

Supplement of

A mass-weighted isentropic coordinate for mapping chemical tracers and computing atmospheric inventories

Yuming Jin et al.

Correspondence to: Yuming Jin (y2jin@ucsd.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

S1: Contribution of each heating term to the overall time variation of $M_{\theta e}$

The fractional contributions from different heating terms to the temporal variation of M_{θe} on seasonal and synoptic scales are computed by using a vector projection method (Graven et al., 2013). In this method, each heating term
 10 ([∂]/_{∂t} Mⁱ_{θe}(θ_e, t)) is projected onto the sum of all the heating terms ([∂]/_{∂t} M_{θe}(θ_e, t)) via:

$$x_{i} = \frac{\sum_{t} \left[\frac{\partial}{\partial t} M_{\theta_{e}}^{i}(\theta_{e}, t) \cdot \frac{\partial}{\partial t} M_{\theta_{e}}(\theta_{e}, t) \right]}{\sum_{t} \left[\frac{\partial}{\partial t} M_{\theta_{e}}(\theta_{e}, t) \cdot \frac{\partial}{\partial t} M_{\theta_{e}}(\theta_{e}, t) \right]}$$
(S1)

with

$$\frac{\partial}{\partial t}M_{\theta_{e}}(\theta_{e},t) = \sum_{i} \frac{\partial}{\partial t}M^{i}_{\theta_{e}}(\theta_{e},t)$$
(S2)

where the sum is over all time steps, and the mean of each $\frac{\partial}{\partial t}M^{i}_{\theta_{e}}(\theta_{e}, t)$ has been pre-subtracted (i.e., 15 $\sum_{t} \frac{\partial}{\partial t}M^{i}_{\theta_{e}}(\theta_{e}, t) = 0$). The sum over x_{i} equals 1, but individual x_{i} can be either positive or negative and the absolute value can be either larger or smaller than 1.

20

Figure S1: (a) Temporal variation of $M_{\theta e}$ in the Northern Hemisphere at $\theta_e = 300$ K computed by integrating air mass (blue line) and estimated from the sum of five heating terms (Table 1) in MERRA-2 (black line). (b) The heating variables decomposed into five contributions as indicated (see Table 1). Results shown are for the year 2010.

Figure S3: Similar to Figure S1, but for the year 2009 and on the 290 K θ_e surface.

Airbo	orne	Orriging	Equator	Poleward	Surface –	600 mbar	Pacific	Medusa	Random	Random	Random
Trans	ect		to 30 °N	of 30 $^{\circ}N$	600 mbar	– Trop.	Only	Coverage	10 %	5 %	1 %
HIPPO	1 SB	4837	1454	3383	1794	3043	4837	76	484	242	48
HIPPO	2 SB	4665	1510	3155	1945	2720	4665	82	451	233	45
HIPPO	2 NB	5508	2428	3080	2159	3349	5508	93	543	275	54
HIPPO	3 SB	4439	1371	3068	2038	2401	4439	88	427	222	43
HIPPO	3 NB	4086	1135	2951	1790	2296	4086	84	399	204	40
HIPPO	4 SB	5491	1602	3889	2340	3151	5491	81	534	275	53
HIPPO	4 NB	6411	3134	3277	3142	3269	6411	124	626	321	63
HIPPO	5 SB	5538	1678	3860	2569	2969	5538	78	548	277	55
HIPPO	5 NB	4715	1705	3010	2066	2649	4715	86	392	236	39
ATom	1 SB	9832	2333	7499	3186	6646	9832	83	455	492	46
ATom	1 NB	10685	3186	7499	3665	7020	0	59	893	534	89
ATom	2 SB	11372	3909	7463	4057	7315	11372	84	1109	569	111
ATom	2 NB	10741	3284	7457	3792	6949	0	91	1042	537	104
ATom	3 SB	15143	3751	11392	4817	10326	15143	87	1460	757	146
ATom	3 NB	14039	4173	9866	4764	9275	0	92	1362	702	136
ATom	4 SB	13554	3683	9871	5249	8305	13554	84	1327	678	132
ATom	4 NB	11995	3626	8369	4130	7865	0	89	1187	600	119

Table S1: Number of data points of each airborne campaign transect for each simulation

35 References

Graven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens, B. B., Wofsy, S. C., Welp, L. R., Sweeney, C., Tans., P. P., Kelley, J. J., Daube, B. C., Kort, E. A., Santoni, G. W. and Bent, J. D.: Enhanced seasonal exchange of CO₂ by northern ecosystems since 1960, Science, 341(6150), 1085–1089, https://doi.org/10.1126/science.1239207, 2013.

40