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Abstract. Primary organic aerosols (POAs) are a major com-
ponent of PM2.5 in winter polluted air in the North China
Plain (NCP), but our understanding of the atmospheric ag-
ing processes of POA particles and the resulting influences
on their optical properties is limited. As part of the Atmo-
spheric Pollution and Human Health in a Chinese Megacity
(APHH-Beijing) program, we collected airborne particles at
an urban site (Beijing) and an upwind rural site (Gucheng,
Hebei province) in the NCP during 13–27 November 2016
for microscopic analyses. We confirmed that large numbers
of light-absorbing spherical POA (i.e., tarball) and irregu-
lar POA particles with high viscosity were emitted from do-
mestic coal and biomass burning at the rural site and were
further transported to the urban site during regional win-
tertime hazes. During the heavily polluted period (PM2.5
> 200 µg m−3), more than 60 % of these burning-related
POA particles were thickly coated with secondary inorganic
aerosols (named as core–shell POA–SIA particles) through
the aging process, suggesting that POA particles can provide
surfaces for the heterogeneous reactions of SO2 and NOx .
As a result, during the heavily polluted period, their average
particle-to-core diameter ratios at the rural and urban sites
increased to 1.60 and 1.67, respectively. Interestingly, we
found that the aging process did not change the morphology
and sizes of POA cores, indicating that the burning-related
POA particles are quite inert in the atmosphere and can be

transported over long distances. Using Mie theory we esti-
mated that the absorption capacity of these POA particles
was enhanced by ∼ 1.39 times in the heavily polluted pe-
riod at the rural and urban sites due to the “lensing effect” of
secondary inorganic coatings. We highlight that the lensing
effect on burning-related POA particles should be considered
in radiative forcing models and authorities should continue to
promote clean energy in rural areas to effectively reduce pri-
mary emissions.

1 Introduction

Atmospheric aerosol particles can affect regional and global
energy budgets by scattering or absorbing solar radiation,
modify microphysical properties of clouds by acting as cloud
condensation nuclei (CCN), and exert adverse effects on hu-
man health such as respiratory and cardiovascular diseases
(IPCC, 2013; West et al., 2016). With rapid industrializa-
tion and urbanization in the past decades, severe air pollu-
tion characterized by high concentrations of fine particulate
matter (PM2.5) frequently occurs in China, especially the
regional hazes in the North China Plain (NCP), which has
been the subject of wide concerns of the public, authorities,
and scientists (Sun et al., 2016). Many previous studies have
shown that synergetic effects from extensive emissions of
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primary particles and gaseous precursors, efficient secondary
aerosol formation, regional transport, and unfavorable me-
teorological conditions are the main factors contributing to
haze formation in the NCP (Chang et al., 2018; Liu et al.,
2016; Zhong et al., 2019). In particular, long-term measure-
ments have confirmed that wintertime haze episodes in Bei-
jing are commonly initiated by regional transport of air pollu-
tants from the south NCP (e.g., Hebei and Henan provinces)
under weak southerly winds and then evolve through mas-
sive secondary aerosol formation via heterogeneous reac-
tions (Ma et al., 2017; Sun et al., 2014; Zheng et al., 2015).

During the regional transport and evolution of haze
episodes, complex physical and chemical processes in the at-
mosphere, such as condensation, coagulation, and heteroge-
neous reactions, could largely alter the morphology, compo-
sition, size, and mixing state of individual particles, which
is also known as “particle aging” (Li et al., 2016a). Particle
aging could further influence the optical property, health ef-
fects, hygroscopicity, and CCN activity of aerosol particles,
although different types of particles might have different im-
pacts (Fan et al., 2020; Li et al., 2016b; Riemer et al., 2019).
Up to now, most of the studies conducted in the NCP have
mainly applied various online and offline bulk aerosol an-
alytical techniques (e.g., online aerosol mass spectrometry
(AMS) and offline ion chromatography (IC)) to explore mass
concentrations, possible sources, and formation mechanisms
of different aerosol components, such as sulfate, nitrate, and
organics (Chen et al., 2020; Cheng et al., 2016; J. Li et al.,
2020; Sun et al., 2016; Wang et al., 2020). However, knowl-
edge of the aging process of aerosol particles remains lim-
ited. Therefore, to further document the aging processes of
different particles in the NCP through microscopic individ-
ual particle analysis is of great significance for revealing the
particle transformation in the atmosphere and better assess-
ing the climatic effects of aerosols (Du et al., 2019; Li et al.,
2016a).

Field observations have shown that carbonaceous aerosols,
including organic aerosols (OAs) and black carbon (BC), are
the dominant components of PM2.5 during heating seasons
in the NCP, which usually account for more than 50 % of
the total PM2.5 (Liu et al., 2020; P. Liu et al., 2017; Zhang
et al., 2020). Source apportionments reveal that residential
coal and biomass burning in rural areas are the major con-
tributors to carbonaceous aerosols during wintertime hazes
in the NCP (Li et al., 2017). BC is the major light-absorbing
aerosol in the atmosphere and can strongly absorb solar ra-
diation and thus affect the regional and global climate (Bond
et al., 2013; D. Liu et al., 2017; Wang et al., 2014). In recent
years, several studies have documented well the aging pro-
cess of BC particles and revealed that secondary inorganic
and organic coatings (e.g., sulfate and organics) can signifi-
cantly enhance the light absorption capacity of the internally
mixed BC particles via the “lensing effect” (Chakrabarty and
Heinson, 2018; Wang et al., 2017). Recently, light-absorbing
organic aerosols, also known as brown carbon (BrC), have

been reported to be ubiquitous in the atmosphere in the NCP
(Wang et al., 2018; Xie et al., 2019). Many studies have
demonstrated that primary OAs (POAs) emitted from res-
idential coal and biomass burning are the major source of
BrC, and the chemical composition and optical properties
of BrC in freshly emitted POAs as well as the BrC in the
ambient atmosphere have been analyzed in detail using bulk
techniques such as mass spectrometry and UV–visible spec-
trophotometry (M. Li et al., 2019; X. Li et al., 2020; Song et
al., 2018; Sun et al., 2017; Yan et al., 2017). However, only
a few studies have characterized microscopic properties such
as the morphology and mixing state of fresh burning-related
POA particles by transmission electron microscopy (TEM)
(L. Liu et al., 2017; Zhang et al., 2018). The abundance and
aging process of burning-related POA particles in the atmo-
sphere and the resulting influences on their optical properties
remain unknown in the NCP.

This study, as part of the Atmospheric Pollution and Hu-
man Health in a Chinese Megacity (APHH-Beijing) program
(Shi et al., 2019), aims to explore the atmospheric aging pro-
cess of POA particles emitted from the residential coal and
biomass burning in rural areas following the regional trans-
port and evolution of haze episodes. Individual particle sam-
ples were collected in urban Beijing and the surrounding ru-
ral regions during the winter campaign and then were an-
alyzed by microscopic methods to obtain the morphology,
composition, size, and mixing state of different individual
particle types. Besides, bulk analyses of aerosol chemical
composition were also conducted to help understand the evo-
lution of haze episodes. We found that large numbers of POA
particles were emitted from domestic coal and biomass burn-
ing in winter in the NCP. For the first time, we character-
ized the aging process of such burning-related POA particles
based on microscopic analyses, and Mie theory was used to
further explore the resulting influences on their optical prop-
erties.

2 Experimental methods

2.1 Sampling sites and sample collections

Field observations were carried out simultaneously at the
Beijing (BJ) urban site (39◦58′27′′ N, 116◦22′16′′ E) and
Gucheng (GC) rural site (39◦08′58′′ N, 115◦44′00′′ E) dur-
ing 13–27 November 2016. The locations of the two sam-
pling sites in the NCP are displayed in Fig. 1a. The BJ urban
site, located on the rooftop of a two-story building (8 m above
ground level, a.g.l.) in the Tower Division of the Institute of
Atmospheric Physics, Chinese Academy of Sciences, is be-
tween the North 3rd Ring Road and North 4th Ring Road
and surrounded by commercial area and residential apart-
ments (Fig. 1b). The GC rural site, located on the rooftop
of a three-story building (12 m a.g.l.) at the Gucheng Inte-
grated Ecological–Meteorological Observation and Experi-
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mental Station of the Chinese Academy of Meteorological
Sciences in Dingxing County, Hebei province, is 120 km to
the southwest of the BJ urban site and surrounded by many
villages and farmlands (Fig. 1c). Detailed information about
the two sampling sites can be found in the introductory pa-
per of the APHH-Beijing program (Shi et al., 2019). The
24 h backward trajectories of air masses ending at the height
of 100 m a.g.l. over the BJ urban site (Fig. 1a) were calcu-
lated using the NOAA Air Resources Laboratory’s HYSPLIT
model (Stein et al., 2016).

At the BJ urban site, the species in non-refractory sub-
micron aerosols (NR-PM1) including organic matter (OM),
SO2−

4 , NO−3 , NH+4 , and Cl− were measured by a high-
resolution aerosol mass spectrometer (HR-AMS; Aerodyne
Research, Inc., USA). At the GC rural site, PM2.5 samples
were collected twice a day during the daytime (08:00 to
20:00) and nighttime (20:00 to 08:00 the next day) onto
90 mm diameter quartz filters (Pallflex 7204, Pall Corpo-
ration, USA) using a medium-volume sampler (TH-150A,
Wuhan Tianhong Instruments Co., Ltd., China) at a flow rate
of 100 L min−1. Field blank samples were collected for ap-
proximately 15 min without starting the sampler. The filters
were prebaked at 450 ◦C for 6 h before sampling to remove
any possible contaminants. All the collected samples were
sealed individually in aluminum foil bags and stored in a re-
frigerator at −20 ◦C for further analyses.

Individual particle samples were collected onto copper
(Cu) TEM grids coated by formvar and carbon films (car-
bon type-B 300 mesh, Beijing XXBR Technology Co., Ltd.,
China) at the GC rural and BJ urban sites using an indi-
vidual particle sampler (DKL-2, Qingdao Genstar Electronic
Technology Co., Ltd., China) at a flow rate of 1 L min−1.
The DKL-2 sampler consists of a single-stage impactor with
a 0.5 mm diameter jet nozzle. Sampling duration ranged
from 8 s to 3 min depending on the pollution levels to avoid
overlap of particles on the TEM grids. Individual particle
samples were placed in a clean and airtight container with
controlled temperature (T , 25± 1 ◦C) and relative humid-
ity (RH, 20± 3 %) for further analyses. Detailed informa-
tion about the individual particle samples collected at the two
sites is listed in Table S1 in the Supplement.

Meteorological parameters including T , pressure (P ), RH,
wind speed (WS), and wind direction (WD) were recorded
every 5 min at two sampling sites using a pocket weather sta-
tion (Kestrel 5500, Nielsen-Kellerman Inc., USA). Hourly
concentrations of PM2.5 and gaseous pollutants (i.e., SO2,
NO2, CO, and O3) during the sampling period at two
monitoring stations (i.e., Dingxing government station at
39◦15′42′′ N, 115◦48′06′′ E; Beijing Olympic Center station
at 40◦00′11′′ N, 116◦24′25′′ E) close to GC rural and BJ ur-
ban sites were downloaded from the website of an air qual-
ity online monitoring and analysis platform (https://www.
aqistudy.cn/, last access: 14 February 2021). All the data in
this study are presented in Beijing local time (UTC+8).

2.2 PM2.5 chemical analysis

PM2.5 samples collected at the GC rural site were analyzed
to obtain their water-soluble inorganic ions (WSIIs), organic
carbon (OC), and elemental carbon (EC). For the analysis of
WSIIs, two 16 mm diameter punches from each PM2.5 sam-
ple were put into a vial, followed by adding 20 mL of deion-
ized water (18.2 M�). Then these vials were placed in an
ultrasonic water bath for 30 min to extract WSIIs. The so-
lutions were further filtered using PTFE syringe filters with
a 0.45 µm pore size to remove insoluble components and
then analyzed by an ion chromatography system (Dionex ICS
600, Thermo Fisher Scientific, USA). Finally, concentrations
of three anions (Cl−, SO2−

4 , and NO−3 ) and five cations (Na+,
NH+4 , K+, Mg2+, and Ca2+) were obtained. Concentrations
of OC and EC in PM2.5 samples were determined by ana-
lyzing a 1× 1.5 cm2 punch from each filter with an OCEC
analyzer (Model 5L, Sunset Laboratory Inc., USA), which
adopted the NIOSH870 temperature protocol with thermal–
optical transmittance for charring correction. The OM con-
centration was estimated via multiplying the OC concentra-
tion by a factor of 1.6, based on previous studies (Xing et al.,
2013; Zheng et al., 2015).

2.3 AMS data analysis

The HR-AMS V-mode data were analyzed using standard
data analysis software (PIKA v1.56D). A constant collec-
tion efficiency (CE) of 0.5, similar to that of a previous study
conducted in winter at the BJ site (Sun et al., 2014), was
applied to the HR-AMS datasets to obtain mass concentra-
tions of NR-PM1 species. The relative ionization efficien-
cies used for OM, SO2−

4 , NO−3 , NH+4 , and Cl− were 1.4,
1.2, 1.1, 5.0, and 1.3, respectively. Positive matrix factoriza-
tion (PMF) is a receptor model to identify potential sources
without local source profiles provided (Xu et al., 2021). PMF
was performed on the high-resolution mass spectra of organ-
ics measured by the HR-AMS. Six OA factors were iden-
tified including fossil-fuel-related OA (FFOA), cooking OA
(COA), biomass burning OA (BBOA), oxidized primary OA
(OPOA), oxygenated OA (OOA), and aqueous-phase OOA
(aqOOA). Detailed information on the processing of HR-
AMS data can be found in a related paper during the same
campaign (Xu et al., 2019).

2.4 Individual particle analysis

Individual particle samples were analyzed using TEM (JEM-
2100, JEOL Ltd., Japan) operated at a 200 kV accelerat-
ing voltage to acquire the morphology and sizes of individ-
ual particles and mixing state (i.e., internally or externally
mixed) of different aerosol components within one individual
particle. The TEM instrument is equipped with an energy-
dispersive X-ray spectrometer (EDS; INCA X-MaxN 80T,
Oxford Instruments, UK) to semi-quantitatively detect the
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Figure 1. Locations of Beijing and Gucheng in the North China Plain (a) and the expanded view of surrounding topographies around the
Beijing urban site (b) and Gucheng rural site (c). The 24 h backward trajectories of air masses ending at the height of 100 m a.g.l. over the
Beijing urban site on clean days (20–23 November) and polluted days (24–27 November) during the observation are also shown in panel (a).
Map copyright © 2020 Google Maps.

elemental composition of individual particles with atomic
number greater than six (Z≥ 6). It should be noted that Cu
peaks in the EDS spectra are not considered due to the inter-
ference from the Cu substrate of TEM grids. The distribution
of aerosol particles on TEM grids is not uniform, with par-
ticle size decreasing from the center to the edge of the dis-
tribution area. Therefore, to ensure the analyzed particles are
representative, five grid meshes from the center to the edge
of the particle distribution area in each sample were selected
to conduct TEM analysis. TEM images were manually pro-
cessed by the RADIUS 2.0 software (EMSIS GmbH, Ger-
many) to determine the particle types, areas, perimeters, and
equivalent circle diameters (ECDs). After a labor-intensive
operation, a total of 1197 particles at the BJ urban site and
2443 particles at the GC rural site were analyzed.

A scanning electron microscope (SEM; Ultra 55, Carl
Zeiss Microscopy GmbH, Germany) was operated at a 10 kV
accelerating voltage and in the secondary electron (SE2)
mode to observe the particle surface topography. Further-
more, particles were imaged at a tilt angle of 75◦ to realize
the visualization of their morphology in the vertical dimen-
sion.

2.5 Optical property calculation

Mie theory has been widely used to calculate the optical
properties of individual particles by assuming a spherical
core–shell structure (Chylek et al., 2019; Wu et al., 2018; Yu
et al., 2019). In this study, the light absorption cross sections
(ACSs) of internally mixed POA particles with secondary in-

organic aerosol (SIA) shell (named as core–shell POA–SIA
particles), as well as the POA cores and bare POA particles
at the wavelength of 550 nm, were calculated with BHCOAT
Mie code (Bohren and Huffman, 1983). For details of the
classification of POA and POA–SIA particles, please refer
to Sect. 3.2. For the core–shell POA–SIA particles, a refrac-
tive index (RI) of 1.55−0i for non-light-absorbing SIA coat-
ing (Denjean et al., 2014) and 1.67−0.27i for light-absorbing
POA cores (Alexander et al., 2008) was adopted at the wave-
length of 550 nm; and the ECD of each POA–SIA particle
and its POA core obtained from the TEM images were used
as the input particle diameter (Dp) and core diameter (Dc),
respectively, in the Mie calculation, which made the calcu-
lation sufficient to approximate reality. Because a core–shell
structure is considered in the Mie model (Bond et al., 2006),
for the uncoated POA particles (including POA cores with-
out SIA shell and bare POA particles), the ECD of each POA
particle and 1/10 of it were input as the Dp and Dc, respec-
tively. Then in the case of causing the refractive index dif-
ference between the shell and core to vanish (i.e., POA core
and POA shell, RI= 1.67–0.27i), the Mie model can be ap-
plied to homogeneous particles. Besides, we also constructed
models of core–shell POA–SIA particles with different POA
core diameters (i.e., Dc= 100, 200, 300, 400, 500, 700, 900,
1100, 1300, and 1500 nm) and particle-to-core diameter ra-
tios (i.e., Dp/Dc ranged from 1 to 6 with an interval of 0.1)
and calculated their ACSs to further explore the effects of
Dc andDp/Dc changes on the light absorption enhancement
factors (Eabs) of POA particles.
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After running the Mie calculation, the attenuation effi-
ciency (Qatn), scattering efficiency (Qsca), and absorption
efficiency (Qabs) of an individual particle were output with
their definitions as follows (Aden and Kerker, 1951; Toon
and Ackerman, 1981):

Qatn =

(
2
x2

) ∞∑
n=1

(2n+ 1) [Re(an+ bn)] , (1)

Qsca =

(
2
x2

) ∞∑
n=1

(2n+ 1)
(
|an|

2
+ |bn|

2
)
, (2)

Qabs =Qatn−Qsca , (3)

where x = πD
λ

is the dimensionless size parameter of the par-
ticle diameter D and the wavelength of incident light λ, an
and bn are calculated from Riccati–Bessel functions of the
particle sizes and refractive indices (Bohren and Huffman,
1983), and the symbol Re denotes the real part of the com-
plex quantity an+bn. The ACS of a particle can be obtained
via multiplying the Qabs by the geometric cross section of
the particle shown as follows:

ACS=Qabs×
πD2

4
. (4)

3 Results and discussion

3.1 Overview of a regional haze episode

A typical regional heavy haze episode in the NCP
was observed at the GC rural and BJ urban sites
during 22–27 November 2016. Based on variations in
hourly PM2.5 concentrations, three pollution levels are
defined: clean (PM2.5≤ 75 µg m−3), moderate pollution
(75 µg m−3<PM2.5≤ 200 µg m−3), and heavy pollution
(PM2.5> 200 µg m−3). According to the above criteria, we
classified a clean period (21 November 00:00 to 22 Novem-
ber 19:00) and heavily polluted period (22 November 20:00
to 27 November 10:00) at the GC rural site and a clean pe-
riod (21 November 00:00 to 24 November 09:00), moder-
ately polluted period (24 November 10:00 to 25 November
16:00), and heavily polluted period (25 November 17:00 to
27 November 02:00) at the BJ urban site (Fig. 2). Further-
more, we divided the heavily polluted period at the GC rural
site into the early stage (22 November 20:00 to 23 November
20:00), middle stage (23 November 20:00 to 24 November
20:00), and late stage (24 November 20:00 to 27 November
08:00) based on the evolution of chemical species in PM2.5
(Fig. 2a). The average meteorological parameters and mass
concentrations of PM2.5, aerosol chemical species, OA fac-
tors, and gaseous pollutants in different periods at two sam-
pling sites are summarized in Table S2.

Strong northwesterly winds (> 4 m s−1) accompanied by
rain and snow invaded the NCP during 20–21 November
(Fig. S1), leading to fast dispersion of air pollutants (Figs. 2

Figure 2. Time series of PM2.5 and major aerosol chemical species
at the (a) Gucheng rural site and (b) Beijing urban site. Chemical
species were obtained by offline analysis of daytime (D) and night-
time (N) PM2.5 filter samples at the rural site and were obtained
by online analysis of NR-PM1 using a high-resolution aerosol mass
spectrometer (HR-AMS) at the urban site. The different periods of
the haze episode at rural and urban sites are marked in this figure.

and S2). The low T (−8 to 5 ◦C) and WS (< 2 m s−1) were
displayed after the cold front (Fig. S1), which can facilitate
the accumulation of air pollutants (Zhong et al., 2019). At the
GC rural site, PM2.5 concentration began to increase at 18:00
on 22 November and quickly reached a peak of 394 µg m−3

within 6 h (Fig. 2a). PM2.5 chemical analysis reveals that
OM (252.8 µg m−3) accounted for 83 % of the PM2.5 in the
nighttime sample on 22 November (i.e., 22 November 20:00
to 23 November 08:00), causing the fast transition from the
clean to heavily polluted period directly (Figs. 2a and S3a).
In the early stage of the heavily polluted period, the aver-
age PM2.5 concentration (288.3 µg m−3) increased by a fac-
tor of 7 compared with that (39.8 µg m−3) in the clean pe-
riod, with OM being the largest contributor (185.1 µg m−3)
followed by SIAs (i.e., sum of SO2−

4 , NO−3 , and NH+4 , which
is 36.4 µg m−3) (Table S2). At the BJ urban site, the air
quality remained clean before 24 November under contin-
uous northerly winds (Figs. 2b and S1b). With prevailing
winds changing from northerly to southerly on 24 Novem-
ber (Fig. S1), polluted air parcels in the south of the NCP
were transported to Beijing (Fig. 1a), which has also been
confirmed by another study conducted in the APHH-Beijing
winter campaign (Du et al., 2019). Thus, the concentrations
of PM2.5 and chemical species in NR-PM1, CO, and SO2
at the BJ urban site increased simultaneously and sharply
from 09:00 on 24 November, causing the transition from
the clean period to the moderately polluted period (Figs. 2b
and S2b). The average PM2.5 concentration in the moder-
ately polluted period was 111.0 µg m−3, 10 times higher than
that (10.8 µg m−3) in the clean period, and the OM and SIAs
contributed equally in NR-PM1 with their average concen-
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trations being 44.4 and 43.4 µg m−3, respectively (Table S2).
Following the haze evolution, PM2.5 levels increased gradu-
ally to 312.3 and 396.8 µg m−3 in the middle and late stages
of the heavily polluted period at the GC rural site and to
281.0 µg m−3 in the heavily polluted period at the BJ urban
site (Fig. 2 and Table S2). Contrasting the above transition
periods at two sampling sites, we found that the SIA concen-
tration increased significantly; meanwhile, the OM concen-
tration only slightly increased at the GC rural and BJ urban
sites with the consistent decreasing WS and increasing RH
during the heavily polluted period (Figs. 2 and S1). In a word,
we observed that the SIA fraction in fine particles increased
and the OM fraction decreased following the haze evolution
(Fig. S3).

The concentrations and fractions of OM and EC at night-
time were much higher than those in the daytime during
the whole haze episode at the GC rural site (Figs. 2a and
S3a), suggesting continuous strong local combustion emis-
sions at nighttime. Furthermore, the concentration of Cl− (8–
22 µg m−3) was much higher than that of K+ (1–3 µg m−3)
(Fig. 2a), which suggests more contributions from coal com-
bustion than from biomass burning at the GC rural site (Sun
et al., 2014; Zhang et al., 2020). Based on the field investi-
gation and PM2.5 analysis, we concluded that the explosive
increase in PM2.5 at the GC rural site was initiated by strong
local emissions and accumulation of POAs from residential
coal combustion for heating and a small fraction of biomass
burning for cooking in rural areas. The PMF analysis shows
that FFOA and BBOA (14.6–30.6 µg m−3) contributed sig-
nificantly (> 30 %) to OM in the polluted period at the BJ
urban site (Fig. S4 and Table S2), suggesting that POAs emit-
ted in rural areas were transported to Beijing under southerly
winds. In summary, bulk analyses show that POAs from res-
idential coal and biomass burning consistently contributed
to the regional haze, and SIAs produced from the secondary
formation had an increasing contribution at higher RH fol-
lowing the haze evolution.

3.2 Classification of individual particle types

In this study, TEM observations show abundant spherical and
irregular particles comprised of C, O, and Si elements during
this haze episode (Fig. 3a). These particles are stable under
strong electron beams and appear as dark features in TEM
images, reflecting their high thickness and refractory prop-
erties (Ebert et al., 2016; Liu et al., 2018). The SEM im-
age acquired at a 75◦ tilt angle shows that these particles did
not deform upon impaction and retained high vertical dimen-
sions (Fig. 4), indicating that they are in a solid state with
high viscosity (Reid et al., 2018; Wang et al., 2016). By con-
trast, the secondary particles (i.e., SIAs and organic coating)
became flat on the substrate (Fig. 4). Previous studies have
confirmed that these solid spherical and irregular particles are
POA particles emitted from coal and biomass burning (L. Liu
et al., 2017; Zhang et al., 2018); in particular the spherical

POA particles as shown in Fig. 3a-1 are defined as tarballs
containing light-absorbing BrC (Adachi et al., 2019; C. Li
et al., 2019; Pósfai et al., 2003; Zhang et al., 2018). Both
tarballs (Fig. 3a-1) and irregular POA particles (Fig. 3a-2)
are burning-related POA particles and have similar chemical
composition and physical characteristics under the TEM de-
spite their different shapes; thus in this study, we consider
irregular POA particles to also contain light-absorbing BrC
like tarballs.

Other typical individual particle types, such as SIA
(Fig. 3b), mineral (Fig. 3c), soot (Fig. 3d), and fly ash
(Fig. 3e-1) and metal (Fig. 3e-2) particles, were also clas-
sified during this haze episode. The detailed classification
criteria of these particle types derived from the TEM im-
ages and their sources can be found in our previous paper
(Li et al., 2016a). It should be noted that some SIA particles
were coated with secondary organic coatings (Fig. 3b) which
were produced from the chemical oxidation of volatile or-
ganic compounds (Li et al., 2016b). TEM observations fur-
ther show the internal mixture of POA or soot particles with
SIA particles, i.e., POA–SIA (Fig. 3f) and soot–SIA (Fig. 3g)
particles. To better understand the number variations in dif-
ferent particle types, we classified bare POA and POA–SIA
particles as the POA-containing particles and bare soot and
soot–SIA particles as soot-containing particles.

3.3 Relative abundance of individual particle types

Figure 5 shows number fractions of different particle types in
different periods at GC rural and BJ urban sites. At the GC
rural site, POA-containing and soot-containing particles were
the major particle types with their corresponding contribu-
tions being 37.6 % and 35.9 % by number, followed by SIA
particles (22.4 %) in the clean period. When the haze episode
occurred at the GC rural site, POA-containing particles be-
came dominant in the early stage of the heavily polluted pe-
riod and its number fraction (64.8 %) was nearly twice that
(37.6 %) in the clean period (Fig. 5a). This result agrees well
with the bulk PM2.5 analysis which shows a sharp increase in
OM concentration in the early stage of the heavily polluted
period (Fig. 2a). With increasing pollution levels from the
early stage to the late stage of the heavily polluted period,
the fraction of POA-containing particles slightly decreased
from 64.8 % to 50.8 %; by contrast, the fraction of SIA parti-
cles increased from 4.6 % to 12.4 % (Fig. 5a). The variations
in POA-containing and SIA particles are similar to the results
from the bulk PM2.5 analysis as shown in Fig. 2a.

At the BJ urban site, the contribution of POA-containing
particles (15.1 %) in the clean period was much lower than
that (37.6 %) at the GC rural site (Fig. 5). Following the tran-
sition from the clean period to the moderately polluted period
at the BJ urban site, the fraction of POA-containing parti-
cles (66.2 %) increased significantly by more than a factor
of 4 compared with that (15.1 %) in the clean period. Mean-
while, fractions of soot-containing, mineral, and SIA parti-
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Figure 3. Typical transmission electron microscopy (TEM) images and energy-dispersive X-ray spectrometer (EDS) spectra showing the
morphology, composition, and mixing structures of different individual particle types. (a) Primary organic aerosol (POA) particles with (a-
1) spherical (i.e., tarball) or (a-2) irregular shapes; (b) secondary inorganic aerosol (SIA) particle with secondary organic coating; (c) mineral;
(d) soot; (e-1) fly ash and (e-2) metal; (f) internally mixed POA particle with SIA coating (POA–SIA); (g) internally mixed soot particle with
SIA coating (soot–SIA).

Figure 4. Scanning electron microscope (SEM) image acquired in
the secondary electron (SE2) mode at a 75◦ tilt angle showing the
surface morphology of individual particles in the vertical dimen-
sion. The red, black, green, and orange arrows indicate primary
organic aerosol (POA) particles (mainly tarballs), soot particles,
secondary inorganic aerosol (SIA) particles, and secondary organic
coating, respectively.

cles largely decreased. When the pollution level changed to
the heavily polluted period, similarly to the situation at the

GC rural site, the fraction of SIA particles increased from
7.8 % to 13.2 % and the fraction of POA-containing particles
decreased slightly from 66.2 % to 52.8 % (Fig. 5b). Over-
all, the individual particle analysis results agree well with
changes in aerosol chemical components obtained by the
bulk analysis as shown in Fig. 2. Furthermore, individual
particle analysis reveals that POA-containing particles dom-
inated (> 50 % by number) in the rural and urban air during
the regional wintertime haze episode.

3.4 Atmospheric aging of POA particles

TEM images clearly show the morphology and mixing state
of individual particles in different polluted periods at GC
rural and BJ urban sites (Fig. 6). At the GC rural site, we
found that large numbers of bare POA particles, especially
tarballs, occurred in the early stage of the heavily polluted pe-
riod (Fig. 6a). Based on the integrated analyses of individual
particles and bulk samples, we confirmed that POA particles
emitted from the intense domestic coal and biomass burning
for heating and cooking contributed significantly to the dete-
rioration of air quality in rural areas. When the haze episode
evolved into the late stage of the heavily polluted period,
we found that most of the POA particles were coated with
SIA (i.e., POA–SIA particle) forming the core–shell struc-
ture (Fig. 6b). This result indicates that POA particles in the
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Figure 5. Relative abundance of different particle types in different periods at the (a) Gucheng rural site and (b) Beijing urban site. The
numbers of analyzed particles in different periods are shown at the top of each column.

regional haze layer provided surfaces for the heterogeneous
reactions of SO2 and NOx , which promotes the formation of
SIA on POA particles in the humid polluted air (Ebert et al.,
2016; Zhang et al., 2017).

Following the regional transport of polluted air masses
from the south to the north of the NCP, abundant POA par-
ticles occurred in the moderately polluted period at the BJ
urban site (Fig. 6c). Therefore, we conclude that the POA
particles emitted in the rural areas in the south of the NCP
could be transported to the BJ urban site and significantly af-
fect the urban air quality. Following the haze evolution, simi-
larly to those at the GC rural site, the POA particles aged and
became core–shell POA–SIA particles at the BJ urban site in
the heavily polluted period (Fig. 6d).

Based on the mixing state of POA-containing particles, we
found that following evolution of the haze episode, the frac-
tion of bare POA particles was reduced by a factor of 2 from
91.4 % in the early stage to 39.6 % in the late stage of heav-
ily polluted period at the GC rural site, and the fraction of
POA–SIA particles correspondingly increased by a factor of
7 from 8.6 % to 60.4 % (pie charts in Fig. 7). Similarly, at the
BJ urban site, the fraction of bare POA particles decreased
from 70.4 % in the moderately polluted period to 31.4 % in
the heavily polluted period, and the fraction of POA–SIA
particles increased correspondingly from 29.6 % to 68.6 %
(pie charts in Fig. 7). Consequently, the average size of POA-
containing particles increased from 505 nm in the early stage
to 837 nm in the late stage of the heavily polluted period at
the GC rural site and from 443 nm in the moderately pol-
luted period to 732 nm in the heavily polluted period at the
BJ urban site (Fig. 7a). Interestingly, the average sizes of un-
coated POA particles (i.e., POA cores and bare POA par-
ticles) remained similar following the haze evolution, with
their respective values being 469, 508, and 465 nm in the
early, middle, and late stages of the heavily polluted period
at the GC rural site and 381 and 379 nm in the moderately

and heavily polluted periods at the BJ urban site (Fig. 7b).
The average sizes of uncoated POA particles at the BJ ur-
ban site were slightly smaller than those at the GC rural site,
which is reasonable because the fresh POA particles with
larger sizes could be collected at the GC rural site close to
emission sources and larger ones are more likely to be re-
moved during the regional transport (Seinfeld and Pandis,
2006). Adachi et al. (2018) reported that tarballs retained
their spherical shapes and the particle masses and sizes did
not change largely when heated to 300 ◦C under TEM. As
a result, we conclude that the POA particles should be quite
physically stable and chemically inert in the atmosphere and
can be transported over long distances.

The Dp/Dc ratio can be used to indicate the aging degree
of POA-containing particles in the atmosphere (Chen et al.,
2017; Li et al., 2011). By calculating theDp/Dc ratio, we re-
alized quantification of the aging degree of POA-containing
particles as shown in Fig. 8. In the early stage of the heavily
polluted period at the GC rural site, the POA-containing par-
ticles were mainly fresh bare POA particles with a fraction
of 91.4 % (Fig. 7); therefore, the averageDp/Dc ratio was
close to 1 (1.02). Following the haze evolution at the GC ru-
ral and BJ urban sites, average Dp/Dc ratios increased from
1.08 in the middle stage to 1.60 in the late stage of the heav-
ily polluted period at the GC rural site and from 1.11 in the
moderately polluted period to 1.67 in the heavily polluted
period at the BJ urban site. The results indicate that POA
particles were thickly coated with SIA particles due to the
particle aging process. Here we can obtain two conclusions
based on the individual particle analysis: (1) more POA par-
ticles continuously aged and were coated with SIA particles
following the haze evolution; (2) the SIA coating gradually
grew through the heterogeneous conversion of gaseous pre-
cursors (e.g., SO2 and NOx) in the polluted air. Therefore,
the aging process of individual POA particles in wintertime
hazes reflects well the regional haze evolution in the NCP.
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Figure 6. TEM images showing individual particles collected in the (a) early stage and (b) late stage of the heavily polluted period at the
Gucheng rural site and in the (c) moderately polluted and (d) heavily polluted periods at the Beijing urban site. The red, green, and black
arrows indicate primary organic aerosol (POA) particles, secondary inorganic aerosol (SIA) particles, and soot particles, respectively.

Figure 7. Box plots showing equivalent circle diameters (ECDs) of
(a) POA-containing particles (including core–shell POA–SIA and
bare POA) and (b) uncoated POA particles (including POA cores
without SIA shell and bare POA) in different polluted periods at the
Gucheng rural site and Beijing urban site. The solid circles (right of
the boxes) represent the ECDs of individual particles with lognor-
mal distributions. The pie charts present the relative number frac-
tions between POA–SIA and bare POA particles in different pol-
luted periods.

3.5 Changes in light absorption of POA particles

It is well known that organic aerosols emitted from coal and
biomass burning are the main source of light-absorbing BrC
(M. Li et al., 2019; Lin et al., 2016; Sun et al., 2017). Re-
cently, some observation and modeling works have shown
that BrC in haze layers over the NCP can affect the regional
energy budget (Feng et al., 2013; Wang et al., 2018; Xie et al.,
2019). However, there is no answer to how the aging process
of burning-related light-absorbing POA particles influences
their optical absorption in the regional haze. Here using Mie
theory we further explored variations in the optical absorp-
tion of individual POA particles following the haze evolu-
tion at the GC rural and BJ urban sites (Fig. 9). It should be
noted that another RI of 1.84−0.21i for tarballs was reported
by Hoffer et al. (2016). The average Mie calculation results
at the GC rural and BJ urban sites obtained by the RIs of
1.67−0.27i (used in this study) and 1.84−0.21i were com-
pared, and we found that the two RIs only cause small dif-
ferences between the results (Table S3). Therefore, only the
results from the RI of 1.67−0.27i were used and discussed
in this study.

At the GC rural site, the average ACSs of individual POA-
containing particles under the actual scenario (ACSactual) in
the early, middle, and late stages of the heavily polluted
period were estimated to be 3.09× 10−14, 3.97× 10−14,
and 4.43× 10−14 m2, respectively (Fig. 9a). If all the POA-
containing particles were not coated with SIA particles in
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Figure 8. Relationship between the diameter of a POA-containing particle (Dp) and its POA core (Dc) in the early stage, middle stage,
and late stage of the heavily polluted period at the Gucheng rural site (a) and in the moderately polluted and heavily polluted periods at the
Beijing urban site (b).

Figure 9. Box plots of light absorption cross sections (ACSs) of
individual POA-containing particles (including core–shell POA–
SIA and bare POA) under the actual scenario (ACSactual) and un-
coated POA particles (including POA cores without SIA shell and
bare POA) under the particle non-aging scenario (ACSnon-aging) at
a wavelength of 550 nm and variations in the light absorption en-
hancement factors (Eabs, i.e., ratio of ACSactual to ACSnon-aging)
in different polluted periods at the (a) Gucheng rural site and
(b) Beijing urban site. A refractive index of 1.55−0i for non-light-
absorbing SIA coating (Denjean et al., 2014) and 1.67−0.27i for
light-absorbing POA cores (Alexander et al., 2008) were adopted at
a wavelength of 550 nm. The box represents the 25th (lower line),
50th (middle line), and 75th (top line) percentiles; the asterisk in
the box represents the mean value; and the end lines of the vertical
bars represent the 10th (below the box) and 90th (above the box)
percentiles.

each period (i.e., particle non-aging scenario), the corre-
sponding average ACSs of individual uncoated POA par-
ticles (ACSnon-aging) were 3.01× 10−14, 3.53× 10−14, and
3.18× 10−14 m2, respectively (Fig. 9a). Therefore, we es-
tablished that the Eabs values (i.e., ratios of ACSactual to
ACSnon-aging) were 1.02, 1.12, and 1.39 in the early, mid-
dle, and late stages of the heavily polluted period, respec-
tively, at the GC rural site (Fig. 9a). Similarly, at the BJ ur-
ban site, the Eabs values were 1.10 and 1.39 in the moder-
ately and heavily polluted periods, respectively, with the cor-
responding average ACSactual values being 2.06× 10−14 and
3.00× 10−14 m2 and ACSnon-aging values being 1.86× 10−14

and 2.15× 10−14 m2 (Fig. 9b). The light absorption capacity
of individual POA particles at the BJ urban site was a lit-
tle lower than that at the GC rural site (Fig. 9), which was
mainly attributed to the smaller sizes of POA particles at the
BJ urban site (Fig. 7).

To better understand the influence of SIA coating thick-
ness and POA core diameter on the light absorption of POA–
SIA particles, we modeled the variations inEabs of POA–SIA
particles (i.e., ratio of ACSPOA–SIA to ACSPOA core) with dif-
ferent Dc values as a function of Dp/Dc ratios (Fig. 10). Re-
sults show thatEabs is sensitive to the changes in bothDc and
theDp/Dc ratio. WhenDp/Dc < 1.5, Eabs increases sharply
with the increase in the Dp/Dc ratio for different POA core
sizes; but when Dp/Dc> 1.5, Eabs no longer shows an in-
crease for particles with Dc> 200 nm and Eabs is limited
to between 1.5 and 2 for particles with Dc values ranging
from 200 to 1500 nm (Fig. 10). The diameters of observed
POA cores at the GC rural and BJ urban sites in this study
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Figure 10. Mie-theory-calculated light absorption enhancement
factors (Eabs) of modeled core–shell POA–SIA particles (i.e., ra-
tio of ACSPOA–SIA to ACSPOA core) with different POA core di-
ameters (Dc) as a function of the particle-to-core diameter ratio
(Dp/Dc) at a wavelength of 550 nm (solid lines). A refractive in-
dex of 1.55−0i for non-light-absorbing SIA coating (Denjean et
al., 2014) and 1.67−0.27i for light-absorbing POA cores (Alexan-
der et al., 2008) were adopted at a wavelength of 550 nm. The open
circles represent all the observed POA–SIA particles during all the
polluted periods at the Gucheng rural and Beijing urban sites.

were mainly in the range of 200 to 800 nm (Fig. 7); thus the
Eabs values of observed POA–SIA particles in the NCP were
mostly below 1.75 (Fig. 10). All the above results indicate
that the atmospheric aging process could significantly im-
prove the light absorption capacity of POA particles along
with the evolution of haze episodes due to the lensing effect
of SIA coating.

4 Conclusions and implications

This study demonstrates that primary pollutants, especially
large numbers of POA particles emitted from the residential
coal and biomass burning in rural areas, initiated a winter-
time regional haze episode in the NCP. The presence of abun-
dant burning-related POA particles in the atmosphere could
further provide surfaces for heterogeneous reactions promot-
ing the large production of SIA particles under stagnant me-
teorological conditions with high RH, which further elevated
the pollution level. Compared with the tarballs which have
been confirmed as BrC with strong light-absorbing capac-
ities in previous studies (Adachi et al., 2019; C. Li et al.,
2019), the spherical POA (i.e., tarball) and irregular POA
particles observed in this study can better represent burning-
related light-absorbing primary organic particles in the win-
tertime hazes. Therefore, the ubiquitous light-absorbing POA
particles in the atmosphere of the NCP unquestionably af-
fect the energy balance (Feng et al., 2013). We found that
burning-related POA particles remained quite stable during
regional transport from the rural areas to urban Beijing in the

NCP and were coated with SIA particles through the atmo-
spheric aging process in the haze layer, which could signif-
icantly enhance the light absorption capacity of POA par-
ticles via the lensing effect of SIA coating. We estimated
that Eabs values were within the upper limit of 1.75 in core–
shell Mie calculations considering the typical size distribu-
tion of POA particles (200–800 nm) in the NCP. Further-
more, Alexander et al. (2008) found plenty of primary brown
carbon spheres with a strong light absorption capacity in East
Asian outflow, which indicates that the POA particles could
be transported over long distances and still retain their strong
light-absorbing properties and thus can affect regional and
even global radiative forcing. Therefore, we highlight that
the lensing effect, which has been adequately reported for BC
particles but not for light-absorbing POA particles in previ-
ous studies, should be further considered on these POA par-
ticles in radiative forcing models.

Considering the adverse effects of residential coal and
biomass burning on haze formation and climate change, we
suggest that authorities should continue to implement “clean
air actions” (Zhang and Geng, 2019) and especially encour-
age the use of clean energy such as electricity and natural
gas for heating and cooking in rural areas of North China in
winter.
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