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Abstract. Height-resolved air mass source attribution is cru-
cial for the evaluation of profiling ground-based remote sens-
ing observations, especially when using lidar (light detection
and ranging) to investigate different aerosol types throughout
the atmosphere. Lidar networks, such as EARLINET (Euro-
pean Aerosol Research Lidar Network) in the frame of AC-
TRIS (Aerosol, Clouds and Trace Gases), observe profiles of
optical aerosol properties almost continuously, but usually,
additional information is needed to support the characteri-
zation of the observed particles. This work presents an ap-
proach explaining how backward trajectories or particle po-
sitions from a dispersion model can be combined with geo-
graphical information (a land cover classification and manu-
ally defined areas) to obtain a continuous and vertically re-
solved estimate of an air mass source above a certain loca-
tion. Ideally, such an estimate depends on as few as possible
a priori information and auxiliary data. An automated frame-
work for the computation of such an air mass source is pre-
sented, and two applications are described. First, the air mass
source information is used for the interpretation of air mass
sources for three case studies with lidar observations from
Limassol (Cyprus), Punta Arenas (Chile) and ship-borne off
Cabo Verde. Second, air mass source statistics are calculated
for two multi-week campaigns to assess potential observa-
tion biases of lidar-based aerosol statistics. Such an auto-
mated approach is a valuable tool for the analysis of short-
term campaigns but also for long-term data sets, for example,
acquired by EARLINET.

1 Introduction

Tracing air mass transport through a turbulent atmosphere is
(still) a complex problem, especially since the transport of
aerosols and, consequently, the interactions with clouds, pre-
cipitation and radiation are required to capture the 4D history
of an air parcel. When it comes to practical application, such
as the analysis of aerosol observations or aerosol–cloud in-
teraction studies, the ease of interpretation is often hindered
by the amount of data that needs to be considered.

The European Research Infrastructure on Aerosol, Clouds
and Trace Gases (ACTRIS) aims at investigating short-lived
components in the atmosphere, among them aerosols and
clouds. As part of ACTRIS, the European Research Lidar
Network, EARLINET (Pappalardo et al., 2014), operates li-
dar systems at more than 25 stations to observe atmospheric
states and compositions up to 30 km height. The complemen-
tary network of Cloudnet (Illingworth et al., 2007) utilizes
continuous synergistic observations of ground based instru-
ments such as ceilometers, cloud radars, microwave radiome-
ters and Doppler wind lidars to provide comprehensive cloud
observations within Europe and at key regions in the cli-
mate system. Both networks, as part of ACTRIS, need ad-
ditional, continuous information about air mass sources to
interpret the observations. Identifying the air mass source
region supports the characterization of new particles, e.g.,
during volcanic eruptions (Pappalardo et al., 2013) or strong
wildfires injecting aerosol into the stratosphere (Baars et al.,
2019). Also, for aerosol typing (e.g., Amiridis et al., 2015;
Wandinger et al., 2016; Papagiannopoulos et al., 2020; Nico-
lae et al., 2018; Mylonaki et al., 2020), air mass sources can
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provide an important constraint. Furthermore, operational
height-resolved air mass source information could improve
warning applications for hazardous events, as demonstrated
for EARLINET in the frame of the European EUNADICS-
AV exercise (European Natural Disaster Coordination and
Information System for Aviation; Papagiannopoulos et al.,
2020).

Models that simulate air mass transport can be broadly
grouped into trajectory models and particle dispersion mod-
els (overview provided by Fleming et al., 2012). Trajectory
models calculate the transport of a single air parcel imposed
by the mean meteorological fields. The model simulations
can be run either forward or backward in time, providing
information about the source and the destination of the air
mass, respectively, after a given transport time. Turbulence
and vertical motion during the transport are usually parame-
terized on the grid scale. Commonly used models are HYS-
PLIT (Hybrid Single-Particle Lagrangian Integrated Trajec-
tory model; Stein et al., 2015), FLEXTRA (flexible trajecto-
ries; Stohl et al., 1995) and LAGRANTO (Lagrangian analy-
sis tool; Wernli and Davies, 1997; Tarasova et al., 2009). Due
to the rather simple approach, the results are quite uncertain
(Seibert, 1993; Polissar et al., 1999), but computational re-
quirements are comparably low. A straightforward approach
for representing some of the variability is calculating spatial
or temporal ensembles of the trajectories (Merrill et al., 1985;
Kahl, 1993; Draxler, 2003). Lagrangian particle dispersion
models (LPDM), with a large number of particles, are set up
to cover turbulent and diffusive transport even more realisti-
cally (Stohl et al., 2002). The fate of each particle is tracked
individually, allowing more variability to be included into
the transport simulation. A frequently used LPDM is FLEX-
PART (FLEXible PARTicle dispersion model; Pisso et al.,
2019).

Generally, the representation of chaotic motion in the at-
mosphere improves with larger ensembles of trajectories or
increasing numbers of particles. But, with dozens to hun-
dreds of air parcel locations available, interpretation rapidly
becomes cumbersome. A number of infinitesimally small air
parcels grouped together gives an air mass, which is a larger
volume of air with similar properties. Residence times are a
well-established technique for attributing regional informa-
tion to air mass properties, such as being laden with aerosols,
moisture or trace gases (Ashbaugh, 1983; Ashbaugh et al.,
1985).

Using backward simulations of air parcel positions, analy-
sis of the residence time yields useful information about the
potential source region of an observed air mass. The basic
assumption is that the longer an air parcel was present in a
certain region, the more likely it will be influenced by the
surface characteristics. Hence, the dimensionality of an air
parcel’s 4D location can be reduced to the residence time.
Approaches for clustering backward trajectories by direction,
source regions or latitude are widely used. The majority fo-
cus on the interpretation of time series observations at single

heights – mostly close to ground (e.g., Escudero et al., 2011),
for aircraft intersects (e.g., Paris et al., 2010), or over a whole
region (Lu et al., 2012). More sophisticated approaches blend
the residence time with actual concentration measurements
(Stohl, 1996; Heintzenberg et al., 2013). However, these ap-
proaches require continuous concentration time series, which
are generally not available for remote sensing observations.
Furthermore, any profile information above the measurement
site is neglected.

When interpreting ground-based remote sensing obser-
vations, as obtained from aerosol lidars or cloud radars,
the air mass sources have usually been assigned by man-
ually selected periods (time and height above ground) that
seem interesting for further investigation and calculation of
backward transport for those specific cases (e.g., Müller
et al., 2007; Mattis et al., 2008). If air mass source es-
timates are required for longer time periods or multiple
heights, calculating, visualizing and interpreting the results
become tedious. Hence, a continuous, computationally ef-
ficient, easy to interpret and automated air mass source
estimate is required. To be broadly and easily applicable,
such a source estimate should not require extensive a pri-
ori information, such as clusters of trajectories or poten-
tial source contribution functions. The required approach is
intended to also be simpler than using a coupled aerosol
model, such as CAMS (Copernicus Atmosphere Monitoring
Service; Flemming et al., 2017), COSMO-MUSCAT (COn-
sortium for Small-scale MOdeling MUltiScale Chemistry
Aerosol Transport Model; Dipu et al., 2017) or ICON-ART
(ICOsahedral Nonhydrostatic Aerosols and Reactive Trace
gases; Rieger et al., 2015). Although these models can pro-
vide profiles of atmospheric composition, they usually do not
provide information on the source.

Herein, we propose a combination of automated backward
trajectory calculations and geographical information for the
setup of a simple, spatiotemporally resolved air mass source
attribution scheme. As a proxy for geographical information,
two products are used, namely a land cover classification
mask and manually defined geographical areas. The method-
ology is described in Sect. 2. A comprehensive, easy-to-use
software package is also provided. Earlier versions were al-
ready used in Haarig et al. (2017), Foth et al. (2019) and
Floutsi et al. (2021). Afterwards, two applications illustrate
the potential use cases. In the first example, the temporal
and vertical evolution of the air mass source is analyzed for
three lidar observations of different aerosol conditions from
Limassol (Cyprus), Punta Arenas (Chile) and on board R/V
Polarstern off Cabo Verde. In the second example, vertically
resolved air mass source statistics are used to assess potential
observation biases of long-term lidar-based aerosol statistics.
Two multi-week campaigns of the PollyNET (Baars et al.,
2016), as a part of EARLINET, are presented, namely Fi-
nokalia (Greece) and Krauthausen (Germany).
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2 Air mass source attribution method

In a conceptualized view, properties of an air parcel arriv-
ing over a location of interest are characterized by a certain
surface type if the air was close to the surface during its trav-
eled path. The proximity to the surface can be parameterized
as a reception height, which depends on the mixing state of
the atmosphere at this location and on the type of aerosol
particles that could potentially be emitted (i.e., mineral dust
or sea salt). Conceivable choices for the reception height are
the model-derived depth of the atmospheric boundary layer
or fixed thresholds. As a first estimate for the identification of
possible surface effects on an air parcel, 2 km is widely used
(Val Martin et al., 2018). It is assumed that the longer an air
parcel resides close to the surface, the more likely it will ac-
quire the aerosol footprint of the surface. The residence time
– the total time an air parcel spent over a certain surface and
below the reception height – is a first hint of the aerosol char-
acteristics of the air parcel.

The transport pathway of an air mass arriving over the site
can be computed using either mean-wind trajectories or a
particle dispersion model. Both approaches can be used with
the method proposed in this study. Mean wind trajectories
for the past 10 d are calculated using HYSPLIT (Stein et al.,
2015). To account for variability, ensemble trajectories con-
sisting of 27 members, spaced 0.3◦ horizontally and 220 m
vertically around the end point, are used (Fig. 1a). Meteoro-
logical input data for HYSPLIT are obtained from the Global
Data Assimilation System data set at 1◦ horizontal resolution
(GDAS1) and are provided by the Air Resources Labora-
tory (ARL) of the U.S. National Weather Service’s National
Centers for Environmental Prediction (NCEP; ARL Archive,
2019). The location of the air parcel is stored in 1 h steps.
A more realistic representation of turbulence and mixing can
be achieved using a LPDM, which simulates the pathway of
hundreds to thousands of particles. Here, the most recent ver-
sion of FLEXPART (Stohl et al., 2005; Pisso et al., 2019) is
used. Meteorological data are obtained from the GFS (Global
Forecast System) analysis at a horizontal resolution of 1◦

(NCEP et al., 2000). For each height, 500 particles are used,
with the particle positions being stored every 3 h. These sim-
ulations are run every 3 h, with height steps of 500 m for the
whole period of interest.

In this work, the surface is classified by two methods. The
first method is based on a simplified version of the MODIS
land cover classification (Friedl et al., 2002; Broxton et al.,
2014). The 17 categories of the original data set are grouped
into seven categories according to Table 1 in order to allow
for robust statistics in the output (Fig. 2). Additionally, the
horizontal resolution is reduced to 0.1◦. The categories do
not resolve the annual cycles, for example, due to growing
seasons. The second method involves custom defined areas
as polygons, named according to their geographical context
(Fig. 3). These areas can be tailored to the measurement lo-
cation and/or scientific interest.

Table 1. Overview of how the MODIS land surface categories trans-
late into the simplified categories used in this study. MODIS cate-
gory numbers as in Broxton et al. (2014).

MODIS category Simplified category

0 Water
1, 2, 3, 4, 5, 6 Forest
7, 8, 9 Savanna/shrubland
10, 11, 12, 14 Grassland and/or cropland
13 Urban
15 Snow
16 Barren

The residence times at each time and height step are
summed for each land cover class or polygon, where the air
parcel was below the reception height. Within this study, the
widely applicable reception height threshold of 2 km is used
(Val Martin et al., 2018). Different settings can be easily ap-
plied to study events which are entrained at greater heights,
such as wildfire smoke emission or volcanic eruptions. The
vertical air mass transport during such events is usually not
accurately covered by atmospheric models. Setting the recep-
tion height to the maximum emission height of such events
(as can be estimated, e.g., from satellite observations) can
bypass the uncertainties in the modeled vertical motion. The
residence times for each category and each height can then
be visualized as a profile (Fig. 1b). Where the residence time
is 0, no air parcels were observed below the reception height
during the duration of the backward simulation. In the ex-
ample shown in Fig. 1b, above 5 km height, no air masses
resided at heights below 2 km above the ground in the previ-
ous 10 d. The theoretical maximum residence time (in hours)
depends on the number of trajectories or particles n, the du-
ration of backward calculation d in days and the interval of
output 1o in hours as follows:

tmax = nd
24
1o

. (1)

To illustrate the temporal evolution, successive air mass
source profiles can be shown one after another. This visu-
alization condenses the 4D history of a multitude of trajec-
tories (or thousands of particle positions) to a quickly under-
standable summary, which structures information on air mass
source into a time–height cross section. Such a format is usu-
ally obtained from vertically or nadir-pointed active ground-
based remote sensing observations (e.g., Fig. 4).

3 PollyXT lidar observations

The air mass source estimate is used to interpret observa-
tions conducted with the PollyXT lidar (Engelmann et al.,
2016). PollyXT is equipped with backscatter channels at
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Figure 1. Example of how the residence time profile is calculated. HYSPLIT ensemble backward trajectories (a) and FLEXPART particle
positions (c) ending above Limassol on 14 September 2017, 00:00 UTC, at 3 km height. The number of FLEXPART particles is reduced by a
factor of 4 in this visualization (i.e., 10 000 instead of 40 000). A time-resolved version with all particles is provided in the Supplement. Air
parcel height is color coded. The simplified MODIS land surface classification (Fig. 2) is shown in the background. The profiles of normalized
residence time with a reception height threshold of 2km for HYSPLIT ensemble trajectories (b) and FLEXPART particle positions (d) are
shown.

Figure 2. The simplified MODIS land cover classification. Details are given in the text.
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Figure 3. The custom defined geographical areas for Limassol, Fi-
nokalia, Krauthausen (all shown in a), Punta Arenas (b) and the
Atlantic transit (c). Locations of the sites are also marked on the
respective maps.

1064, 532 and 355 nm and Raman and depolarization chan-
nels at the shorter two wavelengths. The optical properties
are derived using the automated PollyNET retrieval (Baars
et al., 2016, 2017; Yin and Baars, 2020) and manual anal-
ysis of single profiles. One product of the PollyNET re-
trieval is the quasi backscatter coefficient, where the at-
tenuated backscatter is corrected for molecular extinction.
For this approach, the background, range and dead-time-
corrected lidar profiles are normalized by the so-called lidar
calibration parameter (also sometimes called the lidar con-
stant even though it is not constant) which is derived from
Raman or Klett retrievals (see Baars et al., 2016). This nor-
malization gives the attenuated backscatter coefficient from
ground (note that, for the same atmospheric scene, the atten-
uated backscatter measured from ground is different to the
one measured from space as it is not corrected for attenu-
ation by molecules and particles). The molecular contribu-
tion to the atmospheric backscattering and extinction can be
calculated from pressure and temperature profiles; the atten-
uated backscatter coefficient is corrected for the molecular

scattering. Furthermore, an assumption of a fixed lidar ratio
is applied on the attenuated backscatter corrected for molec-
ular contribution to account for a first guess of the particulate
attenuation. This procedure gives the quasi particle backscat-
ter coefficient, which is a good proxy for the real particle
backscatter coefficient that cannot yet be obtained at a high
temporal resolution for all atmospheric scenes. More details
are covered in Baars et al. (2017).

PollyXT was deployed to various field campaigns and
longer-term measurements during the last 15 years (Baars
et al., 2016). A broad variety of meteorological conditions
and aerosol regimes was covered. The multi-wavelength ob-
servations of PollyXT contain unique fingerprints of the ob-
served aerosol types from different source regions (Illing-
worth et al., 2015).

In Sects. 4 and 5, the air mass source attribution will
be applied to selected case studies and measurement cam-
paigns in order to demonstrate its applicability for deter-
minating the air mass source regions and for the estimate
of potential observation biases. The case studies are chosen
from deployments of PollyXT to Limassol (Cyprus; 34.7◦ N,
33.0◦ E; 12 m above sea level (a.s.l.); October 2016 to March
2018), Punta Arenas (Chile; 53.1◦ S, 70.9◦W; 10 m a.s.l.;
November 2018 and ongoing) and the Atlantic transit of
R/V Polarstern in 2018 when passing Cabo Verde (18.1◦ N,
21.3◦W to 21.3◦ N, 20.8◦W). The estimate of potential ob-
servation biases is done for two multi-week campaigns. One
at Krauthausen (Germany; 50.9◦ N, 6.4◦ E; 99 m a.s.l.) took
place for 8 weeks in April–May 2013 and the second one
was at Finokalia (Greece; 35.3◦ N 25.7◦ E; 250 m a.s.l.) for
6.5 weeks in June–July 2014.

4 Application to lidar case studies

4.1 Saharan dust off the coast of West Africa

A lofted layer of dust was observed on 30 and 31 May 2018
by a PollyXT system on board R/V Polarstern (Strass, 2018)
as the ship steamed between Cabo Verde and the African
mainland (18.1◦ N, 21.3◦W to 21.3◦ N, 20.8◦W) on her tran-
sit north from Punta Arenas (Chile) to Bremerhaven (Ger-
many). A detailed description of the event and optical prop-
erties of the observed aerosol were already reported by Yin
et al. (2019).

Figure 4 illustrates the temporal evolution of the observed
aerosol plume by means of a time–height cross section of the
1064 nm quasi particle backscatter coefficient for the time
period from 30 May 06:00 UTC to 31 May 06:00 UTC. Yin
et al. (2019) already discussed this case, especially the pe-
riod from 16:00 to 17:00 UTC (their Fig. 14). Optical pa-
rameters from the Raman analysis during the following night
from 22:00 to 23:00 UTC are shown in Fig. 5 (period marked
in Fig. 4a with a horizontal orange bar). According to the
optical properties, Yin et al. (2019) argued that the lowest
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Figure 4. (a) Quasi particle backscatter coefficient at 1064 nm observed by PollyXT on board R/V Polarstern close to Cabo Verde on 30
and 31 May 2018. Moving average smoothing of eight range bins (60 m) and 10 temporal bins (5 min) was applied. The red overlays show
the Klett-derived particle backscatter coefficient from the automated algorithm at 532 nm. The time period of manual analysis (see text) is
marked by a horizontal orange bar. (b) Volume depolarization ratio at 532 nm for the same period. No smoothing was applied.

1 km was dominated by marine particles and a certain con-
tribution from European continental aerosol. Patchy, liquid
clouds were observed at the boundary layer top, especially
around 09:00 and 19:00 UTC. At larger heights, between 1.8
and 5.2 km height, a Saharan dust plume with extinction val-
ues as large as 700 Mm−1 was present. Lidar ratios were 60 sr
and particle linear depolarization ratios at 532 nm of 0.35.
The low Ångström exponent between the 532 and 355 nm
backscatter coefficients is consistent with values reported by
Veselovskii et al. (2016) and Rittmeister et al. (2017). Yin
et al. (2019) corroborate their findings by ensemble calcula-
tions of HYSPLIT backward trajectories for selected arrival
heights and times. However, this way of presentation is rather
selective, as information for different heights and times can
hardly be shown. This is where the benefit of the continuous

air mass source estimate becomes evident. Figure 6 presents
the results of the air mass source estimate for the land sur-
face classification and geographical areas for both the HYS-
PLIT (Fig. 6a, c) and the FLEXPART simulations (Fig. 6b,
d). The estimates based on HYSPLIT and FLEXPART show
a good general agreement. The heights and times of certain
surface types and geographical regions agree qualitatively.
Before 12:00 UTC on 30 May 2018, FLEXPART derived a
lower residence time from barren and grassland regions or
Africa, respectively. With respect to Fig. 4, this seems to
be reasonable as the layer was rather faint at the beginning
of the shown measurement period. Besides this difference,
both the HYSPLIT and FLEXPART approaches provide a
concise picture of the likely source regions of the observed
aerosol. Below 1.5 km height, the air mass was marine dom-
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Figure 5. Profiles of optical properties on 30 May 2018, between 22:00 and 22:59 UTC, manually derived with the Raman method. A vertical
smoothing of 35 bins (262.5 m) was applied.

Figure 6. Air mass source estimate from 06:00 UTC on 30 May 2018 to 06:00 UTC on 31 May 2018 for the land surface classification (a, b)
and the named geographical areas (b, d), based on HYSPLIT ensemble trajectories (a, c) and FLEXPART particle positions (b, d).

inated, with a small contribution of European grass and/or
cropland. At heights between 2 and 4 km, barren areas from
Africa are the main source, but a considerable fraction is also
attributed to African grass/cropland and savanna. This find-
ing supports the observations presented by Yin et al. (2019),
who already discussed that there was likely a small non-dust

fraction in the upper layer as the particle depolarization ratio
profile was not constant at all heights. A potential reason for
the observed discrepancy in the observations from pure dust
conditions could be the presence of wildfire smoke stemming
from the crop/grassland and savanna. In comparison to the li-
dar observations, the top of the layer was slightly underesti-
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mated by the air mass source estimate. The temporal extent is
also fully captured. Variability in backscatter within the layer
is not represented by the air mass source estimate because
the strength of dust mobilization is insufficiently parameter-
ized by the reception height. However, the air mass trans-
port is correctly covered by both estimates. Interestingly, the
air mass source estimation for this case provides some in-
formation with an added value with respect to the lidar ob-
servations. As both HYSPLIT and FLEXPART approaches
indicate, North American air masses were present in the up-
per troposphere during the time of the observation, which,
however, had too low an aerosol load to be detectable by the
PollyXT lidar.

4.2 Saharan and Arabian dust at Limassol, Cyprus

On 14 September 2017 an upper level shortwave trough
moved eastward from the Aegean Sea towards Cyprus.
Above 1 km height, the wind turned from southwest to south
during the course of the day, with velocities ranging between
5–15 m s−1, whereas, below the 1 km height, wind velocity
was lower and the direction was more variable.

The time–height cross section of quasi particle backscat-
ter observed by PollyXT at Limassol shows two pronounced
aerosol layers above the boundary layer (Fig. 7). The first
layer was observed between 1 and 2 km height from 00:00
to 09:00 UTC and a second, thicker layer after 03:00 UTC.
Until nighttime, this layer increases in thickness from bases
at 3 km and tops at 4.5 km height to bases at 1.2 km and
tops at 6.5 km height. The boundary layer itself is also laden
with aerosols and shows significant backscatter below 1 km
height.

The optical parameters of the aerosol plume were ana-
lyzed for two periods, namely 02:59–04:02 UTC in the morn-
ing and 21:41–22:39 UTC in the evening (periods marked
in Fig. 7a with horizontal orange bars). The profiles from
the morning period (Fig. 8) show, for the lower layer at
1.8 km height, particle depolarization ratios of 0.25 (355 and
532 nm) and low Ångström values and lidar ratios around
40 sr (355 and 532 nm). These optical parameters and their
independence of wavelength are typical for aerosol mix-
tures with a high dust fraction. Extinction in this layer peaks
at 72 Mm−1 (355 and 532 nm). The second layer, above
2.5 km height, has particle backscatter values of less than
2 Mm−1 sr−1 (at 355 nm) and 0.5 Mm−1 sr−1 (at 532 nm).
Ångström values are slightly higher than in the lower layer,
varying between one and two. The particle depolarization ra-
tios, at both the 355 and 532 nm wavelength, are between
0.05 and 0.10. This upper layer during the morning is al-
ready the leading edge of the second plume that increased in
thickness during the day (both geometrically and optical). As
shown in Fig. 7b, the volume depolarization ratio increased
only slowly during the averaging period.

During the evening (Fig. 9), the upper layer extended
from 1.3 to 6 km height and shows homogeneous and mostly

wavelength-independent optical properties throughout. Par-
ticle depolarization ratios were between 0.10 and 0.15, with
532 nm values slightly higher than those at 355 nm. Lidar ra-
tios in that layer were 35 sr, typical for Middle Eastern dust
(Mamouri et al., 2013; Nisantzi et al., 2015), while the par-
ticle depolarization ratio hints towards a mixture of mineral
dust and anthropogenic pollution (e.g., Tesche et al., 2009).

The air mass source estimate (Fig. 10) identifies trans-
port from barren-ground-influenced air from the Sahara until
09:00 UTC. Later, corresponding to the change in wind di-
rection, the source for the air aloft is identified as Arabian
Peninsula but is still in the barren class. Below 1 km height,
a mixture of surfaces was observed, originating mostly form
Europe. Comparing the source estimate based on HYSPLIT
(Fig. 10a, c) with the one from FLEXPART (Fig. 10b, d),
both models agree qualitatively well again. While the gen-
eral transition was captured by the source estimate, the lead-
ing edge of the Arabian Peninsula plume was observed over
Limassol earlier than indicated. The increase in the thickness
of this plume is represented in the source estimate as well.

4.3 Biomass burning aerosol at Punta Arenas, Chile

Punta Arenas is located in a region where the atmosphere
is known to be clean and one of the least affected by an-
thropogenic influences (Hamilton et al., 2014). Neverthe-
less, events of aerosol long-range transport occur occasion-
ally (Foth et al., 2019; Floutsi et al., 2021). Due to the large
distance between Punta Arenas and the aerosol source re-
gions, an attribution of observed aerosol events is, in gen-
eral, rather complicated. The application of air mass source
estimates for the characterization of an aerosol long-range
transport event is presented here. An upper-level ridge was
located off the Chilean coast on 20 May 2019, which also
supported a surface high-pressure system. At Punta Arenas,
the flow was zonal throughout the troposphere. Within that
flow, long-range transport from across the Pacific Ocean oc-
curred.

In the PollyXT observations from 20 May 2019 a layer of
increased backscatter is present from 02:00 UTC to roughly
10:00 UTC. This layer extends from 3 km to above 6 km
height (Fig. 11). From 14:00 to 18:00 UTC a low-level liquid
cloud was observed at 1.5 km height. The cloud was optically
thick enough to significantly attenuate the laser beam, caus-
ing a lack of signal above the cloud’s top. Occasional cirrus
clouds also enhanced the backscatter in the free troposphere,
e.g., at 12:00 UTC, between 4 and 5 km. The values of parti-
cle backscatter peaked at 0.3 Mm−1 sr−1 (Fig. 12), which are
significantly lower values than reported for the prior cases.
In the period analyzed, extinction values were approximately
15 Mm−1, giving lidar ratios well above 50 sr and rather low
linear particle depolarization ratios. Altogether, these optical
parameters agree with prior findings of wildfire smoke in the
troposphere (Tesche et al., 2011; Burton et al., 2012; Groß
et al., 2013; Veselovskii et al., 2015).
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Figure 7. (a) Quasi particle backscatter coefficient at 1064 nm observed by PollyXT at Limassol on 14 September 2017. Moving average
smoothing of eight range bins (60 m) and 10 temporal bins (5 min) was applied. The red overlays show the Klett-derived particle backscatter
coefficient at 532 nm. The time periods of manual analysis (Figs. 8 and 9) are marked by horizontal orange bars. (b) Volume depolarization
ratio at 532 nm for the same period. No smoothing was applied.

The air mass source estimate is also able to capture this
faint aerosol layer. Fig. 13 shows that air masses from Aus-
tralia were present between 03:00 and 09:00 UTC from 3 to
6 km height. In terms of land cover class, these air masses
were characterized by savanna/shrubland and grass. Wild-
fires were active in southwestern Australia between 10 and
16 May 2019, which is also the region where the backward
simulations end (Fig. A1). Apart from the described period,
the air masses were solely influenced by the Southern Ocean
(i.e., the water class). FLEXPART simulations (Fig. 13b, d)
agree with the HYSPLIT results; however, the computed
temporal extent and the residence times are slightly longer
for the latter. Hence, the air mass source scheme is also capa-
ble of capturing aerosol transport at hemispheric (i.e., more
than 10 000 km) scales.

5 Assessing potential observation biases

Vertically resolved aerosol statistics are prone to observa-
tion biases, as they usually depend on cloud-free conditions.
When clouds or precipitation are present, no aerosol prop-
erties can be obtained from optical techniques. However, re-
spective statistics, for example, obtained from lidar obser-
vations, provide key quantities for the determination of the
environmental conditions at a certain site (Matthias et al.,
2004; Winker et al., 2013; Baars et al., 2016). It is therefore
an open question whether the data from suitable (cloud-free)
measurement periods are representative for the full observa-
tional period. Chances are that cloudy conditions are related
to certain air masses which would stay unidentified in the
lidar-based statistics of aerosol optical properties. One way
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Figure 8. Profiles of optical properties on 14 September 2017, between 02:59 and 04:02 UTC, manually derived with the Raman method.
A smoothing of 99 range bins (742.5 m) was applied. The abbreviation NR indicates the profiles observed with the larger field of view
near-range telescope.

Figure 9. Profiles of optical properties on 14 September 2017, between 21:41 and 22:39 UTC, manually derived with the Raman method. A
smoothing of 99 range bins (742.5 m) was applied. The abbreviation of NR indicates profiles observed with the larger field of view near-range
telescope.

to assess this bias is to compare the air mass residence time
statistics of the full observational period with the one sub-
sampled to the times when aerosol information is available.

When applied to lidar data, the automatically analyzed
profiles of particle backscatter at 532 nm from Baars et al.
(2016) are used. In their work, the raw profiles are grouped
into 30 min chunks, cloud screened, averaged and analyzed
by either the Klett or the Raman method to see if signal-to-
noise ratio is high enough for a reference height to be set. All
profiles that pass a basic quality control are then included in
the backscatter statistics. Obviously, this statistic will only

be intermittent, due to overcast cloud conditions or interrup-
tions in the measurement. Subsampling the air mass source
statistics is done by selecting only the air mass source pro-
files that are temporally close to a valid lidar profile. A time
threshold of 1.5 h is used for the following statistics. How-
ever, covering representative air mass conditions is only a
necessary condition and not a sufficient for obtaining repre-
sentative aerosol statistics.

PollyXT observations at Krauthausen (Germany; April–
May 2013) and Finokalia (Greece; June–July 2014) are used
here. At Finokalia, 940 profiles could be analyzed with the
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Figure 10. Air mass source estimate on 14 September 2017 for the land surface classification (a, b) and the named geographical areas (b, d),
based on HYSPLIT ensemble trajectories (a, c) and FLEXPART particle positions (b, d).

Figure 11. Quasi particle backscatter coefficient at 1064 nm observed by PollyXT at Punta Arenas on 20 May 2019. Moving average smooth-
ing of eight range bins (60 m) and 10 temporal bins (5 min) was applied. The red overlay shows the Klett-derived particle backscatter coeffi-
cient at 532 nm. The time period of the manual analysis (Fig. 12) is marked by a horizontal orange bar.

Klett method. Hence, the particle backscatter statistic cov-
ers 457.7 h, which is 42 % of the campaign duration. The
statistics of particle backscatter are shown in Fig. 14a. For
the Krauthausen deployment, 315 profiles could be analyzed
with the Klett method, covering 154.2 h or 11 % of the cam-
paign. Figure 15a shows the particle backscatter statistics.

Profiles of air mass source for the Finokalia deployment
are shown in Fig. 14b and c, again with a reception height
threshold of 2 km. The summed residence time of the sub-
sampled profiles is divided by the fraction of time covered
to make them comparable to the full residence time. Most
dominant land surface categories are water, barren ground
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Figure 12. Profiles of optical properties on 20 May 2019, between 02:50 and 04:30 UTC, manually derived with the Raman method. A
smoothing of range 153 bins (1147.5 m) was applied. The abbreviation NR indicates profiles observed with the larger field of view near-
range telescope.

Figure 13. Air mass source estimate on 20 May 2019 for the land surface classification (a, b) and the named geographical areas (b, d), based
on HYSPLIT ensemble trajectories (a, c) and FLEXPART particle positions (b, d).

and grass-/cropland. The residence time of air masses from
barren ground shows a pronounced maximum between 2 and
6 km height. The residence time of all other categories de-
creases monotonically. Air masses from urban and snow- or
ice-covered areas are 10–100 times less frequent than the
other categories.

In terms of geographical areas (Fig. 14c), Europe is the
most dominant source up to 3 km and again above 9 km
height. Between 3 and 6 km height, the Sahara is the most
dominant air mass source. During the campaign period, no
air masses from the Arabian Peninsula, that fulfilled the
< 2 km criterion were transported to Finokalia.
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Figure 14. Statistics of particle backscatter coefficient (a, as in Baars et al., 2016) and air mass source estimate, based on FLEXPART particle
positions for the Finokalia campaign of PollyXT in June and July 2014. The land surface classification (b) and the named geographical
areas (c) are shown for the full duration (solid lines) and subsampled only for the periods with available lidar data (dotted lines). The
subsampled residence times are divided by the fraction of the time covered. The reception height threshold is 2 km.

Figure 15. Statistics of particle backscatter coefficient (a, as in Baars et al., 2016) and air mass source estimate, based on FLEXPART particle
positions for the Krauthausen campaign of PollyXT in April and May 2013. The land surface classification (b) and the named geographical
areas (c) are shown for the full duration (solid lines) and subsampled only for the periods with available lidar data (dotted lines). The
subsampled residence times are divided by the fraction of time covered. The reception height threshold is 2 km.

The dominant sources are well covered by the lidar pro-
files in terms of land surface; only the barren class is sub-
sampled by a factor of 10 above 6.5 km height (Fig. 14b).
This agrees with the Sahara also being subsampled above
that height. Air masses originating over Europe were also
subsampled at heights above 5 km. An undersampling of po-
tentially aerosol-laden air masses by the lidar statistics will
cause the backscatter statistics to be biased as low values.

During the Krauthausen campaign, air masses originating
over water were the most frequent ones, followed by grass-
/cropland, forest, shrubland and barren ground (Fig. 15b).

Again, the residence times of the barren class show a dis-
tinct peak between 6 and 8 km height. Air masses from the
Sahara area agree with the barren class (Fig. 15c). As ex-
pected, Europe is the dominant air mass source in the low-
est 6 km height, but due to increasing residence times with
height for the Sahara source, both appear with equal fre-
quency in the upper troposphere. In the lidar observations,
Europe is potentially undersampled by 70 % between 1 and
10 km height, which is consistent with the grass/cropland and
forest class also being undersampled. Barren land surfaces
and the Sahara are oversampled by approximately 20 % up to
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7 km height. In the lowermost 2 km height, the land surface
classes urban and snow/ice also contribute to the air mass
mixture and are slightly oversampled.

6 Discussion and conclusions

In this study, we propose an easy-to-use method for a con-
tinuous, height-resolved automated air mass source estimate.
With the combination of air mass transport modeling and ge-
ographical information, the dimensionality can be reduced,
and straightforward visualizations accelerate the interpreta-
tion of air mass origin. The air mass source estimate can be
used to assist (profiling) aerosol observations, as aerosol load
and characteristics are strongly controlled by surface proper-
ties and atmospheric transport. Three case studies illustrated
the applicability at different sites and under different large-
scale flow conditions. In a second application, we showed
how the source estimate supports the interpretation of lidar
case studies and how potential observation biases can be in-
vestigated for longer-term campaigns.

The major constraints of the proposed method are dis-
cussed in the following. While the air mass transport itself is
generally covered well by trajectory models or LPDMs, link-
ing it to aerosol properties has to be done with care. First, the
reception height is modeled by using the mixing depth of the
input fields or fixed values for all surfaces and aerosol par-
ticles, where differences could be expected for dust, smoke
or wildfire smoke. Nevertheless, the assumption for a general
reception height might be valid and can be improved in fu-
ture. The 2 km height used in this work was also reported by
other studies (e.g., for wildfires Val Martin et al., 2018) and
seem to be applicable over wide ranges of climates and me-
teorological conditions. In summary, a high residence time
over a certain class is only a necessary, not a sufficient, con-
dition for the aerosol load of an air parcel.

Second, aerosol particles might be removed by (wet) de-
position between the source and observation site. Currently,
such processes are not sufficiently reproduced in trajectory
models or LPDMs as they require detailed representation of
aerosol microphysics and precipitation amount. Some im-
provements in this regard incorporated in the most recent ver-
sion of FLEXPART (Pisso et al., 2019). However, deposition
changes only the aerosol load of an air parcel and not the
air mass source itself. Judging from the air mass source resi-
dence times alone, this process cannot be distinguished from
cases in which no emission happened in the first place. These
questions could be addressed in future with a fully fledged
aerosol transport model that also includes a tracer of the air
mass origin, similar to the scheme shown here.

Some uncertainty is caused by the turbulent nature of the
transport. For HYSPLIT, a first estimate for the uncertainty
of a single parcel location is 20 % of the distance from the
trajectory’s origin (Stohl, 1998). Hence, for HYSPLIT, a
27-member ensemble was used to attribute this uncertainty.

Compared to HYSPLIT, the LPDM FLEXPART allows for
a more realistic representation of turbulent transport and bet-
ter sampling when using hundreds or thousands of particles.
However, a qualitatively good agreement between both sim-
ulations suggests that the presented air mass source estimate
is rather robust, considering uncertainty in the models.

In summary, the described compromises are necessary to
obtain a continuous, height-resolved, automated air mass
source estimate. The provided source code allows us to use
FLEXPART particle positions and HYSPLIT trajectories as
input. User-defined named geographical areas can be eas-
ily added. The runtime environment is provided as a docker
container, including FLEXPART v10.4. With that setup, 1 d
of air mass source estimate, with the resolution used in this
study, can be processed in less than 1 h on a standard desktop
computer (2.1 GHz processor; 4 GB RAM; single-threaded).

Such an automated air mass source estimate can provide
valuable auxiliary information for the analysis of long-term
data sets of profiling aerosol observations, such as those
collected in the network of EARLINET (Pappalardo et al.,
2014). The methodology could also be adapted to existing
and future space-borne lidar observations, e.g., CALIPSO
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation; Winker et al., 2009), Aeolus (Reitebuch, 2012)
or EarthCARE (Earth Clouds, Aerosols and Radiation Ex-
plorer; Illingworth et al., 2015). A first estimate of air mass
source could be used to constrain retrievals of optical param-
eters by narrowing the assumed lidar ratio, as in the case
of CALIPSO, or guide subsequent aerosol typing based on
intensive aerosol optical properties, as in the case of Aeo-
lus and EarthCARE. But, simulating enough air parcels with
sufficient along-track resolution might require further devel-
opment.

With respect to aerosol typing, downstream products, such
as estimates of concentration of cloud condensation nuclei
or ice nucleating particles (Ansmann et al., 2019, 2020), will
benefit from the air mass source estimate. Having air mass
source information available will advance the implementa-
tion of such retrievals into automatic processing, such as the
single calculus chain (D’Amico et al., 2015) for EARLINET
from the ground or for EarthCARE from space. Also, further
synergy between lidar target categorizations, such as Baars
et al. (2017) and the source estimate, remain subject to fur-
ther investigation.

Apart from the shown applications, the presented method-
ology can be utilized to assess profiles of air mass sources
when planning field campaigns. Questions on where, when
or how long to measure in order to capture a certain mix of
aerosol scenarios can easily be answered. In future, the pro-
posed method can be extended further by source maps, for
example, by dust source maps derived by the approach of
Feuerstein and Schepanski (2018) or temporally varying in-
formation on wildfires and snow and ice cover or biological
productivity.
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Appendix A

Figure A1. HYSPLIT ensemble backward trajectories ending above Punta Arenas on 20 May 2019, 06:00 UTC, at 5 km height, together
with the MODIS-derived fire radiative power (Giglio, 2000). Dots along the trajectories indicate the height of the air parcel in 12 h intervals.
MODIS-derived fire radiative power of fires between 10 and 16 May 2019 is gridded to 2◦.
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Code and data availability. The processing software,
as used for this publication, is available under
https://doi.org/10.5281/zenodo.4438051 (Radenz, 2021).
The most recent version is available via GitHub at
https://github.com/martin-rdz/trace_airmass_source (last access:
14 January 2021). A Docker configuration is provided for a straight-
forward replication of the programming environment, including all
dependencies. Meteorological fields for the backward simulations
were obtained from https://www.ready.noaa.gov/gdas1.php (ARL
Archive, 2019) and https://doi.org/10.5065/D6M043C6 (NCEP et
al., 2000). The data for the fire radiative power map are available
at https://doi.org/10.5067/FIRMS/MODIS/MCD14ML (Giglio,
2000). The analyzed PollyXT and air mass source data are available
on request.
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