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Abstract. We introduce an automated aerosol type classifica-
tion method, called Source Classification Analysis (SCAN).
SCAN is based on predefined and characterized aerosol
source regions, the time that the air parcel spends above
each geographical region, and a number of additional cri-
teria. The output of SCAN is compared with two indepen-
dent aerosol classification methods, which use the intensive
optical parameters from lidar data: (1) the Mahalanobis dis-
tance automatic aerosol type classification (MD) and (2) a
neural network aerosol typing algorithm (NATALI). In this
paper, data from the European Aerosol Research Lidar Net-
work (EARLINET) have been used. A total of 97 free tro-
pospheric aerosol layers from four typical EARLINET sta-
tions (i.e., Bucharest, Kuopio, Leipzig, and Potenza) in the
period 2014–2018 were classified based on a 3β + 2α+ 1δ
lidar configuration. We found that SCAN, as a method inde-
pendent of optical properties, is not affected by overlapping
optical values of different aerosol types. Furthermore, SCAN
has no limitations concerning its ability to classify different
aerosol mixtures. Additionally, it is a valuable tool to classify
aerosol layers based on even single (elastic) lidar signals in
the case of lidar stations that cannot provide a full data set
(3β+2α+1δ) of aerosol optical properties; therefore, it can
work independently of the capabilities of a lidar system. Fi-

nally, our results show that NATALI has a lower percentage
of unclassified layers (4 %), while MD has a higher percent-
age of unclassified layers (50 %) and a lower percentage of
cases classified as aerosol mixtures (5 %).

1 Introduction

Aerosol particles directly affect the Earth’s radiation budget
by interacting mainly with solar radiation through absorption
and scattering (aerosol–radiation interaction – ARI) (Hobbs,
1993). Furthermore, aerosols affect cloud formation and be-
havior, not only serving as seeds (cloud condensation nuclei,
ice nuclei) upon which cloud droplets and ice crystals form,
but also influencing the cloud albedo due to changing con-
centrations of cloud condensation and ice nuclei, also known
as the Twomey effect (Twomey, 1959; Boucher et al., 2013;
Rosenfeld et al., 2014, 2016).

The light detection and ranging (lidar) technique, which is
based on the active remote sensing of the atmosphere (Weit-
camp et al., 2005), has received quite a lot of attention be-
cause of the multiple possibilities to retrieve near-real-time
information on the vertical structure and the composition of
the atmosphere with high spatial (i.e., down to a few meters)
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and temporal (i.e., down to seconds depending on the system)
resolution. Specifically, multiwavelength Raman and depo-
larization lidars can be used for aerosol detection and char-
acterization (i.e., dust, smoke, continental). They can provide
vertically resolved information on extensive and intensive
aerosol optical properties (Freudenthaler et al., 2009; Nico-
lae et al., 2006; Burton et al., 2012; Groß et al., 2013; Gi-
annakaki et al., 2016; Soupiona et al., 2018, 2019). These
properties are the particle backscatter (bλα) and extinction
coefficients (eλα), the lidar ratio (LRλα), the Ångström ex-
ponent extinction (Aeλα/λβ ) and backscatter (Abλα/λβ ), and
the particle linear depolarization ratio (PLDR). Towards this
direction, the large majority of European Aerosol Research
Lidar Network (EARLINET) stations use multiwavelength
Raman lidar systems that combine detection channels at both
elastic and Raman-shifted signals and are equipped with de-
polarization channels (Pappalardo et al., 2014).

Until recently, the identification of aerosol layers was
based, apart from aerosol lidar data, on air-mass back-
trajectory analysis, atmospheric models (e.g., DREAM;
Basart et al., 2012), concurrent satellite products (MODIS
dust and fire data; e.g., Giglio et al., 2013), and ground-based
photometric data (Papayannis et al., 2005, 2008). It is well-
established that air-mass trajectory analysis (back to several
hours) with the HYSPLIT (Draxler et al., 2013) or FLEX-
PART (FLEXible PARTicle dispersion model; Stohl et al.,
2005) models ending above the observation station is used
in order to identify the air-mass origin of the detected layer.
However, this case-by-case aerosol layer identification is nei-
ther objective nor automated.

To overcome this defect, two automated methods have
been developed recently to classify aerosol layers observed
by lidars: (1) the Mahalanobis distance aerosol classifi-
cation algorithm (MD) (Papagiannopoulos et al., 2018),
which uses lidar intensive properties (LRλα , the lidar ratio
– LRλ1 /LRλ2, Aeλα/λβ , Abλα/λβ , and PLDR if provided) in
order to classify the measured aerosol layers into a number
of aerosol types, and (2) a neural network aerosol classifi-
cation algorithm (NATALI) (Nicolae et al., 2018a), which is
based on artificial neural networks (ANNs) trained to esti-
mate the most probable aerosol type solely from a set of mul-
tispectral lidar data (color index – CI, color ratio – CR, LRλα ,
Aeλα/λβ , Abλα/λβ , and PLDR if provided). In reality, inten-
sive aerosol optical properties can vary greatly even for sin-
gle aerosol types. For example, Nicolae et al. (2013) showed
that fresh biomass burning aerosols have higher Ångström
exponents and refractive indexes than aged ones. Addition-
ally, according to Veselovkii et al. (2020), the lidar ratio val-
ues of dust aerosols can vary greatly depending on the source
region mineralogy. Thus, the physicochemical modifications
the aerosols undergo, from the time they are created to when
they are finally observed, change their geometrical, size, and
optical characteristics. As a result, their optical properties
change as well. Taking into account that both NATALI and
MD experience several limitations, as they request as input

the aerosol intensive optical properties as stated previously
(Nicolae et al., 2018b; Voudouri et al., 2019), a more generic
aerosol classification code free from these defects is needed.

Therefore, in this work, we develop an improved au-
tomated layer classification algorithm based on air-mass
backward-trajectory analysis and satellite data. The algo-
rithm, called Source Classification Analysis (SCAN), is
based on the amount of time that the air parcel spends above
an already characterized aerosol source region and a num-
ber of additional criteria. This algorithm, being independent
of aerosol optical properties, provides the advantage that its
classification process is not affected by overlapping values
of optical properties representing more than one aerosol type
(e.g., clean continental, continental polluted, smoke). Fur-
thermore, it has no limitations concerning its ability to clas-
sify aerosol mixtures. Finally, it can be useful for all types
of lidar systems (independently of the number of channels
used) and for other network-based systems (radar profilers,
sun photometers).

In this paper, we use SCAN, MD, and NATALI as classi-
fiers to assign lidar observations to the pre-specified aerosol
classes. The three different aerosol classification methods are
described in Sect. 2, while Sect. 3 provides a discussion of
the results and a comparison between them. Finally, Sect. 4
provides the conclusions of our study.

2 Methodology

2.1 Aerosol layer classification algorithms

2.1.1 Neural network aerosol classification algorithm

NATALI (Nicolae et al., 2018a) is an automated, optical-
property-dependent aerosol layer classification algorithm.
The typical aerosol profiles (3bλα + 2eλα+PLDR, optional;
in NetCDF format) from the EARLINET database are used
as inputs in order to retrieve the mean aerosol optical prop-
erties within the layer boundaries indicated by the gradient
method (Belegante et al., 2014). The learning process of the
ANN has been performed using a synthetic database devel-
oped by Koepke et al. (1997) along with the T-matrix numer-
ical method (Waterman, 1971; Mishchenko et al., 1996) to it-
eratively compute the intensive optical properties of six pure
aerosol types (the first six aerosol types in Table 1) presented
to the artificial neural networks to perform the typing. The
synthetic database is built for 350, 550, and 1000 nm wave-
lengths, which are then rescaled to the usual lidar wave-
lengths (i.e., 355, 532, and 1064 nm) using an Ångström ex-
ponent equal to 1. The mixtures are obtained through a lin-
ear combination of pure aerosol properties (Nicolae et al.,
2018a).

Two classification schemes are used with different aerosol
type (classification) resolutions when particle depolarization
data are available. The first one is applied when all the high-
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quality aerosol optical parameters are provided (uncertainty
of eλα ≤ 50 %, uncertainty of bλα ≤ 20 %, uncertainty of
PLDR ≤ 30 %) and the aerosol typing is performed in the
high-resolution (AH) mode. This means that the aerosol mix-
tures can be sufficiently resolved, providing the maximum
number of output types (14 types, Table 1). In the second
scheme, the values of the aerosol optical parameters have
high uncertainty (uncertainty of eλα>50 %, uncertainty of
bλα>20 %, uncertainty of the PLDR >30 %), and the typing
is performed in the low-resolution (AL) mode. In this case,
the number of output types is limited to six (first six aerosol
types; Table 1). A “voting” procedure selects the most prob-
able answer out of the two (possibly different) individual re-
turns. The correct answer is selected based on a statistical
approach considering two criteria: (i) which answer has a
higher confidence and (ii) which answer is more stable over
the uncertainty range (i.e., the percentage of agreement for
values between error limits). Finally, there is the capability
to perform the typing when the particle depolarization is not
available, knowing that the mixtures cannot be resolved, so
only the predominant aerosol type is retrieved (Nicolae et al.,
2018a).

2.1.2 Mahalanobis distance aerosol classification
algorithm

The automatic classification algorithm described in Papa-
giannopoulos et al. (2018) makes use of the Mahalanobis
distance function (Mahalanobis, 1936) that relates an un-
classified measurement to a predefined aerosol type. The
method compares observations to model distributions that
comprise EARLINET pre-classified data. Each Mahalanobis
distance of an observation from a specific aerosol type is es-
timated, and the aerosol type is assigned for the minimum
distance. Prior to the classification, two screening criteria
are assumed to ensure correct classification. The algorithm
is able to classify an observation to a maximum of eight
(dust, volcanic, mixed dust, polluted dust, clean continental,
mixed marine, polluted continental, and smoke) and mini-
mum of four (dust+ volcanic+mixed dust+ polluted dust,
mixed marine, smoke+ polluted continental, and clean con-
tinental) aerosol classes depending on the lidar configuration.

In this study, we used four aerosol intensive properties: the
backscatter-related Ångström exponent at 355 and 1064 nm,
the aerosol lidar ratio at 532 nm, the color ratio of the lidar
ratios, and the aerosol particle linear depolarization ratio at
532 nm, while the minimum accepted distance was set to 4.3
(Papagiannopoulos et al., 2018). As soon as the distance from
a specific aerosol class is below the threshold and the remain-
ing distances are higher than the threshold, the observation is
assigned to that aerosol class. If more than one distance is
below the threshold, the normalized probability of each class
needs to be over 50 %.

This objective multidimensional classification scheme has
found great applicability and has been used with lidar (e.g.,

Burton et al., 2012; Papagiannopoulos et al., 2018), space-
based polarimetry (Russell et al., 2014), and spectral pho-
tometry (e.g., Hamill et al., 2020; Siomos et al., 2020) data.
Voudouri et al. (2019) compared NATALI and the Maha-
lanobis distance classification algorithm for the EARLINET
station in Thessaloniki. Their study used a 3bλα + 2eλα lidar
configuration and four aerosol classes (i.e., dust, maritime,
polluted smoke, and clean continental) for each automatic al-
gorithm. In general, they found fair agreement between MD
and NATALI, and the differences were attributed to the class
definition and the range of the class intensive properties.

2.1.3 Source Classification Analysis

SCAN is an automated aerosol layer classification process
that is independent of optical properties and has been devel-
oped in the IDL programming language in the framework of
this study. For each identified aerosol layer anX h HYSPLIT
backward trajectory (Draxler et al., 2013) is used to calculate
the amount of time traveled above predefined aerosol source
regions before arriving over a lidar station at the specific date
and height that the aerosol layer is observed.X is the number
of hours of the backward trajectory, which can be decided by
the user at the beginning of the process. SCAN assumes spe-
cific regions (Fig. 1, colored squares; from now on referred
to as domains) in terms of aerosol sources (Penning de Vries
et al., 2015). The polluted continental domains represent the
regions with increased anthropogenic activity according to
monthly means of tropospheric NO2 from GOME-2 (Geor-
gloulias et al., 2019).

Taking into account the information (latitude, longitude
and height) from each HYSPLIT air-mass backward trajec-
tory, SCAN implements a number of criteria: (i) if the geo-
graphical coordinates for the specific hour of the backward
trajectory are within the boundaries of the marine domains
and if the height of this trajectory over the domain is below
1 km (Wu et al., 2008; Ho et al., 2015), SCAN assigns this
layer to the marine aerosol type. (ii) If the geographical co-
ordinates for the specific hour of the backward trajectory are
within the boundaries of the clean continental, polluted con-
tinental, or dust domains and if the height of this backward
trajectory is below 2 km over the domain, SCAN assigns the
specific hour to the clean continental, polluted continental,
or dust aerosol type, respectively. (iii) For an hour to be as-
signed to the smoke aerosol type, except from the coordinates
of the backward trajectory at this specific hour, which should
be within the boundaries of the clean continental or polluted
continental domains, the height of the trajectory at this spe-
cific hour should be below 3 km (Amiridis et al., 2010).

SCAN draws fire information from the Fire Information
for Resource Management System (FIRMS) (https://firms.
modaps.eosdis.nasa.gov, last access: 1 August 2020) using
data on actively burning fires, along with their location, time,
and confidence value (in %) (Kaufman et al., 1998; Giglio et
al., 2002; Davies et al., 2009; Justice et al., 2002) derived
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Figure 1. SCAN’s aerosol source type classification map. Different colored squares represent different aerosol sources: orange squares
correspond to dust, blue squares to marine, brown squares to clean continental, and black squares to continental polluted aerosol sources.

from the Moderate Resolution Imaging Spectroradiometer
(MODIS). The selected time period is in accordance with
HYSPLIT simulations (air-mass backward duration). From
SCAN’s point of view, a hotspot is assumed to be signifi-
cant if the MODIS “confidence” value is higher than 80 %
(Amiridis et al., 2010). In addition to the above criteria, the
location of HYSPLIT air-mass backward trajectories at the
specific hour must be a maximum distance of 8 km away
from a hotspot of high confidence in order to be assigned
as the smoke aerosol type.

SCAN performs the above classification process for all the
HYSPLIT air-mass backward trajectories, and as a final step,
it counts the hours that the air parcel spends above each ge-
ographical domain. If more than one domain is involved in
following the backward trajectory’s path, a mixture of more
than one aerosol type is assumed. In case the aforementioned
criteria (domain and height limitations) are not satisfied, the
aerosol type is considered unknown.

The maximum number of pure aerosol types that SCAN
can assign to a layer is six, and the combination of them
gives SCAN the capability to identify aerosols from different
sources in a specific layer. In Table 1 one can find the pure
aerosol types and the mixtures that SCAN has dealt with in
this study. The whole classification procedure of SCAN is
displayed in the flowchart in Fig. 2.

2.2 EARLINET lidar stations and data

The lidar station selection was based on the availability of the
vertical profiles of a full set (3bλα+2eλα+PLDR) of aerosol
optical properties at several wavelengths: backscatter coeffi-
cient (b355, b532, b1064), extinction coefficient (e355, e532),
lidar ratio (LR355, LR532), Ångström exponent (Ae355/532,

Figure 2. Classification procedure of SCAN. This procedure is per-
formed for each hour of the HYSPLIT back trajectory associated
with each layer.

Ab355/532, Ab532/1064), and particle linear depolarization ra-
tio (PLDR532) at the EARLINET database during the pe-
riod 2014–2018. Therefore, the selected lidar stations are the
following: Bucharest, Romania; Kuopio, Finland; Leipzig,
Germany; and Potenza, Italy (Table 2). Thus, 48 full sets
(3bλα + 2eλα+PLDR) of aerosol optical properties of lidar
observations from the aforementioned stations have been
studied. For each data set and each aerosol layer, the geo-
metrical layer boundaries (bottom, top) have been calculated
according to Belegante et al. (2014). In total, 97 free tropo-
spheric (FT) aerosol layers were obtained, and their mean
aerosol optical properties (intensive and extensive) were cal-
culated.

Atmos. Chem. Phys., 21, 2211–2227, 2021 https://doi.org/10.5194/acp-21-2211-2021



M. Mylonaki et al.: Aerosol type classification analysis 2215

Table 1. Correspondence between the aerosol types, the shorthand used for this work, and the actual aerosol types defined with the NATALI,
MD, and SCAN aerosol classification algorithms.

Aerosol type NATALI MD SCAN

Continental (cc) Continental Continental Clean continental
Continental polluted (cp) Continental polluted Continental polluted Continental polluted
Smoke (s) Smoke Smoke Smoke
Dust (d) Dust Dust Dust
Marine (m) Marine Marine Marine
Volcanic (v) Volcanic Volcanic Volcanic
Continental and dust (cp+ d) Continental dust Dust polluted Continental and dust
Dust and marine (d+m) Marine mineral Mixed dust Dust and marine
Continental and smoke (cp+ s) Continental smoke – Continental polluted and smoke
Dust and smoke (d+ s) Dust polluted Dust polluted Dust and smoke
Continental and marine (cc+m) Coastal – Clean continental and marine
Continental polluted and marine (cp+m) Coastal polluted – Continental polluted and marine
Continental polluted and clean continental (cp+ cc) – – Continental polluted and clean continental
Continental and dust and marine (cp+ d+m) Mixed dust – Continental polluted and dust and marine
Continental and smoke and marine (cc+ s+m) – – Clean continental and smoke and marine
Continental polluted and smoke and marine (cp+ s+m) Mixed smoke – Continental polluted and smoke and marine
Continental and smoke and dust (cp+ s+ d) – – Continental and smoke and dust
Continental and clean continental and marine (cp+ cc+m) – – Continental and clean continental and marine

Table 2. EARLINET lidar station information.

Location ACTRIS Institute Coordinates Reference No. of Selected
code (lat, long, altitude a.s.l.) layers period

Bucharest INO National Institute of R&D for
Optoelectronics (INOE)

44.35◦ N, 26.03◦ E, 93 m Nemuc et al. (2013) 7 2017

Kuopio KUO Finnish Meteorological Institute
(FMI), Atmospheric Research
Centre of Eastern Finland, Kuopio

62.74◦ N, 27.54◦ E, 190 m Althausen et al. (2009),
Engelmann et al. (2016)

9 2015, 2016

Leipzig LEI Leibniz Institute for Tropospheric
Research, Leipzig

51.35◦ N, 12.43◦ E, 90 m Althausen et al. (2009),
Engelmann et al. (2016)

17 2018

Potenza POT Consiglio Nazionale delle Ricerche
– Istituto di Metodologie per
l’Analisi Ambientale
(CNR-IMAA), Potenza

40.60◦ N, 15.72◦ E, 760 m Madonna et al. (2011) 64 2015–2016

2.3 Case studies

In this section selected atmospheric layers involving differ-
ent types of probed aerosols are presented. The performance
of the three automated aerosol typing algorithms for aerosol
classification is discussed in detail.

Figure 3 illustrates the vertical profiles of the aerosol op-
tical properties, along with the mean values and standard de-
viations (inserted text) of the following: (3a) b355, b532, and
b1064 (SR−1 Mm−1); (3b) e355 and e532 (Mm−1); (3c) LR355
and LR532 (SR); (3d) Ae355/532, Ab355/532, and Ab532/1064;
and (3e) the PLDR532 (%) of the aerosol layer observed
on 30 July 2015 over (i) Kuopio (19:25 UTC) and (ii) over
Potenza (21:26 UTC). The bottom and top boundaries of the
aerosol layer observed over Kuopio are estimated at 1.5 and
1.9 km a.s.l. (Fig. 3i, lower red and upper black horizontal
line), respectively. For the same day, three different aerosol
layers are detected over Potenza with corresponding values

(Fig. 3ii) for the bottom (red horizontal line) and top (black
horizontal line) of (1) 2.8 and 3.1 km a.s.l. (lower layer),
(2) 3.4 and 3.9 km (middle layer), and (3) 4.5 and 5.4 km
(upper layer), respectively.

The mean values of the intensive aerosol optical properties
within the aerosol layer observed over Kuopio and Potenza
on 30 July 2015 are also presented in Table 3. In particu-
lar, for the case of Kuopio, the LR355 values were found to
be lower than those of LR532, the Ångström exponent (both
extinction- and backscatter-related) was higher than 1.2, and
PLDR532 had low values (<5 %), indicating fine absorb-
ing aerosols. For the case of Potenza, the LR values were
found to be low (<39 SR at 355 nm and <25 SR at 532 nm),
while the Ångström exponents remained mainly below 1.0
for all three aerosol layers observed. The difference between
these three aerosol layers is the value of PLDR532, which
was found to ascend from 13.5± 0.4 % (bottom layer) to
15.4± 1.5 % (middle layer) and finally reached the value of
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Figure 3. Vertical profiles of the following aerosol optical properties observed over (i) Kuopio (19:25 UTC) and (ii) Potenza (21:26 UTC) on
30 July 2015, along with their mean values and standard deviations (inserted text): (a) b355, b532, b1064, (b) e355, e532, (c) LR355, LR532,
(d) Ae355/532, Ab355/532, Ab532/1064, (e) VDR532, and PLDR532.

24.8± 1.0 % (top layer), indicating coarse semi-depolarizing
aerosols at lower altitudes (<4.5 km) and highly depolarizing
aerosols higher, probably of dust origin.

Figure 4 illustrates the 6 d (144 h) backward trajectory
analysis for air masses ending on 30 July 2015 over the
stations in (i) Kuopio (62.74◦ N, 27.54◦ E) at 1500 m a.s.l.
(19:00 UTC) and (ii) Potenza (40.60◦ N, 15.72◦ E) at
(1) 3000, (2) 3800, and (3) 5000 m a.s.l. (21:00 UTC). The
color bar indicates the trajectory’s height above sea level for
each hour of its journey. According to Fig. 4i the air masses

that reached Kuopio on that day at 1500 m a.s.l. (19:00 UTC)
traveled from Ireland to southern Finland from 26 to 30 July
at ∼ 1500 m a.s.l. and were probably affected by continen-
tal polluted and clean continental aerosol sources in northern
Europe. The same air masses seem to also be affected by
marine aerosols from 24 to 25 July when traveling at lower
heights (<1000 m a.s.l.) over southern Ireland.

In contrast, the air masses that reached Potenza on
30 July 2015 at 3000 m a.s.l. (lower layer, Fig. 4ii) traveled
at a height of ∼ 2000 m a.s.l. throughout their 6 d journey.

Atmos. Chem. Phys., 21, 2211–2227, 2021 https://doi.org/10.5194/acp-21-2211-2021
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Table 3. Mean values of the intensive optical properties of aerosol layers observed on 30 July 2015 over Kuopio and Potenza.

Site Height (km) LR355 (SR) LR532 (SR) Ae355/532 Ab355/532 Ab532/1064 PLDR532 (%)

Kuopio 1.5–1.9 65.58± 11.02 72.51± 17.61 1.23± 0.62 1.36± 0.05 1.23± 0.05 2.1± 0.1
Potenza (bottom) 2.8–3.1 35.97± 1.09 24.55± 4.15 1.14± 0.44 0.16± 0.04 0.97± 0.04 13.5± 0.4
Potenza (middle) 3.4–3.9 31.05± 2.11 22.50± 1.69 0.86± 0.25 0.06± 0.13 0.79± 0.06 15.4± 1.5
Potenza (top) 4.5–5.4 38.77± 4.81 24.44± 3.39 0.56± 0.37 -0.58± 0.25 0.72± 0.07 24.8± 1.0

These air masses started from northwestern Africa, remained
in the area almost 3 d, and then passed over southern Spain
before reaching Potenza. The aerosol layer observed over
Potenza the same date and hour at 3800 m a.s.l. (middle layer,
Fig. 3ii, a–b) originated over the northern Atlantic Ocean at
a height of ∼ 5000 m a.s.l. 6 d before and slowly descended
to lower altitudes before passing over northern Spain near
ground level (Fig. 4ii, 2). In the following 2 d, the air mass
traveled at a height of 2000–4000 m a.s.l. from Spain to Italy
over the Mediterranean Sea before reaching Potenza.

Finally, the upper aerosol layer observed over Potenza at
5000 m a.s.l. (upper layer, Fig. 3ii, a–b) had a similar origin
as the previous one except the first 3 d of its journey when the
air masses traveled over the Atlantic Ocean at low altitudes
(<1000 m a.s.l.), enhancing the marine contribution to that
layer (Fig. 4ii, 3).

In Fig. 5 we present the classification of the aerosol lay-
ers under study by (a) NATALI, (b) MD, and (c) SCAN. The
aerosol type results are given concerning the classification by
NATALI. Concerning the MD classification, the normalized
probabilities of each aerosol type assumed by MD are also
given. Finally, concerning the classification of the aerosols
by SCAN, the time (in hours) within which the air mass cir-
culated over specified domains is also provided. It should be
noted here that different colors refer to different aerosol types
or aerosol mixtures.

Thus, in Fig. 5 we observe that NATALI classified the
aerosol layer observed over Kuopio as continental polluted.
MD also gave the highest probability (65 %) for the same
layer to be of continental polluted origin and typed it as such,
while the second-closest probability was 11 % smoke. Fi-
nally, SCAN attributed 24 h to that air mass and classified
it as continental polluted. Moreover, 17 h were attributed as
clean continental and 2 h as marine out of the 144 h of the
air-mass backward trajectory, so it was finally classified as
a cp+ cc+m mixture (Fig. 5ia–c). For the remaining 101 h
of the air-mass backward trajectory that SCAN did not take
into account, it was assumed that the air mass traveled with-
out being affected by any aerosol source as a result of the
combination of the height and domain limitations, criteria
that SCAN take into account during its classification process.
Taking into account these criteria and the air-mass back tra-
jectory provided by HYSPLIT, we would expect that SCAN
should have counted more hours for the air mass attributed
as marine. This is because of the predefined domains on the

map as possible aerosol sources, which reduces the spatial
accuracy of the classification method (Fig. 1). Therefore, we
can see that the final results of the three methods (Fig. 5ia–
c) are in good agreement concerning the layer observed over
Kuopio, although MD and SCAN can provide additional in-
formation on the constituents of the aerosol layer.

On the other hand, the classification results for the aerosol
layers observed over Potenza on t30 July 2015 are more
complex (Fig. 3ii). NATALI classified the lower and mid-
dle aerosol layers as marine/cc and the upper one as mineral
mixtures/volcanic. However, regarding the lower and middle
aerosol layers, they are highly unlikely to be of marine ori-
gin, as they are not affected by the sea spray at these heights
(>2.5 km a.s.l.). These erroneous classification results must
have been affected by the low LR values (22–35± 5 SR).

In this case MD gave the aforementioned lower aerosol
layer a 41 % probability to be of continental polluted origin,
while there was also a 22 % probability for the layer to be
clean continental. MD also classified the middle aerosol layer
as marine with a 63 % probability, while it seems to attribute
a 16 % probability to the continental polluted aerosol type.
Again, the classification results for the lower and middle lay-
ers have probably been affected by the low LR values. Con-
cerning the upper aerosol layer observed over Potenza, MD
failed to characterize it, as it gave nearly equal probabilities
to its possible aerosol types.

Taking into account the results provided by SCAN con-
cerning the lower aerosol layer observed above Potenza,
SCAN counted 78 h as dust and 11 h as continental polluted,
finally classifying the aerosols as a mixture of continental
polluted+ dust. Concerning the middle aerosol layer, SCAN
counted 64 h as continental polluted aerosols (out of 144 to-
tal hours), while one would expect a contribution of dust
aerosols as well, according to both PLDR532 values and the
origin of the air masses based on the air-mass backward-
trajectory analysis. This indicates, again, that the predefined
domains on the map of possible aerosol sources reduce the
spatial accuracy of the classification method, especially when
it comes to the southern Mediterranean Sea in the vicinity of
Sahara. In these cases, an atmospheric dust model (e.g., BSC
DREAM) should be used synergistically. Finally, concern-
ing the upper aerosol layer observed above Potenza, SCAN
counted 66 h as continental polluted aerosols and 44 h as ma-
rine aerosols, the latter again being highly improbable at that
height (∼ 5 km a.s.l.), as previously explained. Again, it be-
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Figure 4. HYSPLIT (GDAS Meteorological Data) 6 d (144 h) air-mass backward trajectory ending on 30 July 2015 over the lidar stations in
(i) Kuopio (62.74◦ N, 27.54◦ E) at 1500 m. a.s.l. (19:00 UTC) and (ii) Potenza (40.60◦ N, 15.72◦ E) at (1) 3000, (2) 4000, and (3) 5000 m a.s.l.
(21:00 UTC) using the model vertical velocity as a vertical motion calculation method. The color bar indicates the trajectory’s height above
mean sea level for each hour of its journey.

comes obvious that an atmospheric dust model should be
used synergistically with the SCAN results when we deal
with air-mass backward trajectories passing over the south-
ern Mediterranean Sea due to the vicinity of Sahara.

3 Results

So far, 97 FT aerosol layers have been classified by the three
aforementioned classification algorithms. The results have
been separated into aerosol layers according to aerosol types
as follows: the 1 type (Fig. 6, blue) and mixture (Fig. 6, cyan)
categories represent the aerosol layers that consist of one and
two or more aerosol types, respectively. The other category
consists of cases that NATALI marked as aerosol type/cloud-
contaminated (i.e., marine/cc), and finally, the unknown cat-
egory (Fig. 6, yellow) consists of the cases for which the
method was unable to identify the source of the observed
aerosol layers. All the aerosol types and mixtures considered
by each algorithm are demonstrated in Table 1.

It can be concluded that NATALI (Fig. 6a) is able to
classify the highest number of cases (94 cases), while MD
(Fig. 6b) failed to classify a high number of cases (46 %)
with a lower percentage of aerosols classified as “mixture”
types (5 %), which is a reasonable outcome given that the
MD scheme considers only two aerosol mixtures, while NA-

TALI and SCAN have many more. Finally, the SCAN algo-
rithm (Fig. 6c) classified 37 % of the aerosol layers (36 lay-
ers) as 1 type, 30 % (29 layers) as aerosol mixtures, and 32 %
(32 layers) as unknown types.

3.1 Comparison of aerosol classification codes

In Fig. 7 we present a comparison of the classification results
obtained using the pairs of (a) NATALI and MD, (b) MD and
SCAN, and (c) SCAN and NATALI. The number of aerosol
layers classified as indicated by the row i and the column j
is given inside each (i,j ) square. For example, the number
of aerosol layers classified as being 1 type by MD but as a
mixture of aerosols by SCAN is shown inside the (1 type –
mixture) square (there are 16 such cases for this example in
Fig. 7b).

In Fig. 7a it can be seen that the 45 cases classified as
unknown by MD were classified as 1 type (20 cases), a mix-
ture (5 cases), or other (17 cases) by NATALI and 1 type
(12 cases) or a mixture (13 cases) by SCAN (Fig. 7b). Fur-
thermore, it seems that MD is unable to discriminate the dif-
ferent aerosol types inside the other layers according to NA-
TALI (Fig. 7a) and the mixture layers according to SCAN,
labeling them as 1 type (Fig. 7b), which is probably because
only two aerosol mixtures are considered by MD. Concern-
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Figure 5. Aerosol layers observed over (i) Kuopio and (ii) Potenza at 3 (bottom), 3.8 (middle), and 5 km a.s.l. (top) on 30 July 2015 classified
by (a) NATALI, (b) MD, and (c) SCAN.
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Figure 6. Percentages of classified aerosol layers by (a) NATALI, (b) MD, (c) SCAN. Blue: 1 type aerosol layers, cyan: mixtures, green:
other types, yellow: unknown constitution of aerosol layers.

Figure 7. Comparison between classified aerosol layers by (a) NATALI and MD, (b) MD and SCAN, and (c) SCAN and NATALI. The
number of classified aerosol layers as indicated by the i row and the j column is given inside each (i,j ) square.

ing the 29 unknown cases classified by SCAN, 20 of them
were also identified as unknown by MD (Fig. 7b), and they
were almost equally separated into 1 type (12 cases) and
other (16 cases) by NATALI (Fig. 7c).

3.1.1 NATALI versus MD

Figure 8a presents a comparison between the cases that MD
classified as 1 type or a mixture against those classified as
other by NATALI, while Fig. 8b shows the number of aerosol
layers that MD classified as unknown and NATALI as 1 type.
Finally, in Fig. 8c we present the number of aerosol layers
that MD classified as unknown and NATALI as a mixture or
other. The pie charts above each bar (Fig. 8b) and each stem
(Fig. 8c) reveal the mean frequencies of each aerosol type as
calculated by MD.

The inability of MD to classify the aerosol layers accord-
ing to NATALI’s classification (Fig. 8a) can be attributed
to the characteristics of the aerosol layers not being well-
modeled by the algorithm, which means that the intensive pa-

rameters are not within the accepted “borders” of the prede-
fined classes of the algorithm. Concerning the 1 type aerosol
layers according to NATALI (Fig. 8b), MD would have pre-
dicted them correctly if the labeling of these layers by MD
was achieved by considering a higher percentage of aerosol
types, as the pie charts above each bar indicate (Fig. 8b). This
does not seem to be the case for the dust type labeled by NA-
TALI, to which MD gave a 40 % probability to be continen-
tal polluted, 30 % smoke, and only 30 % dust and mixed dust
(Fig. 8b). Concerning the mixture and other according to NA-
TALI (Fig. 8c), it seems that MD found a high contribution of
dust and mixtures of dust aerosols (approximately 50 %) in-
side these layers (yellow, orange, and dark red aerosol types
according to the pie charts above the stems).

3.1.2 MD versus SCAN

Figure 9a presents a comparison between the cases that were
classified by MD as 1 type and as a mixture by SCAN, while
Fig. 9b shows the number of aerosol layers classified by MD
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Figure 8. (a) Comparison between the cases classified by MD as 1 type or mixture and as other by NATALI. (b) Number of aerosol layers
classified by MD as unknown and as 1 type by NATALI. (c) Number of aerosol layers classified by MD as unknown and as mixture or other
by NATALI. The pie charts above each bar and each stem reveal the mean frequencies of each aerosol type as calculated by MD.

as unknown and as 1 type by SCAN. Finally, Fig. 9c presents
the number of aerosol layers classified by MD as unknown
and as a mixture or other by SCAN. The pie charts above
each bar (Fig. 9b) and each stem (Fig. 9c) reveal the mean
frequencies of each aerosol type as calculated by MD.

The misclassification of an aerosol layer by MD compared
to the classification as a continental polluted and smoke layer
by SCAN (Fig. 9a) could again be attributed to the location
of the observation compared to the location of the predefined
aerosol types for the MD classification algorithm, which de-
pend on the aerosol optical properties of the studied layers.
Additionally, it seems that the aerosol optical properties of
the mixture of continental polluted and smoke by SCAN are
attributed to either clean continental or continental polluted
aerosols by MD (Fig. 9a). From the cases that MD classified
as unknown, eight are classified as continental polluted (cp)
by SCAN (Fig. 9b), while another six cases are classified
as continental polluted and smoke (cp+ s) (Fig. 9c). Finally,
from these unknown cases by MD, there are another 11 cases
that SCAN classified as clean continental (two cases), dust
(one case), marine (one case; Fig. 9b), clean continental and
marine (one case), continental polluted and clean continen-
tal (one case), continental polluted and marine (two cases),
continental polluted, smoke, and marine (one case), or con-
tinental polluted, clean continental, and marine (two cases;
Fig. 9c).

3.1.3 SCAN versus NATALI

Figure 10 presents a comparison between the cases that
(a) SCAN classified as a mixture and NATALI as 1 type,

(b) SCAN classified as 1 type and NATALI as other, and
(c) SCAN classified as a mixture and NATALI as other.

From Fig. 10 it can be concluded that of the 12 cases that
SCAN classified as continental polluted and smoke (cp+ s),
NATALI classified 6 of them as clean continental (cc), 4 as
continental polluted (cp) (Fig. 10a), and 2 as continental pol-
luted and marine/cloud-contaminated (cp+m/cc) (Fig. 10c).
Moreover, of the six cases that SCAN classified as continen-
tal polluted (cp), three of them were classified as continental
polluted and marine or cloud-contaminated (cp+m/cc), two
as marine/cloud-contaminated (m/cc), and only one as conti-
nental polluted, smoke, and marine or cloud-contaminated
(cp+ s+m/cc) by NATALI (Fig. 10b). It seems that the
aerosol optical properties of this mixture are attributed to
either the clean continental or continental polluted aerosol
types based on the NATALI classification.

3.2 Aerosol optical properties

The mean values of the aerosol optical properties derived
from the NATALI, MD, and SCAN classification for each
aerosol type are presented in Table 4 and discussed in this
section. The correspondence between the aerosol types and
the terminology defined by the classification methods is pre-
sented in Table 1.

3.2.1 Clean continental (cc) aerosols

Aerosol layers classified as clean continental by both
NATALI and MD present medium LR355 values (45–
46± 5 SR), medium to low LR532 values (37–39± 5 SR),
medium Ab355/532 and Ab532/1064 values (1.0± 0.3), high
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Figure 9. (a) Comparison between the cases that were classified by MD as 1 type and as mixture by SCAN. (b) Number of aerosol layers
classified by MD as unknown and as 1 type by SCAN. (c) The number of aerosol layers classified by MD as unknown and as mixture or
other by SCAN. The pie charts above each bar and each stem reveal the mean frequencies of each aerosol type as calculated by MD.

Figure 10. Comparison between the cases classified by (a) SCAN as mixture and as 1 type by NATALI, (b) SCAN as 1 type and as other by
NATALI, and (c) SCAN as mixture and as other by NATALI.

Aeλ1/λ2 values (2.0± 0.3), and low PLDR values at 532 nm
(3± 1 %). These values are in accordance with others re-
ported in previous studies concerning cc aerosols (Ansmann
et al., 2001; Omar et al., 2009; Giannakaki et al., 2010).

3.2.2 Continental polluted (cp) aerosols

Aerosol layers classified as continental polluted by both
NATALI and MD present medium LR355 nm (57± 6 SR),
slightly higher LR532 values (62± 7 SR), medium Ab355/532,
Ab532/1064, and Ae355/532 values (1.1–1.4± 0.3), and low

PLDR values at 532 nm (3± 1 %). On the other hand, the
aerosol layers similarly classified by SCAN present medium
LR355 values (50± 6 SR) and LR532 values (49± 5 SR),
medium Ab355/532, Ab532/1064, and Ae355/532 values (1.0–
1.5± 0.3), and low PLDR values at 532 nm (3± 1 %). These
values are also in accordance with those reported in previous
studies concerning this type of aerosol (Müller et al., 2007;
Giannakaki et al., 2010; Gross et al., 2013; Burton et al.,
2013; Mattis et al., 2008). The similarity of these values to
those of the clean continental aerosol type is the reason why
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Table 4. Mean values and standard deviations of aerosol optical properties according to each classification method.

Aerosol Method Clean Cont. Smoke Marine/ Dust+ Cont. polluted+ Cont. polluted+ Cont. polluted+
types cont. polluted cl. cont. marine smoke marine dust+marine/

cl. cont.

No. of cases NAT 24 24 – 11 – – 14 7
MD 29 13 – – 4 – – –
SCAN – 22 5 – – 16 4 –

LR355 (SR) NAT 46.3± 5.0 57.5± 6.0 – 34.6± 3.5 – – 69.0± 11.0 41.4± 4.3
MD 44.9± 5.1 57.0± 6.4 – – 42.5± 4.4 – – –
SCAN – 50.2± 5.5 45.8± 4.7 – – 52.4 ± 7.9 45.3± 5.9 –

LR532 (SR) NAT 37.3± 3.7 61.6± 6.7 – 27.3± 3.4 – – 31.0± 5.3 43.1± 4.6
MD 38.9± 4.6 61.0± 6.9 – – 46.0± 4.7 – – –
SCAN – 49.2± 5.4 37.2± 4.0 – – 47.3 ± 7.1 54.8± 7.2 –

Ae355/532 NAT 2.0± 0.3 1.2± 0.3 – 1.7± 0.3 – – 0.9± 0.4 −0.1± 0.3
MD 1.6± 0.3 1.1± 0.3 – – −0.2± 0.2 – – –
SCAN – 1.5± 0.3 1.6± 0.3 – – 1.5 ± 0.4 0.3± 0.3 –

Ab355/532 NAT 1.1± 0.3 1.4± 0.3 – 0.9± 0.3 – – −1.2± 0.4 0.0± 0.3
MD 1.1± 0.3 1.2± 0.3 – – 0.0± 0.2 – – –
SCAN – 1.2± 0.3 0.9± 0.3 – – 0.8 ± 0.4 0.5± 0.3 –

Ab532/1064 NAT 1.2± 0.2 1.1± 0.2 – 1.0± 0.2 – – 1.3± 0.2 0.7± 0.1
MD 1.1± 0.2 1.1± 0.2 – – 0.7± 0.1 – – –
SCAN – 1.0± 0.2 1.3± 0.2 – – 1.3 ± 0.2 0.7± 0.2 –

PLDR ( %) NAT 3.4± 1.4 2.3± 0.7 – 4.1± 1.6 – – 2.7± 1.6 13.0± 4.4
MD 3.0± 1.2 2.7± 1.0 – – 15.2± 5.3 – – –
SCAN – 3.3± 1.3 2.7± 1.1 – – 4.0 ± 1.9 7.7± 3.8 –

it remains difficult to distinguish between these two aerosol
types.

3.2.3 Smoke (s) aerosols

Smoke aerosol layers according to SCAN show medium
LR355 values (50± 5 SR), medium to small LR532 values
(37± 4 SR), medium Ab355/532 and Ab532/1064 values (0.9–
1.3± 0.3), medium to high Ae355/532 values (1.6± 0.3), and
low PLDR values at 532 nm (3± 1 %). These values are in
accordance with those reported in previous studies concern-
ing this type of aerosol (Wandinger et al., 2002; Müller et al.,
2005, 2007; Burton et al., 2013; Baars et al., 2012; Balis, et
al., 2003; Papanikolaou, et al., 2020). Again, the similarity of
these values to those of the clean continental and continental
polluted aerosol types is the reason why it remains difficult
to distinguish between these three aerosol types.

3.2.4 Marine/cloud-contaminated (m/cc) aerosols

Aerosol layers classified as marine/cloud-contaminated by
NATALI showed low values of LR355 (35± 4 SR), even
lower LR532 values (27± 3 SR), small to medium Ab355/532
and Ab532/1064 values (0.9-1.0± 0.3), increased Ae355/532
values (1.7± 0.3), and low PLDR532 values (4± 2 %). These
values are in accordance with those reported by Cattrall
et al. (2005), Burton et al. (2012, 2013), and Dawson, et
al. (2015) concerning marine aerosols.

3.2.5 Dust and marine aerosols (d&m)

Concerning the dust and marine mixture according to the
MD algorithm classification, these aerosols showed medium
LR355 values (43± 4 SR), low LR532 values (46± 5 SR),
small Ab355/532, Ab532/1064 (0.0–0.7± 0.2), Ae355/532 val-
ues (−0.2± 0.2), and medium PLDR532 values (15± 5 %).
These values indicate large and depolarizing aerosol parti-
cles, confirming the type of these particles as a mixture of
dust and marine ones, according to Burton et al. (2012) and
Papagiannopoulos et al. (2016).

3.2.6 Continental polluted and smoke (cp&s) aerosols

The continental polluted and smoke mixed aerosols clas-
sified according to SCAN showed medium LR355 values
(52± 8 SR), medium LR532 values (47± 7 SR), medium
Ab355/532 and Ab532/1064 values (0.8–1.3± 0.4), high val-
ues of Ae355/532 (1.5± 0.4), and low values of PLDR532
(4± 2 %). The medium LR355 and LR532 values indicate
continental polluted aerosols (Müller et al., 2007; Gian-
nakaki et al., 2010; Gross et al., 2013; Burton et al., 2013;
Papanikolaou, et al., 2020), while the high Ae355/532 values
indicate smoke aerosols (Wandinger et al., 2002; Müller et
al., 2005).
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3.2.7 Continental polluted and marine (cp&m) aerosols

The continental polluted and marine mixture accord-
ing to NATALI showed a large difference between the
LR355 and LR532 values, with the latter being smaller
(LR355 = 69± 11, LR532 = 31± 5.3 SR). The Ae355/532,
Ab355/532, and PLDR at 532 nm showed low values
(0.9± 0.4, −1.2± 0.4, 2.7± 1.6, respectively), while the
Ab532/1064 showed large values (1.3± 0.2). SCAN showed
medium LR355 values (45± 6 SR), increased LR532 values
(55± 7 SR), low Ab355/532, Ab532/1064, and Ae355/532 val-
ues (0.3–0.7± 0.3), and low PLDR532 values (8± 4 %). The
low PLDR values are indicative of non-depolarizing aerosols
such as continental polluted (Müller et al., 2007; Giannakaki
et al., 2010; Gross et al., 2013; Burton et al., 2013) and
marine aerosols (Gross et al., 2011; Burton et al., 2012,
2013; Gross et al., 2013). Additionally, the low Ab355/532,
Ab532/1064, and Ae355/532 values are indicative of coarse-
mode aerosols such as marine, while the increased LR532
values are more indicative of continental polluted aerosols
rather than marine ones.

3.2.8 Continental polluted, dust, and marine or clean
continental (cp&d&m/cc) aerosols

Finally, the continental polluted, dust, and marine or cloud-
contaminated aerosol mixture classified by NATALI showed
medium LR355 values (41± 4 SR), medium LR532 values
(43± 5 SR), low Ab355/532, Ab532/1064, and Ae355/532 values
(−0.1–0.7± 0.3), and medium PLDR532 values (13± 4 %).
Here, the medium PLDR values are indicative of dust mix-
tures (Gross et al., 2011, 2016; Burton et al., 2013), while the
lowAb355/532,Ab532/1064, andAe355/532 values are indicative
of coarse-mode aerosols, such as dust and marine.

4 Conclusions

In this study, we compared three independent aerosol clas-
sification methods: a neural network aerosol typing algo-
rithm, the Mahalanobis distance automatic aerosol type clas-
sification, and a source classification analysis using 97 free
tropospheric aerosol layers from four EARLINET stations
(Bucharest, Kuopio, Leipzig, and Potenza) from 2014–2018.
NATALI is an automated aerosol layer classification neural
network depending on the aerosol optical properties (3β +
2α+ 1δ) directly obtained from the EARLINET database.
MD is an automated aerosol layer classification algorithm
depending on the mean values of the aerosol optical prop-
erties (Ae355/1064, LR532, LR532 /LRλ355, PLDR532, and
Ab1064/532) of the probed atmospheric layers. SCAN, intro-
duced for the first time in this study, is based on the automa-
tization of the typical classification method, while its classi-
fication procedure is based on the amount of time that an air
parcel spends over specific pre-characterized aerosol source

regions and a number of additional criteria, as analytically
presented.

We concluded that NATALI showed a lower percentage
(4 %) of unclassified layers. When compared to MD, NA-
TALI’s X or cloud-contaminated aerosol layers (where X is
either an aerosol type or a mixture) are classified by MD as
clean continental layers, except when X is a mixture of dust
aerosols. When compared, SCAN’s continental polluted and
smoke layers are classified by NATALI as either clean conti-
nental or continental polluted.

Furthermore, we found that MD was unable to classify al-
most 50 % of the layers under study. Compared to NATALI,
these layers either belong to one single aerosol type or to
aerosol mixtures. Concerning MD’s unknown category and
NATALI’s one single aerosol type, we showed that MD’s
mean percentages predict the aerosol type of each layer quite
well, even though this aerosol type is not chosen by the clas-
sification process of MD. Concerning MD’s unknown and
NATALI’s mixture categories, the MD algorithm revealed an
increased contribution of dust aerosols (approximately 50 %)
inside the studied aerosol layers. Compared to SCAN, MD’s
unknown layers are mainly either continental polluted or
continental polluted and smoke. Finally, SCAN’s continen-
tal polluted and smoke layers are classified by MD as either
clean continental or continental polluted.

We found that the SCAN code successfully managed to
classify more than 50 % of the layers studied either as a sin-
gle aerosol type or as mixtures of different aerosols. Being
independent of aerosol optical properties, SCAN provides
the advantage that its classification process is not affected
by overlapping values of the optical properties representing
more than one aerosol type (clean continental, continental
polluted, smoke). Furthermore, it has no limitations concern-
ing its ability to classify aerosol mixtures, an advantage that
arises from the air-mass trajectory analysis and the relevant
aerosol sources on the ground. Finally, it can be useful for
all types of lidar systems (independently of the number of
channels used) and for other network-based systems (radar
profilers, sun photometers).
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