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Abstract. Grassland aboveground biomass (AGB) is a criti-
cal component of the global carbon cycle and reflects ecosys-
tem productivity. Although it is widely acknowledged that
dynamics of grassland biomass is significantly regulated by
climate change, in situ evidence at meaningfully large spa-
tiotemporal scales is limited. Here, we combine biomass
measurements from six long-term (> 30 years) experiments
and data in existing literatures to explore the spatiotempo-
ral changes in AGB in Inner Mongolian temperate grass-
lands. We show that, on average, annual AGB over the past
4 decades is 2561, 1496 and 835 kg ha−1, respectively, in
meadow steppe, typical steppe and desert steppe in Inner
Mongolia. The spatiotemporal changes of AGB are regu-
lated by interactions of climatic attributes, edaphic proper-
ties, grassland type and livestock. Using a machine-learning-
based approach, we map annual AGB (from 1981 to 2100)
across the Inner Mongolian grasslands at the spatial reso-
lution of 1 km. We find that on the regional scale, meadow
steppe has the highest annual AGB, followed by typical and
desert steppe. Future climate change characterized mainly by
warming could lead to a general decrease in grassland AGB.
Under climate change, on average, compared with the histor-
ical AGB (i.e. average of 1981–2019), the AGB at the end
of this century (i.e. average of 2080–2100) would decrease
by 14 % under Representative Concentration Pathway (RCP)

4.5 and 28 % under RCP8.5. If the carbon dioxide (CO2)
enrichment effect on AGB is considered, however, the es-
timated decreases in future AGB can be reversed due to the
growing atmospheric CO2 concentrations under both RCP4.5
and RCP8.5. The projected changes in AGB show large spa-
tial and temporal disparities across different grassland types
and RCP scenarios. Our study demonstrates the accuracy of
predictions in AGB using a modelling approach driven by
several readily obtainable environmental variables and pro-
vides new data at a large scale and fine resolution extrapo-
lated from field measurements.

1 Introduction

Grassland occupies ∼ 40 % of the world land and is an es-
sential component of global terrestrial ecosystems (Hufkens
et al., 2016). Grassland provides plenty of ecosystem ser-
vices such as supplying food to livestock and therefore meat
and milk to humans (Sattari et al., 2016) and accumulating
carbon from the atmosphere, thus mitigating global warm-
ing (O’Mara, 2012). All of these functions are more or less
directly dependent on grassland biomass, which has been
recognized to be significantly influenced by environmen-
tal changes and anthropogenic activities (Hovenden et al.,
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2019). Thus, quantifying the dynamics of grassland biomass
and revealing the underlying mechanisms are of fundamental
importance (Andresen et al., 2018).

Dynamics of grassland aboveground biomass (AGB) are
driven by complex interactions among a series of environ-
mental attributes such as climate variables (De Boeck et al.,
2008; H. Wang et al., 2020). The magnitudes and directions
of climate change effects on AGB can vary across different
local environments as well. For example, climate warming
can either contribute to AGB accumulation through reduc-
tion of constraints on low temperature (Gonsamo et al., 2018;
Park et al., 2019) or go against AGB formation by aggravat-
ing water stress on plant growth (Fan et al., 2009; Hu et al.,
2007). In addition, in most existing studies, the mean an-
nual climate attributes (e.g. temperature and precipitation)
have widely been treated as potential drivers on spatiotem-
poral variations in grassland biomass (Fan et al., 2009; Ma et
al., 2008). However, growing evidence has demonstrated the
importance of seasonality and intra-annual variability of cli-
mate in regulating the biomass dynamics (Godde et al., 2020;
Grant et al., 2014). For example, Peng et al. (2013) reported
that variations in seasonal precipitation significantly alter
the annual net primary productivity (NPP) in Inner Mon-
golian grasslands. To date, climatic seasonality and intra-
annual variability have seldom been considered in assess-
ing grassland AGB, particularly at large extents of space and
time. Moreover, recent studies have suggested the possible
co-regulating effects of soil properties (Bhandari and Zhang,
2019; Jia et al., 2011), grassland type and grazing inten-
sity (Eldridge and Delgado-Baquerizo, 2017) on AGB, which
have also seldom been included in exploring the spatiotem-
poral changes in grassland AGB. Comprehensively consider-
ing these covariates, rather than including only a few mean
annual climatic attributes, provides an opportunity to more
accurately predict grassland AGB dynamics and disentangle
the response of AGB to the complex interactions between
environmental drivers.

Inner Mongolian grasslands account for more than half
of China’s northern temperate grassland area and have the
nation’s largest grassland biomass carbon stock (Piao et al.,
2004). The annual productivity in this region tends to vary
in response to climate change (Bai et al., 2008). Since the
start of the 1980s, warming has been taking place in many
parts of Inner Mongolia (Wang et al., 2019). Under this
temperature rise, the spatiotemporal variation in grassland
AGB, however, is still unclear. Although efforts have been
made to quantify AGB dynamics at the regional scale, these
studies used mainly remote-sensing approaches and gener-
ally showed large disparities (Guo et al., 2016; Long et al.,
2010; Ma et al., 2010a). Evidence from datasets indepen-
dent of remote-sensing products can certainly contribute to
the assessments of spatiotemporal dynamics of AGB at the
regional scale. In addition, the climate in the future is pro-
jected to experience substantial changes (IPCC, 2007) and
thus significantly affect grassland AGB dynamics, while little

is known about the fate of AGB under future climate changes.
Furthermore, it has been reported that carbon dioxide (CO2)
enrichment may increase plant productivity through enhanc-
ing photosynthetic rates and reducing stomatal conductance,
thereby increasing water use efficiency (Fay et al., 2012; Pa-
store et al., 2019). This might provide an opportunity to mit-
igate or even reverse the harmful effects of other environ-
mental changes on grassland AGB (Lee et al., 2010), e.g. the
enhanced water limitations resulting from climate warming.
The actual effects of CO2 enrichment on AGB, however, de-
pend substantially on local environmental factors such as wa-
ter availability (Brookshire and Weaver, 2015) and soil tex-
ture (Polley et al., 2019).

In this study, we collate a comprehensive dataset of in situ
measurements on plant biomass and climatic records in Inner
Mongolian grasslands from six long-term experiments and
those data from existing literature. We calibrate and validate
a machine-learning-based model for predicting the above-
ground biomass in the study region, by treating tens of en-
vironmental covariates (climates, soils, livestock and grass-
land type) as predicting variables. Then, we map the annual
aboveground biomass at a spatial resolution of 1 km over the
periods of 1981–2019 (using historical climatic dataset) and
2020–2100 (using climate projections driven by two repre-
sentative concentration pathways (e.g. Representative Con-
centration Pathway (RCP) 4.5 and RCP8.5)). We also include
the possible effects of atmospheric CO2 enrichment on future
grassland AGB dynamics in the study region.

2 Materials and methods

2.1 Study region and datasets of grassland
aboveground biomass

The study region (i.e. Inner Mongolian grasslands) is charac-
terized mainly by a temperate climate (Q. Zhang et al., 2020)
and thus is named Inner Mongolian temperate grasslands as
well, which can be generally classified into three categories,
i.e. meadow steppe, typical steppe and desert steppe (Na-
tional Research Council, 1992). In brief, meadow steppe is
distributed mainly in the eastern areas, typical steppe locates
mostly in central Inner Mongolia and desert steppe is found
mainly to the west of typical steppe (Fig. 1). In this study, we
acquired two datasets of in situ aboveground biomass (AGB)
in Inner Mongolian grasslands. First, we obtained the AGB
at six long-term (i.e. more than 30 years) experimental sites
across the study region (Fig. 1 and Wang, 2020). These six
sites were established by the Inner Mongolia Meteorological
Bureau of China in the early 1980s; measurements of AGB
at each site have been carried out year by year since then.
At each site, four fenced plots (i.e. four replicates) were set
up to collect plant biomass data during plant growing sea-
sons (e.g. from May to September). For each measurement
replicate, the plants within a 1 m2 area were clipped and col-
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Figure 1. Spatial distribution of grassland aboveground biomass ob-
servations and climatic stations in Inner Mongolia. The Inner Mon-
golian grasslands are grouped into three categories (i.e. meadow
steppe, typical steppe and desert steppe). Observations of grass-
land biomass were both derived from the six long-term experimen-
tal sites and data synthesis of existing studies. The ground climatic
records were obtained from the National Meteorological Informa-
tion Centre (NMIC) of China.

lected in a cloth bag. The samples were further air-dried to
constant weights (weighed once every 3 d until the percent
change in two consecutive weights is less than 2 %). It is
noted that plant growth rate could peak at different periods
across time and space. Following Scurlock et al. (2002), we
determined the annual plant biomass as the largest observed
monthly biomass during a year (normally at the end of Au-
gust at Ergün and at the end of September at three other sites).
Apart from measurements of these six long-term field experi-
ments, we also retrieved a dataset of grassland AGB from Xu
et al. (2018), who recently conducted a thorough literature
synthesis and established a comprehensive dataset of plant
biomass in the grasslands of northern China. For the dataset
constructed by Xu et al. (2018), we used only the observa-
tions conducted in Inner Mongolian grasslands and with in-
vestigation time and coordinates clearly reported (Fig. 1). In
general, the grassland AGB derived from these two different
datasets (i.e. long-term experiments and literature synthesis)
is comparable (Fig. S1 in the Supplement). In total, we ob-
tained 511 individual measurements across 247 locations in
the study region (Fig. 1, Wang, 2020).

2.2 Environmental covariates

Environmental covariates including climate, soil, grassland
type and livestock were retrieved for both AGB driver as-
sessment and machine-learning-based model fitting. For cli-
matic covariates, we first obtained the daily climatic records
of 120 climatic stations established in Inner Mongolia
(Fig. 1) from the National Meteorological Information Cen-
tre (NMIC) of China. The daily climatic attributes such as

minimum, average and maximum temperature and precip-
itation were transformed into monthly time series data us-
ing the daily2monthly function in the R package hydroTSM.
Based on these monthly data, we calculated 23 bioclimatic
variables (Table 1) with an annual time step over the period
of 1981–2019 by using the biovars function in the R pack-
age dismo. By doing so, we aim to comprehensively consider
the possible effects of seasonality and intra- and inter-annual
variability of climates (Fick and Hijmans, 2017) on grass-
land AGB. By further applying an interpolation algorithm
(Thornton et al., 1997) to these 23 bioclimatic variables at
the 120 stations, we created the raster layers of the climatic
attributes with a spatial resolution of 1 km year by year. For
the edaphic covariates, we directly extracted 10 raster soil
layers representing key soil physical and chemical properties
(Table 1) at a 1 km spatial resolution in the study region from
the ISRIC-WISE soil profile database (Batjes, 2016).

The grazing intensity in this study was represented by
the quantity of three key livestock (i.e. cattle, goat and
sheep; Table 1) because they make up the majority of live-
stock in the Inner Mongolian grasslands (National Bureau
of Statistics of China, 1981–2019). Here, we first derived
the regional distribution data for cattle (Fig. S2a), goats
(Fig. S2b) and sheep (Fig. S2c) in 2010 in the study re-
gion from Gilbert et al. (2018). Then, we obtained the yearly
total of each livestock in the study region (Fig. S2d) from
the National Bureau of Statistics of China (1981–2019).
By assuming a similar spatial distribution of livestock over
time, we generated raster layers of each of the three live-
stock types year by year over the past 4 decades using the
above-mentioned two datasets. In addition, a spatial layer
of grassland type (i.e. meadow steppe, typical steppe and
desert steppe; Fig. 1 and Table 1) at 1 km resolution was de-
rived from the Vegetation Map of China (Zhang, 2007), the
digital version of which is publicly obtainable (http://data.
casearth.cn/sdo/detail/5c19a5680600cf2a3c557b6b, last ac-
cess: 29 May 2020).

2.3 Machine learning models to predict grassland AGB

To predict grassland aboveground biomass (AGB) across the
region, we generated a suite of machine-learning-based pre-
dictive models for AGB treating edaphic and climatic vari-
ables, grassland type and livestock (Table 1) as candidate
predictors. Here, data from the 511 measurements (Fig. 1 and
Wang, 2020) were used to fit the models. For the spatial lay-
ers of soil properties and grassland type, which were assumed
to be constant over time, we retrieved the associated co-
variates using the geographical coordinates of the 511 mea-
surements. For those variables varying over time (e.g. cli-
matic variables and livestock), we extracted the associated at-
tributes using both the locations and investigation year of the
511 measurements. In fitting the models, AGB is treated as
a dependent variable, and the environmental covariates (Ta-
ble 1) are treated as independent variables. Before fitting the
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Table 1. The environmental covariates used in this study.

Covariates Code Description Unit

Edaphic variables CFRAG Coarse fragments (> 2 mm) %
BULK Bulk density g cm−3

ORGC Organic carbon g kg−1

SDTO Sand content %
CLPC Clay content %
STPC Silt content %
TAWC Available water capacity cm m−1

TOTN Total nitrogen g kg−1

CNrt C : N ratio –
PHAQ pH measured in H2O –

Climatic variables T1 Annual mean temperature ◦C
T2 Mean diurnal range ◦C
T3 Isothermality (T2/T7× 100) %
T4 Temperature seasonality (standard deviation× 100) ◦C
T5 Max temperature of warmest month ◦C
T6 Min temperature of coldest month ◦C
T7 Temperature annual range (T5–T6) ◦C
T8 Mean temperature of wettest quarter ◦C
T9 Mean temperature of driest quarter ◦C
T10 Mean temperature of warmest quarter ◦C
T11 Mean temperature of coldest quarter ◦C
P1 Annual precipitation mm
P2 Precipitation of wettest month mm
P3 Precipitation of driest month mm
P4 Precipitation seasonality (coefficient of variation) %
P5 Precipitation of wettest quarter mm
P6 Precipitation of driest quarter mm
P7 Precipitation of warmest quarter mm
P8 Precipitation of coldest quarter mm
MATG Mean annual temperature during growing season ◦C
MATNG Mean annual temperature during non-growing season ◦C
MAPG Mean annual precipitation during growing season mm
MAPNG Mean annual precipitation during non-growing season mm

Grassland type – Meadow, typical and desert steppe –

Livestock – Cattle, sheep and goats head km−2

models, we converted the categorical variables (i.e. grassland
type) to dummy variables. This is to avoid simply deducing
the dependent variables in a certain category using the inde-
pendent variables (e.g. climate variables) in other categories
in building the models. Then, the function findCorrelation
in R package caret was used to exclude the environmental
covariates with high multicollinearities. Following Brown-
lee (2020), the remaining attributes were further adopted in
model training (80 % stratified samples) and validation (the
remaining 20 % stratified samples). We used a 10-fold cross-
validation to train a suite of machine learning models using
three algorithms (i.e. random forest (RF), cubist and support
vector machines (SVMs)), which are implemented in the R
package caret. The amount of variance in AGB explained
by each model was assessed by the coefficient of determi-

nation (R2). The root-mean-square error (RMSE, kg ha−1)

was also calculated (RMSE=
√∑n

i=1
(Pi−Oi )

2

n
, where n is

sample size and Pi and Oi are the ith predicted and ob-
served AGB, respectively) to compare the model simulations
and observations. Apart from the three individual machine-
learning-based models, we also derived an ensemble model
by adopting a principal component analysis (PCA) approach
based on the predictions of the above-mentioned three mod-
els. In brief, the smaller an individual model’s RMSE, the
more the model’s outputs contribute to the ensemble predic-
tions.
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2.4 Assessment of drivers on AGB

We used three approaches to explore the effects of envi-
ronmental covariates on grassland AGB. First, the machine
learning models themselves provide assessments of the rel-
ative importance (RI) of each independent variable in pre-
dicting the dependent variable (e.g. grassland AGB in this
study). In general, the greater the RI of a variable, the larger
its influence on AGB. Second, we adopted the Mantel test
(Mantel, 1967) to assess the relationship between similarity
of different grassland types and the similarity of environmen-
tal covariates using the R package vegan. Here, the standard-
ized Mantel’s r (ranges from 0 to 1) is used to represent the
strength of this relationship (the higher the Mantel’s r , the
stronger the correlation), and the associated significance is
indicated by the P value determined from 999 randomiza-
tions (Legendre and Fortin, 1989). Third, we conducted a
path analysis by using three latent variables, i.e. climate, soil
and livestock, to evaluate their regulating effects on AGB.
For each latent variable of climate and soil, the specific in-
dicators were pre-identified using the above-mentioned R
function findCorrelation to exclude those attributes with high
multicollinearities. In constructing the inner model matrix of
the path model, we hypothesized that all three latent vari-
ables have direct effects on AGB, and climate may also indi-
rectly affect the dependent variable through influencing soil
properties (Luo et al., 2019). Here, we adopted the partial
least-squares (PLS) approach (Sanchez, 2013) and used the
R package plspm to perform the path analysis. In interpret-
ing the path analysis results, it is noted that the loadings of an
indicator show the correlations between a latent variable and
its indicators. All the indicators were standardized before the
path analysis was performed.

2.5 Regional mapping and uncertainty analysis

Using the fitted machine-learning-based ensemble model, we
mapped AGB in Inner Mongolian grasslands (at a spatial
resolution of 1 km) on an annual time step in the history
(1981–2019) and future (2020–2100). In mapping the his-
torical AGB, the model is run using environmental covariates
extracted from the regional data layers (see Sect. 2.2). Predic-
tion uncertainty was quantified using a Monte Carlo analysis
to develop the probability density functions (PDFs) for each
edaphic, climatic and livestock variable within the ranges of
mean ±10 %. The ensemble machine learning model was
then run for 200 times in each grid with each independent
variable assigned from the PDF. The average and coefficient
variation (CV, calculated as the standard deviation divided
by the average) were then determined in each grid using the
200 model outputs to represent the predicted AGB and the
associated uncertainty, respectively.

For predictions of AGB in the future (i.e. 2020–2100), we
included the climatic datasets projected by a typical CMIP5
global circulation model, i.e. CESM1-BGC, which was run

by the National Center for Atmospheric Research (NCAR).
Here, we directly obtained the processed climatic products
constructed by Karger et al. (2020), who recently generated
downscaled and bias-corrected temperature and precipita-
tion datasets. Specifically, these future climatic datasets were
driven by two scenarios of representative concentration path-
ways (RCP4.5 and RCP8.5) at a monthly step in this cen-
tury. According to the model projections, mean annual tem-
perature (MAT) under both RCPs will continue to increase
in the following decades (Fig. S3a). The extent of climate
warming is generally higher under RCP8.5 than that under
RCP4.5 (Fig. S3a). The mean annual precipitation under both
RCPs shows large inter-annual variabilities (Fig. S3b). After
obtaining the future climate datasets, we also use the bio-
vars function in the R environment (see Secxt. 2.2) to cal-
culate the 23 bioclimatic attributes of interest (Table 1) for
both RCPs year by year from 2020 to 2100. In projecting the
future AGB dynamics using the ensemble machine learning
model, we assume that the soil properties will not signifi-
cantly change over time and current grazing intensity will
keep relatively stable (i.e. the average number of livestock
during 2014–2019 is used in future predictions). In addition,
the uncertainty analysis for future AGB predictions was per-
formed using the same approach as that adopted in mapping
the historical AGB. Moreover, the CO2 concentrations have
been projected to increase under the two RCPs (i.e. RCP4.5
and RCP8.5) used in this study (Fig. S4a). The growing CO2
concentrations can either increase AGB through enhanced
photosynthetic rates (Fay et al., 2012; Lee et al., 2010) or
have limited influences because of other environmental con-
straints on plant growth (Brookshire and Weaver, 2015). In
this study, we deduced future AGB dynamics both including
and not including the effect of CO2 enrichment on grassland
AGB. In including CO2 enrichment effect, we used the rela-
tionship between CO2 concentration and aboveground NPP
(ANPP) based on long-term experimental data derived from
Polley et al. (2019). Here, we assumed a general linear re-
sponse of AGB to increased CO2 concentrations; i.e. an in-
crease of 100 ppm in CO2 leads to an increase of 850 kg ha−1

in grassland AGB (Fig. S4b). This linearly positive effect of
CO2 on AGB is further applied to the model-predicted fu-
ture AGB (i.e. the AGB not including CO2 enrichment ef-
fect). In brief, we used the annual CO2 concentrations un-
der each RCP scenario in the future (Fig. S4a) and the aver-
age annual CO2 concentration over 2014–2019 as a baseline,
together with the relationship between changes in CO2 and
AGB (Fig. S4b), to determine the increment in AGB in each
year from 2020 to 2100. All statistical analyses and graphi-
cal productions in this study were performed in R v3.6.3 (R
Development Core Team, 2020).
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Figure 2. Aboveground biomass distribution across different grass-
land types in Inner Mongolia. See Fig. 1 for the spatial distribution
of the three grassland types in Inner Mongolia.

3 Results

The field measurements indicate that, on average, above-
ground biomass (AGB) in Inner Mongolian grasslands is
1700 kg ha−1, ranging from 220 kg ha−1 (2.5 % confidence
interval (CI)) to 4827 kg ha−1 (97.5 % CI, Fig. 2). Across
the three grassland types, meadow steppe has the highest
AGB (2561 Mg ha−1 ranging from 736 to 5537 Mg ha−1),
followed by typical steppe (1496 Mg ha−1 ranging from 213
to 4418 Mg ha−1), and desert steppe has the lowest AGB
(835 Mg ha−1 ranging from 234 to 1928 Mg ha−1, Fig. 2).

The fitted three individual machine learning algorithms
(i.e. RF, cubist and SVM) can explain overall 32 %–48 % of
the variance in observed AGB (Fig. 3a, b and c). The en-
semble model of the three algorithms can better simulate the
observations than any of those individual models (Fig. 3).
On average, 52 % of the variance in the observations can
be explained by the ensemble model (Fig. 3d). Although the
variable importance differed among the three algorithms, cli-
matic and livestock variables seem to substantially regulate
the AGB dynamics (Fig. S5). After excluding the covari-
ates with high multilinearities, the remaining 10 climatic at-
tributes, 5 edaphic variables and 3 livestock predictors gen-
erally show small autocorrelations (Fig. 4a). The Mantel
test suggests that, compared to the edaphic and livestock at-
tributes, the climatic variables are in general stronger corre-
lators of AGB in the three grassland types (Fig. 4a). Further-
more, the path analysis suggests that AGB shows small cor-
relations with climate (using the 10 climatic indicators shown
in Fig. 4a) and soil (reflected by the five edaphic properties
shown in Fig. 4a) while significantly and positively corre-
lating with livestock (Fig. 4b). We also found that climate

can indirectly affect AGB via its influence on soil (Fig. 4b).
It should be noticed that the small average magnitude with
large variabilities of the loadings for climate (Fig. 4b) sug-
gests the corresponding indicators for climate may distinctly
affect AGB dynamics. It should also be noted that the overall
performance of the fitted path model (R2

= 0.22, Fig. 4b) in
explaining the variability of AGB is much poorer than that
of the machine learning models (Fig. 3). This indicates the
complex interactions between the environmental drivers in
regulating AGB dynamics.

The model-simulated average AGB during 1981–2019
(Fig. 5a) and under RCP4.5 (Fig. 5b) and RCP8.5 (Fig. 5c)
in the future shows large spatial variations. On average, the
regional AGB during the past 4 decades is 1438 kg ha−1, and
the corresponding lower and upper limits of the 95 % CI are
479 and 2284 kg ha−1, respectively (Fig. 5a). Across grass-
land types, meadow steppe has the highest average AGB
(2194 Mg ha−1 ranging from 1153 to 2631 Mg ha−1), fol-
lowed by typical steppe (1552 Mg ha−1 ranging from 539
to 2200 Mg ha−1) and desert steppe (893 Mg ha−1 ranging
from 405 to 1341 Mg ha−1, Fig. 5a). Spatially, the average
coefficient of variation (CV) in the predictions is lowest in
meadow steppe (10.5 %), followed by desert steppe (14.6 %)
and typical steppe (21.8 %, Fig. 5d). Over 1981–2019, the re-
gional average AGB displayed a decreasing trend (Fig. 6a).
Among the three grassland types, the historical changes in
AGB (Fig. 6b, c and d) are in general consistent with that of
the total Inner Mongolian grassland AGB (Fig. 6a). More-
over, the long-term field observations also show large inter-
annual variabilities in the grassland biomass (Fig. 7) and can
support our predicted temporal biomass dynamics at the re-
gional scale (Fig. 6). For example, at four of the six sites,
AGB showed a general decreasing trend (Fig. 7).

If the CO2 enrichment effect on AGB is not considered,
our predicting results show that future AGB in general de-
creases under both RCPs (i.e. RCP4.5 and RCP8.5, Fig. 6a
and Table 2). Compared with the historical AGB (i.e. aver-
age AGB during 1981–2019, hereafter the same), on average,
AGB at the end of this century (i.e. average of 2080–2100,
hereafter the same) would decrease by 14 % under RCP4.5
and 28 % under RCP8.5, respectively (Table 2). The de-
creases in AGB under future climate change show large dis-
parities across different grassland types and climate change
scenarios. Compared with the historical average AGB, AGB
at the end of this century under RCP4.5 is estimated to de-
crease by a smaller extent (i.e. 10 %) in meadow steppe than
that in typical (16 %) and desert steppe (21 %, Table 2). In
general, AGB under RCP8.5 would decrease by larger ex-
tents compared with those under RCP4.5. Under RCP8.5, the
average AGB at the end of this century is estimated to experi-
ence 24 % (in meadow steppe), 30 % (in typical steppe) and
25 % (in desert steppe) reductions, compared with the av-
erages over 1981–2019 (Table 2). The magnitudes and spa-
tial patterns of CV in the simulations under both RCP4.5
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Figure 3. Performances of models to predict grassland aboveground biomass (AGB). (a) Random forest (RF); (b) cubist; (c) support vector
machines (SVM); (d), the ensemble model of (a)–(c). For each individual model, 80 % of the stratified samples of observations were used
for model calibration, with the other 20 % used for validation. R2 and RMSE show the coefficient of determination and root-mean-square
error of model validations. In model calibrations, the R2 is 0.82, 0.66 and 0.43 for RF, cubist and SVM, respectively, and RMSE is 359, 460
and 579 kg ha−1 for RF, cubist and SVM, respectively.

Figure 4. Environmental drivers of aboveground grassland biomass (AGB). (a) The correlation matrix of environmental drivers and Mantel
test results. The upper triangle shows the pairwise comparisons of predicting variables, with a colour gradient denoting Spearman’s corre-
lation coefficient. Taxonomic grassland type (i.e. meadow, typical and desert steppe) was related to each environmental factor by a partial
(geographic-distance-corrected) Mantel test. Line colour represents the statistical significance, and line width denotes Mantel’s r statistic for
the corresponding distance correlations. (b) The path analysis results of the direction and magnitude of the effects of latent variable climate
(reflected by T2, T3, T5, T8, T9, P2, P3, P4, P8 and MAPNG), soil (using CFRAG, BULK TAWC, CNrt and PHAQ as indicators) and
livestock (using cattle, goats and sheep as indicators) on AGB. Numbers in parentheses represent the loadings (correlation coefficients) of
the indicators to the latent variables. See Table 1 for descriptions of each variable, and see details in the Materials and methods section for
the statistical analysis.

(Fig. 5e) and RCP8.5 (Fig. 5f) are comparable with those
during the period of 1981–2019 (Fig. 5d).

If the CO2 enrichment effect on AGB is included, the pre-
dicted losses in future AGB can be reversed under both RCP
scenarios and over different grassland types (Fig. 8). By the
end of this century, the regional average AGB is increased
by 63 % under RCP4.5 and 232 % under RCP8.5 compared
with the average AGB during 1981–2019 (Fig. 8a, Table 2).
The magnitudes of increases in future AGB differ across dif-
ferent grassland types. For example for RCP4.5, the average
AGB at the end of this century is estimated to increase by

40 % in meadow steppe, 55 % in typical steppe and 102 % in
desert steppe compared with their counterparts during 1981–
2019 (Fig. 8b, c and d, Table 2). The increases in AGB are
much larger under RCP8.5 than those under RCP4.5. On av-
erage, under RCP8.5, the AGB at the end of this century is
projected to enhance by 147 %, 212 % and 394 % in meadow,
typical and desert steppe, respectively, compared with those
over 1981–2019 (Fig. 8b, c and d, Table 2).
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Figure 5. Spatial patterns of Inner Mongolian grassland aboveground biomass (AGB) and the uncertainties in terms of coefficient of varia-
tions (CV). The upper panels show the average gridded AGB over 1981–2019 (a) and under two climate change scenarios (RCP4.5 b and
RCP8.5 c) over 2020–2100. The lower panels (d, e, f) exhibit the associated CV of the upper panels. Please note that these estimations were
derived from simulations without considering the atmospheric CO2 enrichment effects on AGB.

Figure 6. Temporal variations in the predicted average aboveground biomass (AGB) in Inner Mongolian grasslands. Each year, data are
averages of all the 1 km× 1 km grids (a) and across a certain grassland type at the regional scale (b, c, d). It should be noticed that these
estimations were derived from simulations without considering the atmospheric CO2 effects on AGB.
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Table 2. Summary of Inner Mongolian grassland aboveground (AGB) biomass during different periods.

CO2 enrichment effects Climate change scenario Period AGB across grassland types (kg ha−1, mean±SD)

Meadow Typical Desert All

Not included

RCP4.5

2020–2039 1934± 112 1345± 201 918± 287 1304± 181
2040–2059 1837± 171 1223± 235 768± 340 1174± 249

2060−2079 1916± 117 1312± 184 779± 275 1253± 191
2080–2100 1965± 97 1306± 170 702± 279 1237± 181

RCP8.5

2020−2039 1902± 107 1269± 156 740± 294 1206± 163
2040–2059 1862± 142 1230± 245 733± 304 1165± 252
2060–2079 1800± 123 1219± 193 722± 308 1169± 202
2080–2100 1672± 140 1087± 156 666± 236 1033± 162

Included

RCP4.5

2020–2039 2187± 161 1597± 224 1171± 340 1557± 220
2040–2059 2520± 199 1906± 264 1451± 346 1857± 272
2060–2079 2919± 143 2315± 217 1782± 295 2256± 223
2080–2100 3067± 103 2408± 172 1804± 283 2339± 184

RCP8.5

2020–2039 2274± 166 1642± 176 1113± 307 1579± 177
2040–2059 3012± 261 2380± 314 1882± 345 2315± 310
2060–2079 4097± 331 3517± 351 3018± 471 3466± 360
2080–2100 5423± 470 4838± 503 4417± 585 4784± 512

Figure 7. Temporal changes in aboveground biomass (AGB) in the
six long-term filed experiments in Inner Mongolian grasslands. The
table inside shows the linear trends (slope, kg ha−1 yr−1) in AGB
and the significance (reflected by P value).

4 Discussion

Our results, based on AGB observations derived from six
long-term field experiments and literature synthesis, indicate
the large spatial disparities in aboveground biomass across

different grassland types (Fig. 2). This gradient spatial pat-
tern in AGB is comparable with that of Ma et al. (2008), who
carried out comprehensive field measurements and investi-
gated 113 locations in Inner Mongolian temperate grasslands
during 2002–2005. On the regional scale, we mapped grass-
land AGB at high spatial resolution, which shows that AGB
generally decreases from north-eastern to south-western ar-
eas in the study region (Fig. 5a). Such a spatial pattern is
also consistent with the maps generated from remote sens-
ing derivations (Fig. S6). This demonstrates the accuracy
of our data-driven predictions of AGB. It should be noted
that existing mapping products of grassland AGB use mainly
remote sensing approaches requiring inputs from satellite-
based datasets (Guo et al., 2016; Jiao et al., 2019; Ma et
al., 2010a). Our fitted machine learning model, however,
uses only several readily obtainable environmental covari-
ates (Fig. 4 and Table 1). Our results demonstrate the abil-
ity of machine learning approaches to effectively extrapolate
grassland AGB to much larger spatiotemporal extents (e.g.
Figs. 5 and 6).

Our simulation results show that, under the climate warm-
ing over the past 4 decades (Fig. S3), the average AGB gener-
ally experienced a declining trend in the study region (Fig. 6).
This may partly support the possible negative effects of tem-
perature rise on AGB that have been widely reported (De
Boeck et al., 2008; H. Wang et al., 2020), particularly in
arid and semi-arid ecosystems (Ma et al., 2010b). This harm-
ful influence of warming on AGB is explainable. For exam-
ple, in a system restrained by water availability (e.g. tem-
perate grassland), warming can not only inhibit plant photo-
synthesis (Xu and Zhou, 2005) but also enhance evaporation
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Figure 8. Estimated future aboveground biomass (AGB) in Inner Mongolian grasslands when the CO2 enrichment effects on AGB are
considered. The temporal changes in AGB of all Inner Mongolian grasslands (a), meadow (b), typical (c) and desert (d) steppe are presented.

and further intensify water stress (De Boeck et al., 2006),
thereby decreasing grassland biomass. Precipitation has gen-
erally been recognized to have positive effects on AGB in
the temperate grasslands (Hovenden et al., 2019; Ma et al.,
2010a), which supports our findings in this study. For exam-
ple, the simulated average AGB is relatively higher in the
years with higher mean annual precipitation (e.g. 1998 and
2012) than that in other years (Fig. 6a). The importance of
precipitation on AGB can be more reflected by the spatial
patterns of these two attributes; e.g. AGB is much lower in
the more arid regions (Fig. 5a) where soils suffer more se-
vere water deficiencies. Apart from climatic factors, our re-
sults also demonstrate the co-regulating effects of soil con-
ditions and livestock on the dynamics of grassland AGB as
indicated by the machine learning models (Fig. S5) and the
path analysis model (Fig. 4b). For example, the increasing
trend in livestock over the past 4 decades (Fig. S2d) is gen-
erally in line with the overall decreasing trend in the con-
temporary AGB (Fig. 6a). It should be noted that the major
drivers of the simulated temporal changes in AGB (Fig. 6)
can vary during different periods in this study due to data un-
availability, particularly for livestock. Specifically, AGB dy-
namics over 1981–2019 is co-regulated by changes in both
climate and livestock (Figs. S2, S3 and S5). In future sce-
nario simulations (e.g. 2020–2100, Fig. 6); however, AGB
variations are predominantly controlled by climate since a
constant grazing intensity was adopted over time in future
predictions (see Materials and methods). We admit that the
actual grazing intensity can vary over time in the future under
different RCP scenarios, and simply assuming a stable graz-
ing intensity over time can lead to substantial biases in AGB

estimations. We need novel approaches to derive the tempo-
ral variations in grazing intensity at larger temporal extents.

Our estimations indicate that AGB can be substantially in-
creased under future CO2 enrichment (Fig. 8). Here, several
uncertainties and limitations should be noticed in interpreting
our results. First, the gradient of CO2 concentrations in Pol-
ley et al. (2019), which is used to derive the effect of CO2 en-
richment on AGB, has a smaller range (i.e. 250 to 500 ppm)
than those under RCP8.5 (i.e. around 900 ppm by the end of
this century, Fig. S4a). Here, extrapolations of such a rela-
tionship between CO2 concentration and AGB to larger ex-
tents of CO2 concentrations can lead to substantial uncer-
tainties in estimations of AGB. Second, the local soil (Fay et
al., 2012) and climatic (Brookshire and Weaver, 2015) fac-
tors can modify the actual CO2 enrichment effect on AGB,
which may also result in large uncertainties in the quanti-
fied AGB. For example, any stimulation in plant growth is
constrained by the availability of other resources required
by plant growth (Reyes-Fox et al., 2014) such as soil water
availability (Brookshire and Weaver, 2015). Consequently,
the magnitude of the increases in AGB induced by CO2 en-
richment estimated in this study, particularly under RCP8.5,
can be largely overestimated due to possible deficiencies of
either nutrients or water required by plant growth (S. Wang
et al., 2020).

We also notice that our model predictions show larger
inter-annual variations in AGB (Fig. 6a) than those in the
estimations based on remote-sensing approaches (Fig. S6).
In fact, the remote-sensing-derived AGB has also been bias-
corrected by the field measurements (Jiao et al., 2019). Con-
sequently, this disparity could be related to the difference of
observed AGB datasets used in different studies. Specifically,
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the measurements of biomass used to calibrate remote sens-
ing data (normalized difference vegetation index (NDVI)) in
Jiao et al. (2019) were generally conducted during 2001–
2015. Extrapolations of these observations from the short
term (e.g. 2001–2015) to the much longer term (e.g. 1982–
2015) might lead to underestimations in the long-term in-
terannual variabilities. Our study, however, integrates the in-
situ-observed data from six long-term (1982–2015) field ex-
periments (Fig. 1), which can potentially better represent the
AGB over larger temporal scales. It is noteworthy that the
accuracy of our predictions on future grassland AGB relies
substantially on the robustness of future climate change pro-
jections simulated by the global circulation models (GCMs)
(e.g. CESM1-BGC). However, although CESM1-BGC (like
all the other CMIP5 models) can simulate changes in temper-
ature reasonably well, it may not predict precipitation well,
particularly for eastern China which is affected by large-scale
atmospheric circulations (Huang et al., 2013). In addition,
the effects of solar radiation (Yu et al., 2021; J. Zhang et
al., 2020) and its complex responses to dust aerosol (Fu et
al., 2009; Qi et al., 2013; Wang et al., 2013) on plant pho-
tosynthesis and biomass formation were not considered in
this study, which can be another source of uncertainties in
the estimated AGB under future climate change. Last but
not least, the assumption of space-for-time substitution has
been widely debated and challenged (Johnson and Miyan-
ishi, 2008; Walker et al., 2010). Although grassland type
across space is treated as an independent predictor of AGB in
this study, we admit that using the spatial gradients of obser-
vations to predict AGB backward or forward in time may still
lead to large uncertainties. Consequently, caution should be
exercised in interpreting the modelled future grassland AGB
in this study.

5 Conclusions

Our results demonstrate that the aboveground biomass in In-
ner Mongolian grasslands shows large spatial and temporal
variations during the past 4 decades, which is driven by a se-
ries of environmental covariates. Particularly, current climate
change characterized mainly by warming together with an in-
creased grazing intensity can have negative effects on grass-
land AGB. The decreases in AGB, however, can potentially
be reversed by the positive effects of atmospheric CO2 en-
richment. In addition, our results demonstrate that adopting
a machine learning model approach with only a few readily
obtainable environmental predictors can accurately capture
AGB dynamics, which enables extrapolations of AGB across
larger spatiotemporal extents. Moreover, our study provides
new data on annual AGB in Inner Mongolian grasslands at
fine spatial (1 km) and temporal (yearly) resolutions at large
temporal scales (1981–2100).
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