

Supplement of

Measurement report: Chemical characteristics of $PM_{2.5}$ during typical biomass burning season at an agricultural site of the North China Plain

Linlin Liang et al.

Correspondence to: Linlin Liang (lianglinlin@cma.gov.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Location	Site type	Condition	Size	K ⁺ (µg m ⁻³)	Levoglucosan (µg m ⁻³)	Mannosan (µg m ⁻³)	Levoglucosan/ Mannosan	Levoglucosan/ K ⁺	Reference
Gucheng	Rural	Minor biomass burning	PM _{2.5}	1.16 ± 0.36	0.36 ± 0.14	0.015 ± 0.005	24.9 ± 4.44	0.36 ± 0.081	This study
	Rural	Intensive biomass burning	PM _{2.5}	2.61	4.37	0.18	24.1	1.67	This study
	Rural	Major biomass burning	PM 2.5	1.76 ± 0.46	0.90 ± 0.37	0.038 ± 0.015	24.8 ± 6.46	0.51 ± 0.16	This study
	Rural	Heating season	PM 2.5	1.65 ± 0.84	0.96 ± 0.63	0.050 ± 0.026	18.3 ± 4.27	0.53 ± 0.15	This study
	Rural	Oct-Nov	PM 2.5	1.52 ± 0.62	0.79 ± 0.75	0.030 ± 0.030	23.6 ± 0.59	0.46 ± 0.26	This study
Gucheng	Rural	June, 2013	PM _{2.5}	/	0.24 ± 0.29	0.10 ± 0.10	22.8 ± 8.85	/	Li et al., (2019)
	Rural	Biomass burning episode	PM _{2.5}	/	0.40 ± 0.34	0.015 ± 0.013	29.7 ± 12.2	/	Li et al., (2019)
Beijing, China	Urban	Typical summer	PM _{2.5}	0.84 ± 0.58	0.12 ± 0.05	0.01 ± 0.00	12.7 ± 3.38	0.26 ± 0.16	Cheng et al. (2013)
	Urban	Biomass burning episode	PM _{2.5}	5.81 ± 2.75	0.75 ± 0.68	0.03 ± 0.04	25.0 ± 13.2	0.11 ± 0.06	Cheng et al. (2013)
	Urban	Typical winter	PM _{2.5}	1.21 ± 0.08	0.64 ± 0.45	0.07 ± 0.05	0.51 ± 0.15	0.51 ± 0.15	Cheng et al. (2013)
	Urban	Fireworks episode	PM _{2.5}	6.03 ± 11.3	0.46 ± 0.29	0.04 ± 0.03	0.16 ± 0.09	0.16 ± 0.09	Cheng et al. (2013)
PRD, China	Urban	Annual	PM _{2.5}	/	0.059 ± 0.060	0.004 ± 0.005	/	/	Ho et al. (2014)
	Agricultural	Annual	PM _{2.5}	/	0.208 ± 0.162	0.014 ± 0.012	/	/	Ho et al. (2014)
	Rural	Annual	PM _{2.5}	/	0.036 ± 0.075	0.003 ± 0.006	/	/	Ho et al. (2014)
	Roadside	Annual	PM _{2.5}	/	0.026 ± 0.010	0.003 ± 0.005	/	/	Ho et al. (2014)
Guangzhou, China	Urban	Wet season	PM _{2.5}	0.465 ± 0.302	0.073 ± 0.081	0.006 ± 0.007	11.5	0.29	Zhang et al. (2015)
	Urban	Dry season	PM _{2.5}	1.197 ± 0.356	0.27 ± 0.10	0.017 ± 0.007	15.3	0.40	Zhang et al. (2015)
Zhuhai, China	Suburban	Wet season	PM _{2.5}	0.17 ± 0.10	0.008 ± 0.009	L.D.	N.A.	N.A.	Zhang et al. (2015)
	Suburban	Dry season	PM _{2.5}	0.844 ± 0.325	0.181 ± 0.124	0.010 ± 0.06	18.5	0.42	Zhang et al. (2015)
Southeastern China	Urban	Nov-July	PM _{2.5}	/	0.059 ± 0.047	/			Wu et al. (2016)
Xi'an, China	Urban	Winter	PM0.133		0.29 ± 0.14	0.17 ± 0.10	2.83	0.32 ± 0.14	Zhu et al. (2017)

Table S1. Biomass burning tracer levels and ratios measured in this study and other published field studies.

	Rural	Winter	PM _{0.133}		0.93 ± 0.32	0.16 ± 0.26	7.86	0.77 ± 0.39	Zhu et al. (2017)
Nanjing, China	Urban	January	PM _{2.5}	1.2 ± 0.7	0.37 ± 0.27	0.019 ± 0.013	22.5 ± 12.3	0.3 ± 0.1	Liu et al. (2019)
Shanghai, China	Urban	Nov-Dec (Episode)	PM _{2.5}	/	0.089 ± 0.040	0.003±0.001	29.7	/	He et al. (2020)
		Nov-Dec (Nonepisode)	PM 2.5	/	0.033±0.030	0.001±0.001	33	/	He et al. (2020)
Indo-Gangetic Plain	Mountain	All year	TSP	/	0.734 ± 1.043	/			Wan et al. (2017)
Shanghai, China	Urban	December	PM 2.5	/	0.046 ± 0.039	0.002 ± 0.002	/	/	Wang et al. (2020)
Mt. Tai, China	Mountain	Major biomass burning	TSP	5.9 ± 5.4	0.505 ± 0.578	/	/	/	Boreddy et al. (2017)
	Mountain	Minor biomass burning	TSP	1.9 ± 1.4	0.097 ± 0.183	/	/	/	Boreddy et al. (2017)
Lin'an	Background	Annual	PM _{2.5}	0.65 ± 0.38	0.13 ± 0.14	0.009 ± 0.01	13.2 ± 5.00	0.20 ± 0.16	Liang et al., (2020)
Budapest, Hungary	Urban	Winter	PM _{2.5}	/	0.387 ± 0.153	28 ± 14	14.6 ± 2.4	/	Salma et al. (2017)
Granada, Spain	Urban	Nov-Feb	\mathbf{PM}_{10}	/	0.25	/	/	0.476	Titos et al. (2017)
Chiang Mai, Thailand	Urban	Non-episodic periods	PM_{10}	0.89 ± 0.57	0.333 ± 0.174	0.058 ± 0.020	5.7	0.37	Tsai et al. (2013)
	Urban	Episodic pollution	PM_{10}	2.31 ± 0.56	1.176 ± 0.791	0.083 ± 0.021	14.1	0.50	Tsai et al. (2013)
Daejeon, Korea	Suburban	Haze episode	PM _{2.5}	0.27 ± 0.08	0.022 ± 0.012	0.005 ± 0.002	4.81 ± 0.41	0.08 ± 0.03	Jung et al. (2016)
	Suburban	Siberian forest fire	PM _{2.5}	0.33 ± 0.07	0.120 ± 0.006	0.035 ± 0.003	3.43 ± 0.11	0.37 ± 0.06	Jung et al. (2016)
Kathmandu Valley, Nepal	Suburban	April, 2015	PM _{2.5}	0.63 ± 0.30	1.23 ± 1.15	/	/	1.95	Islam et al. (2020)
Kathmandu Valley, Nepal	Urban	2013-2014	TSP	2.43 ± 2.82	0.79 ± 0.69	0.051 ± 0.045	/	/	Wan et al. (2019)
Ulaanbaatar, Mongolia	Urban	Spring	PM _{2.5}	0.08 ± 0.05	0.31 ± 0.18	0.08 ± 0.04	4.1 ± 1.0	4.2 ± 2.1	Nirmalkar et al. (2020)
		Winter	PM _{2.5}	0.13 ± 0.04	1.20 ± 0.43	0.33 ± 0.13	3.6 ± 0.2	8.9 ± 1.8	Nirmalkar et al. (2020)
Morogoro, Africa	Rural	Wet (May-Jun)	PM _{2.5}	0.382 ± 0.170	0.146 ± 0.085	0.013 ± 0.007	11 ± 0.8	0.37 ± 0.1	Mkoma et al. (2013)
	Rural	Dry (Jul-Aug)	PM _{2.5}	1.516 ± 0.73	0.253 ± 0.077	0.024 ± 0.007	11 ± 1.1	0.18 ± 0.7	Mkoma et al. (2013)
Krynica Zdroj, Poland	Rural	Annual	\mathbf{PM}_{10}		0.51 ± 0.57			/	Klejnowski et al. (2017)
Northern Italy	Urban	Nov	PM 2.5	/	0.289 ± 0.144	0.064 ± 0.038	4.9 ± 0.8	/	Pietrogrande et al. (2015)
	Rural	Nov	PM _{2.5}	/	0.233 ± 0.115	0.047 ± 0.026	5.1 ± 0.5	/	Pietrogrande et al. (2015)

Figure S1. Location of the Gucheng measurement station (red star) and the surrounding provinces.

Figure S2. Time-series obtained for $PM_{2.5-cal}$ and its major components (OC, EC, SO_4^{2-} , NO_3^{-} and NH_4^{+}), biomass burning tracers (levoglucosan and mannosan) during daytime and nighttime at the GC site during the sampling period from 19 October to 23 November, 2016.

Figure S3. Variation of NOR and SOR during daytime and nighttime, respectively. In the box-whisker plots, the boxes and whiskers indicate the 95th, 75th, 50th (median), 25th and 5th percentiles, respectively. \Box indicates the mean value.

Figure S4. Wind-rose diagrams of hourly wind direction at the GC site during 30 October, 31 October and 1 November 2016, respectively.

Figure S5. Hourly temperature from 00:00 on 29th October to 00:00 on 3rd November 2016 at the GC site.

Figure S6. Correlations between levoglucosan (LG) and OC as well as EC during (a) daytime and (b) nighttime, and scatter plot of levoglucosan versus SNA (i.e., SO_4^{2-} , NO_3^{-} and NH_4^+) during (c) daytime and (d) nighttime. Statistical analysis was conducted with the linear fitting method.

Figure S7. Time-series of (a) secondary inorganic aerosols, i.e., SO_4^{2-} , NO_3^- and NH_4^+ , (b) SO_2 and NO_X , (c) NH_3 and CO, (d) O_3 and PBL, at the GC site during the observation period from 15 October to 23 November, 2016.

Figure S8. Relationships between daily average PBL and gases at the GC site during the observation period. Statistical analysis was conducted with the linear fitting method.

Reference:

- Boreddy, S. K. R., Kawamura, K., Okuzawa, K., Kanaya, Y., and Wang, Z.: Temporal and diurnal variations of carbonaceous aerosols and major ions in biomass burning influenced aerosols over Mt. Tai in the North China Plain during MTX2006, Atmospheric Environment, 154, 106-117, 10.1016/j.atmosenv.2017.01.042, 2017.
- Cheng, Y., Engling, G., He, K. B., Duan, F. K., Ma, Y. L., Du, Z. Y., Liu, J. M., Zheng, M., and Weber, R. J.: Biomass burning contribution to Beijing aerosol, Atmospheric Chemistry and Physics, 13, 7765-7781, 10.5194/acp-13-7765-2013, 2013.
- He, X., Wang, Q., Huang, X. H. H., Huang, D. D., Zhou, M., Qiao, L., Zhu, S., Ma, Y.-g., Wang, H.-l., Li, L., Huang, C., Xu, W., Worsnop, D. R., Goldstein, A. H., and Yu, J. Z.: Hourly measurements of organic molecular markers in urban Shanghai, China: Observation of enhanced formation of secondary organic aerosol during particulate matter episodic periods, Atmospheric Environment, 240, 117807, 10.1016/j.atmosenv.2020.117807, 2020.
- Ho, K.F., Engling, G., Sai Hang Ho, S., Huang, R., Lai, S., Cao, J., and Lee, S.C.: Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China, Tellus B, 66, 22577, https://doi.org/10.3402/tellusb.v66.22577, 2014.
- Islam, M. R., Jayarathne, T., Simpson, I. J., Werden, B., Maben, J., Gilbert, A., Praveen, P. S., Adhikari, S., Panday, A. K., Rupakheti, M., Blake, D. R., Yokelson, R. J., DeCarlo, P. F., Keene, W. C., and Stone, E. A.: Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases, Atmospheric Chemistry and Physics, 20, 2927-2951, 10.5194/acp-20-2927-2020, 2020.
- Jung, J., Lyu, Y., Lee, M., Hwang, T., Lee, S., and Oh, S.: Impact of Siberian forest fires on the atmosphere over the Korean Peninsula during summer 2014, Atmospheric Chemistry and Physics, 16, 6757-6770, 10.5194/acp-16-6757-2016, 2016.
- Jung, J., Lyu, Y., Lee, M., Hwang, T., Lee, S., and Oh, S.: Impact of Siberian forest fires on the atmosphere over the Korean Peninsula during summer 2014, Atmospheric Chemistry and Physics, 16, 6757-6770, 10.5194/acp-16-6757-2016, 2016.
- Klejnowski, K., Janoszka, K., and Czaplicka, M.: Characterization and Seasonal Variations of Organic and Elemental Carbon and Levoglucosan in PM10 in Krynica Zdroj, Poland, Atmosphere, 8, 190, 10.3390/atmos8100190, 2017.
- Li, J., Wang, G., Zhang, Q., Li, J., Wu, C., Jiang, W., Zhu, T., and Zeng, L.: Molecular characteristics and diurnal variations of organic aerosols at a rural site in the North China Plain with implications for the influence of regional biomass burning, Atmospheric Chemistry and Physics, 19, 10481-10496, 10.5194/acp-19-10481-2019, 2019.
- Liang, L., Engling, G., Cheng, Y., Liu, X., Du, Z., Ma, Q., Zhang, X., Sun, J., Xu, W., Liu, C., Zhang, G., and Xu, H.: Biomass burning impacts on ambient aerosol at a background site in East China: Insights from a yearlong study, Atmospheric Research, 231, 104660, 10.1016/j.atmosres.2019.104660, 2020.
- Liu, X., Zhang, Y.-L., Peng, Y., Xu, L., Zhu, C., Cao, F., Zhai, X., Haque, M. M., Yang, C., Chang, Y., Huang,

T., Xu, Z., Bao, M., Zhang, W., Fan, M., and Lee, X.: Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: regionally transported biomass burning contribution, Atmospheric Chemistry and Physics, 19, 11213-11233, 10.5194/acp-19-11213-2019, 2019.

- Mkoma, S. L., Kawamura, K., and Fu, P. Q.: Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan, Atmospheric Chemistry and Physics, 13, 10325-10338, 10.5194/acp-13-10325-2013, 2013.
- Nirmalkar, J., Batmunkh, T., and Jung, J.: An optimized tracer-based approach for estimating organic carbon emissions from biomass burning in Ulaanbaatar, Mongolia, Atmospheric Chemistry and Physics, 20, 3231-3247, 10.5194/acp-20-3231-2020, 2020.
- Pietrogrande, M. C., Bacco, D., Ferrari, S., Kaipainen, J., Ricciardelli, I., Riekkola, M.-L., Trentini, A., and Visentin, M.: Characterization of atmospheric aerosols in the Po valley during the supersito campaigns Part 3: Contribution of wood combustion to wintertime atmospheric aerosols in Emilia Romagna region (Northern Italy), Atmospheric Environment, 122, 291-305, 10.1016/j.atmosenv.2015.09.059, 2015.
- Salma, I., Németh, Z., Weidinger, T., Maenhaut, W., Claeys, M., Molnár, M., Major, I., Ajtai, T., Utry, N., and Bozóki, Z.: Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon–levoglucosan marker method, Atmospheric Chemistry and Physics, 17, 13767-13781, 10.5194/acp-17-13767-2017, 2017.
- Titos, G., Del Aguila, A., Cazorla, A., Lyamani, H., Casquero-Vera, J. A., Colombi, C., Cuccia, E., Gianelle, V., Mocnik, G., Alastuey, A., Olmo, F. J., and Alados-Arboledas, L.: Spatial and temporal variability of carbonaceous aerosols: Assessing the impact of biomass burning in the urban environment, The Science of the total environment, 578, 613-625, 10.1016/j.scitotenv.2016.11.007, 2017.
- Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H.-C., and Kuo, S.-C.: Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand, Atmospheric Environment, 78, 93-104, 10.1016/j.atmosenv.2012.09.040, 2013.
- Wan, X., Kang, S., Li, Q., Rupakheti, D., Zhang, Q., Guo, J., Chen, P., Tripathee, L., Rupakheti, M., Panday, A.
 K., Wang, W., Kawamura, K., Gao, S., Wu, G., and Cong, Z.: Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning, Atmospheric Chemistry and Physics, 17, 8867-8885, 10.5194/acp-17-8867-2017, 2017.
- Wan, X., Kang, S., Rupakheti, M., Zhang, Q., Tripathee, L., Guo, J., Chen, P., Rupakheti, D., Panday, A. K., Lawrence, M. G., Kawamura, K., and Cong, Z.: Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources, Atmospheric Chemistry and Physics, 19, 2725-2747, 10.5194/acp-19-2725-2019, 2019.
- Wang, Q., He, X., Zhou, M., Huang, D. D., Qiao, L., Zhu, S., Ma, Y.-g., Wang, H.-l., Li, L., Huang, C., Huang, X. H. H., Xu, W., Worsnop, D., Goldstein, A. H., Guo, H., and Yu, J. Z.: Hourly Measurements of Organic Molecular Markers in Urban Shanghai, China: Primary Organic Aerosol Source Identification and Observation of Cooking Aerosol Aging, ACS Earth and Space Chemistry, 4, 1670-1685, 10.1021/acsearthspacechem.0c00205, 2020.

- Wu, S. P., Zhang, Y. J., Schwab, J. J., Huang, S., Wei, Y., and Yuan, C. S.: Biomass burning contributions to urban PM2.5 along the coastal lines of southeastern China, Tellus B: Chemical and Physical Meteorology, 68, 30666, 10.3402/tellusb.v68.30666, 2016.
- Zhang, Z., Gao, J., Engling, G., Tao, J., Chai, F., Zhang, L., Zhang, R., Sang, X., Chan, C.Y., Lin, Z., and Cao, J.: Characteristics and applications of size-segregated biomass burning tracers in China's Pearl River Delta region, Atmos. Environ., 102, 290-301, https://doi.org/10.1016/j.atmosenv.2014.12.009, 2015.
- Zhu, C. S., Cao, J. J., Tsai, C. J., Zhang, Z. S., and Tao, J.: Biomass burning tracers in rural and urban ultrafine particles in Xi'an, China, Atmospheric Pollution Research, 8, 614-618, 10.1016/j.apr.2016.12.011, 2017.