

Supplement of

Effect of mixing structure on the water uptake of mixtures of ammonium sulfate and phthalic acid particles

Weigang Wang et al.

Correspondence to: Weigang Wang (wangwg@iccas.ac.cn) and Maofa Ge (gemaofa@iccas.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

 Table S1. Chemical substance and their physical properties used in this work.
 1

	Chemical Compounds	Chemical Formular	Molar Mass [g mol ⁻¹]	Density Solid [g cm ⁻³]	Solubility g/100 cm ³ H ₂ O	Solution Surface Tension [J m ⁻²]	Manufacture
	Ammonium Sulfate	(NH ₄) ₂ SO ₄	132.140	1.770 ^a	74.400(293K)	0.072	Alfa Aesar 99.95%
	Phthalic Acid	$C_8H_6O_4$	166.140	1.593 ^b	0.600	0.064(293K)	Alfa Aesar 99.5%
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							

Core Size	Coating	Mass Fraction of PA (%)	
	10nm PA coating	23	
100nm AS core	20nm PA coating	39	
	30nm PA coating	52	
	50nm PA coating	68	
	10nm PA coating	16	
170 40	20nm PA coating	29	
150nm AS core	30nm PA coating	40	
	50nm PA coating	55	
	10nm PA coating	12	
200 4.5	20nm PA coating	23	
200nm AS core	30nm PA coating	32	
	50nm PA coating	46	

Table S2. Mass fraction of PA in the core-shell particles at dry RH (< 5 % RH)

Figure S1. Hygroscopic diameter growth factor for 100 nm (dry diameter, RH < 5 %) (a) succinic acid and (b)
levoglucosan aerosol particles during a hydration mode from 5 % RH to 90 % RH at 298 K (Lei et al., 2014; Jing et al., 2016).

Figure S2. TEM images of well-mixed particles containing AS and 46 wt% PA at RH below 5%.

34

Figure S3. Predicted equilibrium state phase compositions in mass fractions for aqueous mixtures of AS and PA as a function of water activity (equilibrium RH) at 298 K. Hydration case: a solid–liquid equilibrium is predicted between a solid AS phase (δ ; lowest panel) and an aqueous, PA-rich phase (β ; middle panel) up to ~96% RH, followed by liquid–liquid phase separation (coexisting phases α and β) and merging into a single liquid phase at 96% RH and above.

40