part of the Pacific and Atlantic oceans,
orange) shows a negative “unknown” flux, indicating that
more sinks are needed. This likely points to an underesti-
mation of the biosphere uptake in the prior, since this region
(that is well constrained by observations) depicts a clear sea-
sonal cycle in the optimized unknown flux.

A larger sink is also needed in NH2 (Europe, green) and
NH3 (Asia, red) but one of smaller magnitude than in NH1.
Tropical regions TRO-TR3 have a similar trend and season-
ality and generally show a positive flux signal, with a small
seasonal cycle. This could represent an oceanic signal (un-
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derestimated emissions of COS or COS precursors in the
prior), a signal from biomass burning or an overestimated
biosphere sink. The ocean-dominated region SH (blue) has
a near-neutral flux, with a seasonal cycle that shows higher
emissions in local autumn and early winter. In the next sec-
tion, we will explore the optimization of the ocean and bio-
sphere fluxes.

3.2 Objective inversions

In this section we will discuss the results of inversions S1, S2
and S3. The resulting global budgets are compared to litera-
ture values in Table 4. In addition, X2 metrics and biases of
the various inversions are reported in Table 5 for the NOAA
surface network, the HIPPO campaigns and the NOAA air-
borne profiles. Note that we also report results for optimiza-
tions that assimilated the HIPPO observations besides the
NOAA surface data. The period of the analysed inversions
is 2008-2010. The prior and posterior emission errors and
error reduction in the different inversion scenarios are listed
and discussed in Table S1.

The three inversions are all able to close the gap in the
global COS budget with, however, very different budget
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Table 4. Results from inversions S, S1, S2 and S3 compared to published global COS budgets. The total sources, total sinks, the unknown

flux and the total flux are shown in italics.

COS budget (Gga™!) Kettle2002®  Montzka2007? Berry2013°  Kuai2015¢  Our prior Su S1 S2 S3
Direct oceanic COS 41 40 39 41 40 40 —18 22 40
Indirect oceanic CS; as COS 84 240 81 83 81 81 96 499 81
Indirect oceanic DMS as COS 154 156 155 156 156 156 156 156
Direct anthropogenic COS 64 64 64 62 155 155 153 156 155
Indirect anthropogenic 116 - 116 113 188 188 188 189 188
CS; as COS

Indirect anthropogenic 1 - 1 0 6 6 6 6 6
DMS as COS

Biomass burning 38 106 136 49 136 136 124 136 128
Additional ocean flux - - 600 559 - - - - -
Anoxic soils 26 66 - - - - - - _
Sources 523 516 1193 1062 762 762 705 1163 754
Destruction by OH —-94 -96 —101 —111 —101 —-101 —103 —101 —101
Destruction by O —11 —11 - - - - - - -
Destruction by photolysis —16 —16 - - —40 —40 —40 —40 —40
Uptake by plants —238 —1115 —738 =775 1053 —1053 —557 —1053 —613
Uptake by soil —130 —127 —355 —-176

Sinks —489 -1365 —1194 -1062 —1194 -1194 -700 -1194  -754
Unknown - - - - 432 425 - - -
Net total 34 -849 -2 0 0 -6 5 =31 0

a Kettle et al. (2002). b Table 2 from Montzka et al. (2007). © Berry et al. (2013). d Kuai et al. (2015).

terms (Table 4). Inversions S1 and S3 close the gap in the
budget by a drastic reduction in the biosphere uptake in the
tropics and more biosphere uptake at high latitudes. When
the biosphere is not optimized (S2), the inversion enhances
the CS, tropical oceanic source and reduces direct COS
emissions from the high-latitude oceans (Table 4). Both pat-
terns lead to reduced tropical biospheric uptake and more up-
take at high latitudes, as was found for inversion S,,.
Concerning the posterior fit to observations, none of the
S1-S3 inversions performed like inversion S,,. The statistics
in Table 5 show that S,, leads to the best fit to the assimilated
observations and only a small remaining bias. Inversions S1
and S3 show better x? statistics and smaller biases than in-
version S2, because it is difficult to fit continental NOAA
stations (LEF, HFM, NWR, THD) only by optimizing ocean
fluxes. However, S1 and S3 show a tendency to turn the trop-
ical biosphere sink into a source, as shown in Fig. 7, which
depicts the posterior biosphere flux and flux increment for
inversion S1. Note that while the uptake over high NH lati-
tudes is enhanced, fluxes over regions in South America and
over Indonesia have turned into a source. This behaviour can
be explained by the under-determined nature of the inverse
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problem: there are simply not enough observations in the
tropics to constrain the tropical fluxes. Fast mixing in the
tropics further complicates the detection of signals from the
tropical biosphere using the NOAA surface network. With-
out additional observations it is therefore hard to unequiv-
ocally close the gap in the tropical COS budget. Currently,
inversion S1 mostly assigns the missing sources to reduced
biosphere uptake in the tropics, but the superior S, inversion
assigns the missing COS sources to a broad band in the trop-
ics, without strong preference for land or ocean. Note that
the behaviour of inversions S1, S2 and S3 is strongly driven
by the predefined spatio-temporal patterns in the prior flux
fields. In Sect. 3.4, we will revisit this issue.

Although we currently cannot close the gap in the global
COS budget with one specific known flux, it is instructive
to explore the information content of a separate set of COS
observations. In the next section, we will therefore evaluate
the results of our inversions with HIPPO and NOAA airborne
observations (Fig. 1).

Atmos. Chem. Phys., 21, 3507-3529, 2021
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Figure 5. Optimized emission pattern of the unknown field of in-
version S, for different settings of the spatio-temporal correlation
lengths. (a) Spatial correlation of 1000 km and temporal correlation
of 5.5 months. (b) Spatial correlation of 4000 km and temporal cor-
relation of 12 months. Results are averages over 2008-2011.

3.3 Evaluation with HIPPO and NOAA airborne
profiles

From Table 5 it is clear that for all inversions the comparison
to HIPPO observations is not very favourable. Most notably,
the simulations with optimized fluxes show strong negative
biases and poor x 2 statistics. However, Fig. 8 shows that the
inversions S1 and S, (blue lines) largely improve the cor-
respondence to HIPPO campaign-1 observations (red), rela-
tive to the prior simulation (black). The posterior simulations
capture the HIPPO observations much better. The remaining
differences in the middle panels of Fig. 8 show the general
underestimation of the model. However, inversion S1 over-
estimates HIPPO in the southern tropics, likely caused by
too large flux adjustments over South America, the region
sampled by HIPPO campaign 1.

Interestingly, when the HIPPO observations are addition-
ally assimilated into the inversion, biases are largely removed
(Fig. 8, lower panels) while the correspondence to the NOAA
surface network deteriorates only slightly (Table 5). Posterior
x? values for the HIPPO campaigns remain relatively poor,
however, signalling too strict error settings or processes that
are not properly modelled.

From the comparison with HIPPO we find that our state
vector has enough flexibility to fit additional observations
and that the inversions are strongly observation-limited.
Moreover, we find that the inversions based on only observa-
tions from the NOAA surface network tend to underestimate
COS in the free troposphere. This is corroborated by obser-
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vations from the NOAA airborne profiles, which are mostly
collected over the USA (see Fig. 1). Figure 9 shows a com-
parison between profiles using results of inversion S1. Al-
though most posterior profiles (blue) improve considerably
compared to the prior simulation (black), they still underesti-
mate observations (red) in the free troposphere. Note that the
simulations based on inversion S1 correctly predict the draw-
down of COS towards the surface for most measured profiles,
and in particular the match with the LEF site is very good at
the surface, which confirms the performance of the inversion.
If HIPPO observations are additionally assimilated (green),
the agreement in the free troposphere slightly improves. For
S1, x? for the profile comparison reduces from 27.7 to 20.1
and the bias reduces from —13.9 to —9.7 pmolmol~! (Ta-
ble 5). This confirms the low bias of the free troposphere
COS mole fractions in simulations with fluxes that are opti-
mized using both NOAA surface and HIPPO observations.
It is now clear that inversions using surface data from the
available NOAA network sites will not be able to separate
various source categories and specifically not in the data-void
tropics. In the next section we will therefore investigate the
prospects of using satellite data to constrain fluxes.

3.4 Satellite validation

In Fig. 10 we present a comparison between MIPAS, ACE-
FTS and co-sampled TMS5 COS profiles. The latitude-height
distributions of MIPAS, TM5 (convolved with the MIPAS
AK) and ACE-FTS are shown in Fig. 10a—c. In Fig. 10d
we show averaged ACE-FTS, MIPAS and TMS profiles, the
latter two resulting from collocations with respect to ACE-
FTS. The TMS5 profiles shown are from the prior simulation
(black), from inversion S1 (blue) and from inversion S1 with
additional assimilation of HIPPO profiles (green). They are
all convolved with the MIPAS AK.

In general, TMS5 reproduces the observed pattern of COS
well but with lower values in the tropical upwelling region
at around a 25 km altitude. The comparison between ACE-
FTS and MIPAS is consistent with findings of Glatthor et al.
(2017), who found that ACE-FTS is systematically lower in
the UTLS region. Moreover, they found that MIPAS data
showed no bias compared to MkIV and SPIRALE COS bal-
loon profiles, which also exhibit higher COS values than
ACE-FTS (Krysztofiak et al., 2015; Velazco et al., 2011).
TMS profiles, after convolution with the MIPAS AK, are
in between MIPAS and ACE-FTS. Compared to the other
TMS runs, prior TMS5 profiles (black) show the lowest val-
ues around the tropopause. Again, TMS profiles optimized
by HIPPO and NOAA observations (dashed green line in
Fig. 10d) show a slight increase in the upper troposphere
compared to the optimization with only NOAA surface-site
data (dashed blue line).

To compare the different inversions with respect to the
simulated latitude—longitude distribution, Fig. 11 shows a
comparison of COS between TMS inversions and MIPAS at
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Figure 6. Regional analysis of multi-year optimized COS fluxes of inversion S;: (a) posterior flux per region, (b) regions over which the
posterior flux is analysed, (c) trend in the decomposed signal and (d) seasonal signal in the decomposed signal. Note that region colours in
(b) are used in (a), (c) and (d).

Table 5. x2 metrics and mean biases for the different inversion
scenarios. Statistics are shown for the NOAA surface stations, the
HIPPO campaigns and the NOAA airborne profiles. Biases are

given in pmol mol 1.

Inversion HIPPO Metric HIPPO NOAA NOAA
scenario  optimized™ surface  airborne
No x2 40.7 1.9 26.0

S No Bias —13.9 00 —124
" Yes x2 4.7 25 173
Yes Bias —1.1 1.5 —-8.3

No x2 43.8 2.4 27.7

S1 No Bias —-120 —04  —138
Yes x2 438 2.9 20.1

Yes Bias —1.3 1.3 —-9.7

No x2 542 49 48.2

- No Bias —19.4 15  —16.7
Yes x2 6.3 5.9 27.0

Yes Bias —4.6 75 -5.9

No x2 433 2.5 275

$3 No Bias —123  —02  —143
Yes x2 5.0 3.2 21.1

Yes Bias —14 1.6  —105

*If HIPPO is not optimized, only NOAA surface data are assimilated into inversions. If
HIPPO is optimized, both NOAA surface data and HIPPO are assimilated into inversions.

NOAA airborne data are only used for validation.
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250hPa in June to August. Similar results at 250 hPa from
September to November and at 150 hPa from June to Au-
gust are shown in the Supplement (Figs. S8 and S9). MIPAS
COS represents a 2002-2011 average taken from Glatthor
et al. (2017). TMS results have been averaged over 2008—
2010. The distributions of COS in all inversions match rela-
tively well with MIPAS. Note, however, that we adjusted the
TMS5 results by +25pmolmol~! to match the colour scale
of MIPAS. The COS distribution from the prior simulation
correctly simulates low COS over the Amazon and Africa
but is clearly too high over northern latitudes. This latter as-
pect is partly solved by the inversions. If we concentrate on
the observed COS minimum over the Atlantic, Africa and the
Amazon, inversions S1 and S3 shift this minimum to the east,
consistent with the COS biosphere flux increment shown in
Fig. 7 for S1. Inversions S, and S2 exhibit a better compari-
son with MIPAS, suggesting that the large increments of the
tropical biosphere over South America (Fig. 7) are unrealis-
tic. However, assigning the missing tropical source totally to
ocean emissions (S2) appears to overestimate the COS draw-
down over the Amazon.

TMS results are also compared to the nadir-viewing TES
instrument. To this end, COS columns of TM5 (convolved
with the TES AK; see Eq. 1) and TES are averaged in 20 lat-
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itudinal bins between 32° S and 32° N. Outside this latitude
band, TES observations become too noisy for a reasonable
comparison. Comparisons are shown for the months March,
June, September and December in Fig. 12, based on inver-
sion S1 and averaged over the years 2008-2011. We applied
an arbitrary bias correction of 8 =1 in Eq. (1) to obtain a
reasonable fit to TES observations. After assimilation, the
agreement with TES improves compared to the prior, but the
latitudinal gradients remain generally smaller in the model.
The inversion into which the HIPPO observations are also as-
similated increases the simulated mole fractions, confirming
our findings based on the airborne observation. In general,
the TES-derived columns offer a good perspective to better
constrain the COS budget in the tropics. Due to the sensitivity
of TES to COS in the middle troposphere (Kuai et al., 2015),
the assimilation of TES into our 4DVAR system might be
able to differentiate between the biosphere and ocean signal,
something that turned out to be difficult using NOAA surface
observations only.

3.5 Discussion

In this study we have presented inversions focused on the
closure of the global COS budget. In general, our inversion

https://doi.org/10.5194/acp-21-3507-2021
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modelling framework based on the TM5-4DVAR system is
well capable of closing the gap in the global budget (e.g. in-
version S, S1 and S3) and of optimizing flux fields such that
surface observations are well reproduced. However, due to
the lack of observations, we are unable to unambiguously as-
sign the missing COS sources to either missing ocean emis-
sions or reduced tropical uptake by the biosphere. Firstly, the
total number of observations remains relatively small, which
leads to an under-determined inversion problem. Secondly,
there are no observational sites that sample air masses from
tropical Africa, South America and southeastern Asia, which
are regions with important COS fluxes. An important next
step will therefore be the utilization of satellite data in future
inverse modelling studies. In the current study, we did not
include all exchange fluxes that are reported in the literature
(Whelan et al., 2018). In general, we find that our inversions
still underestimate COS in the free troposphere. Here, there
might be a role for volcanic emissions (25-42 Gga~!; Whe-
lan et al., 2018), or “unnoticed” tropical sources like wetland
exchange (—150 to 290 Gg a~!: Whelan et al., 2018). Vol-
canic emissions are important to mitigate the stratospheric

https://doi.org/10.5194/acp-21-3507-2021

aerosol loading in the stratosphere (Sheng et al., 2015) and
might be able to reduce the gap between modelled COS by
TMS5 and measurements. Alternatively, missing COS could
come from an atmospheric oxidation process that converts
CS; or DMS to COS. We did not find strong evidence for en-
hanced CS, emissions from tropical oceans in our S1 inver-
sion, although inversion S2 produced reasonable COS sim-
ulations by optimizing only COS and CS; emissions from
the ocean. Moreover, our “best” S, inversion produced a flux
field that indicated enhanced tropical sources over both land
and ocean (Fig. 5). Thus, field studies that address tropi-
cal COS exchange processes are urgently needed (Lennartz
et al., 2020).

We have also considered some variations in our modelling
setup. A unique approach of our study is the inclusion of CS;
and DMS as COS precursors. We tested the effect of emitting
CS; ocean and anthropogenic sources directly as COS in an
additional forward model simulation. As shown in Fig. S10,
COS mole fractions would become significantly larger close
to CS, emission hot spots in Asia, Europe and the USA.
At selected stations (LEF in the USA and MHD in Europe,

Atmos. Chem. Phys., 21, 3507-3529, 2021
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Figure 10. Comparison of MIPAS and ACE-FTS v3.6 with TMS5 results from inversions for 2009. (a) Latitude—height contour plot of MIPAS;
(b) TMS S1 convolved with the MIPAS AK; (¢) ACE-FTS profiles; (d) average of collocated profiles for MIPAS (red), TMS convolved with
MIPAS AK from inversion S1 (blue), TMS5 convolved from inversion S1 (with HIPPO observations assimilated) (green), TM5 convolved
prior (black) and ACE-FTS. In (d) TMS5 and MIPAS profiles are collocated with respect to ACE-FTS profiles within a temporal offset of 6 h
and a spatial distance of 5°. The number of collocated profiles is 1381.

Fig. S10a and b), we observe COS mole fractions that are up
to 40 pmol mol~! higher during events where emitted CS, is
advected to the station. Some ambiguity has been introduced
about the CS; lifetime (Khan et al., 2017). In our S, inver-
sion, the lifetime of CS; is estimated as 9.4 d (CS, burden di-
vided by CS; loss by OH), substantially longer than the ~ 3 d
lifetime mentioned in Khan et al. (2017). Future work should
be based on the rate recommendations in Sander et al. (2006).
Thus, we conclude that inclusion of CS; as a separate tracer
is important if we want to understand emissions of CS; and
COS, which have distinctly different spatial patterns (e.g. see
Fig. S4). Regarding DMS as a COS precursor, we have eval-
uated its importance by performing a NO-DMS inversion,
in which DMS as a tracer was removed and the 162 Gga™!
DMS source was added to the COS “unknown flux” in in-
version S,. In Fig. S11, it can be seen that the NO-DMS
inversion shows larger adjustment over both oceans and con-
tinents but that the pattern remains comparable to inversion
Su-

The use of COS as a proxy for gross primary productivity
on a global scale needs a better level of understanding of the
biosphere flux. Here we used monthly prior flux fields calcu-
lated with SiB4 (Berry et al., 2013) in which soil exchange

Atmos. Chem. Phys., 21, 3507-3529, 2021

and vegetation uptake are combined. In future studies, we
might need a better prior description of this important global
COS sink. For instance, recent studies (Ogée et al., 2016;
Sun et al., 2018; Meredith et al., 2019; Spielmann et al.,
2020) stress the importance of the soil-atmosphere COS ex-
change. Our inversions S1 and S3 calculate large increments
in the biosphere exchange (Fig. 7), with generally less up-
take in the tropics (turning the flux even into a COS source)
and enhanced uptake in the NH high latitudes. Quantitatively,
the COS uptake is reduced from a prior value of 1053 to
557 Gga~! to close the gap in the COS budget. While we se-
riously question the validity of this result given the fact that
most flux adjustments are projected in the data-void tropics,
it is still instructive to consider the feedback of the atmo-
spheric COS mole fractions on COS uptake. Since biosphere
models operate mostly uncoupled to atmospheric transport
models, we used a fixed mole fraction of 500 pmol mol !
to construct the prior biosphere fluxes. However, observa-
tions clearly show a large drawdown of COS near the sur-
face (Campbell et al., 2008; Hilton et al., 2017; Spielmann
et al., 2020; Berkelhammer et al., 2020). We therefore ex-
plored the calculations in SiB4 and found that biosphere flux
should scale linearly with atmospheric COS mole fractions

https://doi.org/10.5194/acp-21-3507-2021
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(Berry et al., 2013). To estimate the potential impact of re-
duced mole fractions at the surface on the biosphere flux, we
corrected the monthly SiB4 fluxes as

y(COS)

_— 11
500pmol mol ™! b

N biosp, cor = S biosp

where foiosp and foiosp, cor are the original and corrected
monthly biosphere fluxes on the TMS grid and y(COS)
is the monthly mean COS mole fractions (pmolmol~!) in
the first model layer (approximately 50 m) from inversion
S,. This simple correction, based on monthly mean fields,
changes the biosphere sink from 1053 to 851 Gga~!, an up-
date of 202 Gga~! (Figs. S12, S13 and S14) and closer to the
738 Gga~! reported by Berry et al. (2013). Interestingly, the
corrected flux is strongly reduced over regions with an active
tropical biosphere, in line with results from inversions S1 and
S3. This indicates that uptake of COS should be treated as a
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al. (2017). TMS results represent a 2008-2010 average, and MIPAS
lower than MIPAS, 25 pmol mol ! is added to the TMS5 results for a

first-order loss process and that the SiB4 prior fields based on
fixed atmospheric mole fractions of 500 pmol mol~! likely
overestimate COS uptake. However, such an approach makes
the optimization problem non-linear. This, as well as the
challenge of assimilating satellite observations, will be the
subject of future studies.

4 Conclusions

In this study, we have implemented an inverse modelling
framework for COS, coupled to the budgets of CS, and
DMS. Inversions using the NOAA surface observation net-
work have been evaluated with observations from HIPPO,
airborne observations and satellite products. Conclusions are
as follows:

— In line with earlier studies, our inversions point to miss-
ing sources in the tropics and missing sinks at high lat-
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applied when applying the TES AK in Eq. (1).

itudes. With seasonal decomposition of the optimized
unknown COS flux, it is found that the missing sources
show regional seasonality, indicating regional source or
sink impacts. Whether the missing sources in the tropics
originate from the land or ocean cannot be determined
currently because of a lack of observations in the trop-
ics.

— Simulations that are optimized by only NOAA surface
observations from 14 sites lack information about COS
in the free troposphere. When the short-term HIPPO air-
craft sampling programme is used as an additional data
source in the inversions, the comparison to NOAA air-
borne observations and satellite products generally im-
proves.

— Comparison between TMS inversions and satellite data
shows that COS in the model is systematically lower
than MIPAS, and inversions reproduced the tropo-
spheric COS spatial distribution well, specifically for in-
versions S, and S2. These comparisons indicate that the
missing tropical source likely originates from a combi-
nation of underestimated ocean emissions and overes-
timated biosphere uptake. Part of the tropical sources
can be explained by the dependence of COS uptake on
atmospheric mole fractions.

Atmos. Chem. Phys., 21, 3507-3529, 2021

— Future improvements are expected from the assimila-
tion of satellite data and better prior descriptions of the
ocean and biosphere fluxes.

Our future plan is therefore to assimilate satellite data into
our 4DVAR inverse modelling system to have better con-
straints on COS in the free troposphere and lower strato-
sphere. Other developments target the coupling of COS and
CO; in a shared inverse modelling system, with the aim of
better constraining gross primary productivity.

Code and data availability. Anthropogenic COS emission data
are available at https://portal.nersc.gov/project/m2319/ (Campbell,
2021; Zumkehr et al., 2018). Biomass burning emission data are
available on the GFED website (https://globalfiredata.org/pages/
data/, GFED, 2021). NOAA surface measurement of COS is avail-
able at https://www.esrl.noaa.gov/gmd/dv/data/ (NOAA Global
Monitoring Laboratory, 2021). HIPPO flight campaign (1-5) data
of COS are available at https://www.eol.ucar.edu/field_projects/
hippo (HIPPO, 2021). MIPAS satellite data of COS are avail-
able at https://earth.esa.int/eogateway/instruments/mipas (MIPAS,
2021) via registration. ACE-FTS data are available at http://
www.ace.uwaterloo.ca/data.php (ACE-FTS, 2021). Model codes of
TMS5-4DVAR are available on the TM5-4DVAR website (https:
/Isourceforge.net/projects/tmS/, TMS5-4DVAR team, 2021).
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-3507-2021-supplement.
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