
Atmos. Chem. Phys., 21, 2067–2082, 2021
https://doi.org/10.5194/acp-21-2067-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

High-resolution hybrid inversion of IASI ammonia columns to
constrain US ammonia emissions using the CMAQ adjoint model
Yilin Chen1, Huizhong Shen1, Jennifer Kaiser1,2, Yongtao Hu1, Shannon L. Capps3, Shunliu Zhao4, Amir Hakami4,
Jhih-Shyang Shih5, Gertrude K. Pavur1, Matthew D. Turner6, Daven K. Henze7, Jaroslav Resler8,
Athanasios Nenes9,10, Sergey L. Napelenok11, Jesse O. Bash11, Kathleen M. Fahey11, Gregory R. Carmichael12,
Tianfeng Chai13, Lieven Clarisse14, Pierre-François Coheur14, Martin Van Damme14, and Armistead G. Russell1
1School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
2School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
3Department of Civil, Architectural, and Environmental Engineering, Drexel University,
Philadelphia, PA 19104, United States
4Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario K1S5B6, Canada
5Resources for the Future, Washington, D.C. 20036, USA
6SAIC, Stennis Space Center, MS 39529, USA
7Mechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA
8Institute of Computer Science of the Czech Academy of Sciences, Prague, 182 07, Czech Republic
9Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, 26504, Greece
10School of Architecture, Civil & Environmental Engineering, Ecole polytechnique fédérale de Lausanne,
1015, Lausanne, Switzerland
11Atmospheric & Environmental Systems Modeling Division, U.S. EPA, Research Triangle Park, NC 27711, USA
12Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
13NOAA Air Resources Laboratory (ARL), Cooperative Institute for Satellites Earth System Studies (CISESS),
University of Maryland, College Park, MD 20740, USA
14Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and
Atmospheric Remote Sensing (SQUARES), Brussels, Belgium

Correspondence: Armistead G. Russell (ar70@ce.gatech.edu)

Received: 28 May 2020 – Discussion started: 29 June 2020
Revised: 3 January 2021 – Accepted: 5 January 2021 – Published: 11 February 2021

Abstract. Ammonia (NH3) emissions have large impacts
on air quality and nitrogen deposition, influencing human
health and the well-being of sensitive ecosystems. Large un-
certainties exist in the “bottom-up” NH3 emission invento-
ries due to limited source information and a historical lack of
measurements, hindering the assessment of NH3-related en-
vironmental impacts. The increasing capability of satellites
to measure NH3 abundance and the development of model-
ing tools enable us to better constrain NH3 emission esti-
mates at high spatial resolution. In this study, we constrain
the NH3 emission estimates from the widely used 2011 Na-
tional Emissions Inventory (2011 NEI) in the US using In-
frared Atmospheric Sounding Interferometer NH3 column

density measurements (IASI-NH3) gridded at a 36 km by
36 km horizontal resolution. With a hybrid inverse model-
ing approach, we use the Community Multiscale Air Quality
Modeling System (CMAQ) and its multiphase adjoint model
to optimize NH3 emission estimates in April, July, and Octo-
ber. Our optimized emission estimates suggest that the total
NH3 emissions are biased low by 26 % in 2011 NEI in April
with overestimation in the Midwest and underestimation in
the Southern States. In July and October, the estimates from
NEI agree well with the optimized emission estimates, de-
spite a low bias in hotspot regions. Evaluation of the inver-
sion performance using independent observations shows re-
duced underestimation in simulated ambient NH3 concentra-
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tion in all 3 months and reduced underestimation in NH+4 wet
deposition in April. Implementing the optimized NH3 emis-
sion estimates improves the model performance in simulat-
ing PM2.5 concentration in the Midwest in April. The model
results suggest that the estimated contribution of ammonium
nitrate would be biased high in a priori NEI-based assess-
ments. The higher emission estimates in this study also imply
a higher ecological impact of nitrogen deposition originating
from NH3 emissions.

1 Introduction

Ammonia (NH3) emissions play a major role in ambient
aerosol formation and reactive nitrogen deposition (Stevens,
2019: Houlton et al., 2013). However, our understanding of
NH3 sources and sinks is limited by the large uncertainties
present in the NH3 emissions inventories (Xu et al., 2019;
McQuilling and Adams, 2015). In chemical transport mod-
els, uncertainties in NH3 emissions propagate into the dy-
namic modeling of the atmospheric transport, chemistry, and
deposition of NH3, other reactive nitrogen species, and other
key atmospheric constituents associated with NH3 (Heald et
al., 2012; Paulot et al., 2013; Kelly et al., 2014; Zhang et
al., 2018b), hindering an accurate assessment of the vari-
ous NH3-related environmental impacts and the associated
sources. The large uncertainties in the NH3 emission inven-
tories are partially due to a lack of sufficient in situ NH3 mea-
surements that could be used to constrain emission estimates
(Zhu et al., 2015).

Emerging satellite observations of gaseous NH3 provide
a unique opportunity to better constrain the bottom-up NH3
emission estimates for both their spatial distribution and sea-
sonality. Bottom-up inventories calculate the NH3 emissions
based on estimated activity levels and corresponding emis-
sion factors, both of which are subject to high uncertainties,
particularly for agricultural sources, the major contributor
(Cooter et al., 2012; McQuilling and Adams, 2015). Sev-
eral studies have utilized NH3 column density retrieved from
the Infrared Atmospheric Sounding Interferometer (IASI)
(Clarisse et al., 2009; Van Damme et al., 2015b) or the Atmo-
spheric Infrared Sounder (AIRS; Warner et al., 2016) as well
as the inferred surface mixing ratio of NH3 from the Cross-
track Infrared Sounder (CrIS; Shephard and Cady-Pereira,
2015; Shephard et al., 2020) to characterize the spatiotem-
poral distribution of NH3. These satellite measurements are
useful for supplementing emission inventories to identify and
quantify underestimated or missing emission hotspots, es-
pecially in intensive agricultural zones (Van Damme et al.,
2018; Dammers et al., 2019; Clarisse et al., 2019). These
studies find that the satellite-derived emission estimates are
often twice as much as the bottom-up estimates on a re-
gional scale and can be over 10 times higher over hotspots.
However, the NH3 retrievals from satellites are also subject

to large uncertainties when the signal-to-noise ratio is low,
which limits their ability to accurately measure NH3 columns
in low-emission areas (Clarisse et al., 2010; Van Damme et
al., 2015a).

Inverse-modeling-based optimization combines the infor-
mation from a priori emission inventories and observations
and allows us to use the information from both. As one of
the inverse modeling methods, the four-dimensional varia-
tional assimilation (4D-Var) method seeks the best emission
estimate by minimizing a cost function that measures the
differences between observations and model predictions, as
well as the differences between a prior and adjusted emission
estimates. 4D-Var can be computationally expensive at fine
model resolutions or with a large set of observations to be
assimilated (Brasseur and Jacob, 2017). Recent studies have
taken advantage of the implementation of the adjoint tech-
nique in the chemical transport models to conduct 4D-Var for
optimizing emissions estimation (Zhu et al., 2013; Paulot et
al., 2014; Zhang et al., 2018c). The adjoint-based inversion
method calculates the gradients of a cost function analyti-
cally and searches for the solution using a steepest-descent
optimization algorithm through iterating (Brasseur and Ja-
cob, 2017). By testing the performance of the inverse model-
ing method using artificial observational data, Li et al. (2019)
proposed that a two-step optimization process, which com-
bines the iterative mass balance (IMB) method and the 4D-
Var method, can further reduce the computational cost. The
IMB method assumes a linear relationship between the NH3
column density and local NH3 emission and searches for the
emission scaling factors iteratively until the simulated NH3
column density converges to the observations. At a coarse
(2◦× 2.5◦) resolution, the IMB method is as effective as the
4D-Var method and requires two-thirds less computational
time. In the second step, emission scaling factors obtained
from the IMB method with a coarser resolution are used as
an initial starting point for the 4D-Var optimization process
to reduce the overall computational time (Li et al., 2019).

This work utilizes satellite observations from the IASI-
NH3 column density measurements (IASI-NH3) (Clarisse
et al., 2009;Van Damme et al., 2017), to provide a high-
resolution, optimized NH3 emission inventory for the US de-
veloped using an adjoint inverse modeling technique (Li et
al., 2019), the robustness of which is demonstrated by evalu-
ation against multiple independent in situ measurements. The
IASI-NH3 dataset was applied to optimize NH3 emission es-
timates from the 2011 National Emissions Inventory (2011
NEI) using the Community Multiscale Air Quality Modeling
System (CMAQ) and its adjoint model at a 36 km× 36 km
resolution. The multiphase adjoint model for CMAQ v5.0
was developed recently, including full adjoints for gas-phase
chemistry, aerosols, cloud process, diffusion, and advection
(Zhao et al., 2020). Both process-by-process and full adjoint
model evaluations show reasonable accuracy based on agree-
ments between the adjoint sensitivities and forward sensi-
tivities (Zhao et al., 2020). Previous inversion-based NH3
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emission constraints using in situ measures are limited by
the spatial coverage and representativeness of the measure-
ments (Gilliland et al., 2006; Henze et al., 2009; Paulot et al.,
2014;). Zhu et al. (2013) first attempted to optimize the NH3
emission inventory using NH3 derived from the Tropospheric
Emission Spectrometer satellite at 2◦× 2.5◦ resolution (Zhu
et al., 2013). Inverse modeling at such a coarse resolution is
limited to refining regional emissions. Similar to the inver-
sion using CrIS NH3 measurements (Cao et al., 2020), inver-
sion with the IASI-NH3 dataset allows us to perform the opti-
mization at a finer resolution with its daily global spatial cov-
erage. Furthermore, the hybrid inversion approach adopted
in this study allows us to calculate full adjoint sensitivities
online instead of using approximated sensitivities from the
offline simulations (Zhu et al., 2013; Cao et al., 2020). The
performance of our optimized estimates and the 2011 NEI
are evaluated and compared based on in situ observed ambi-
ent NH3 concentrations and NH+4 wet deposition. Finally, by
substituting the a priori NH3 emissions with the optimized
emissions, we assess the subsequent changes in simulated
ambient PM2.5 concentrations and nitrogen deposition ex-
ceedances.

2 Materials and methods

2.1 IASI-NH3 observations

NH3 column densities retrieved from IASI on board the
Metop-A satellite are assimilated to constrain spatially re-
solved NH3 emissions using the 2011 NEI as the a priori
inventory (Clarisse et al., 2009; Van Damme et al., 2014;
USEPA, 2014). The polar sun-synchronous satellite has a
12 km diameter footprint at nadir and a bidaily global cov-
erage. Only observations from the morning pass around
09:30 local standard time (LST) are used due to more fa-
vorable thermal contrast and smaller errors as compared to
the night pass around 21:30 LST. A comparison between
the IASI-NH3 data and ground-based Fourier transform in-
frared (FTIR) observations shows a correlation between the
two with r = 0.8 and the slope= 0.73, indicating a ten-
dency of IASI-NH3 to underestimate the FTIR observations
(Dammers et al., 2016). A comparison between IASI-NH3
and airborne measurements also indicated an underestima-
tion in California, while the comparison between IASI-NH3
and ground observation from the Ammonia Monitoring Net-
work (AMoN) indicated an overestimation (Van Damme
et al., 2015a; NADP, 2014). Overall, the evaluations show
broad consistency between IASI-NH3 and other independent
measurements, with no consistent biases identified. These
evaluations were based on previous datasets. Here we use a
new version that relies on another retrieval algorithm, which
among other things has better performance for measurements
under unfavorable conditions (Whitburn et al., 2016; Van
Damme et al., 2017).

Specifically, the NH3 products for 2011 from ANNI-NH3-
v2.2R-I datasets were used (Van Damme et al., 2017). The
algorithm relies on the conversion of hyperspectral range in-
dices to NH3 column density using a neural network that
takes into account 20 input parameters, characterizing tem-
perature, pressure, humidity, and NH3 vertical profiles. A
relative uncertainty estimate is provided along with each of
the NH3 vertical column densities in the dataset. Small nega-
tive columns are possible – and these are valid observations,
needed to reduce overall biases in the dataset. As the re-
trieval is unconstrained, no averaging kernels are calculated.
We therefore directly compare the IASI-NH3 column density
with the simulated column density in CMAQ. Such com-
parison may be biased because the sensitivity of retrieved
NH3 column densities to NH3 concentrations is height-
dependent (typically peaks around 700–850 hPa) (Dammers
et al., 2017; Shephard et al., 2015). Although the CMAQ-
simulated NH3 columns are also most sensitive to NH3 con-
centration changes between 700 to 900 hPa (Fig. S1), we can-
not quantify the relating uncertainties without knowing the
averaging kernels. Without information on averaging kernels,
differences between NH3 vertical profiles in CMAQ and the
ones used for retrieval may also contribute to the bias be-
tween retrieved and modeled column densities, depending on
the magnitude of differences (Whitburn et al., 2016).

The retrieved NH3 columns densities are regridded to
the 36 km by 36 km CMAQ grid for 4D-Var data assimi-
lation and 216 km by 216 km resolution (a six-grid-by-six-
grid CMAQ simulation grid matrix) for iterative mass bal-
ance (Fig. 1). The mean column density (�o) is calculated
as the arithmetic mean of all retrievals with their centroids
falling in the same grid cell, following the recommendation
that the unweighted mean is preferred for the updated ver-
sion of IASI-NH3 as error-weighting can lead to biases (Van
Damme et al., 2017). The error (molec cm−2) corresponding
to the mean column density in each grid is calculated as

σ =

√∑
(σi ×�i)

2

n− 1
, (1)

where σ is the mean error (molec cm−2), �i is the ith re-
trieval of NH3 column density from IASI-NH3 Level 2 data,
σi is the relative error associated with each �i as reported,
and n is the number of retrievals within each grid cell during
the defined time period. For 4D-Var inversion and IMB in-
version, daily and monthly means and errors are calculated,
respectively.

The observations from April, July, and October are used
to constrain the monthly NH3 emission estimates in corre-
sponding months from 2011 NEI. Limited by the high com-
putational cost of adjoint-model-based inversion, the opti-
mization is only performed for the 3 months selected instead
of a full year. Observations from winter months are not used
because they are too noisy when the thermal contrast is low
(Dammers et al., 2016).

https://doi.org/10.5194/acp-21-2067-2021 Atmos. Chem. Phys., 21, 2067–2082, 2021



2070 Y. Chen et al.: Hybrid inversion of IASI ammonia columns to constrain emission estimates

Figure 1. IASI monthly average NH3 column density in April, July, and October 2011 at 36 km by 36 km (a, b, c) and 216 km by 216 km (d,
e, f) resolutions within the model simulation domain of this study. The average relative error associated with the column density is shown in
the corner of each plot.

2.2 NH3 emission from 2011 NEI

The EPA 2011 NEI is used for a priori emission estimates.
Major NH3 sources include livestock waste management,
fertilizer application, mobile sources, fire, and fuel combus-
tion, with the majority being emitted by the first two sources.
Specifically, the emissions from livestock waste management
are estimated based on county-level animal population data
and process-based daily emission factors. Emissions from
fertilizer applications are estimated based on county-level
fertilizer quantities and fixed emission factors, following the
CMU Ammonia Model (USEPA, 2015). The NH3 emissions
over Mexico and Canada are derived from the simulation
results of a fully coupled bi-directional agroecosystem and

chemical transport model (FEST_C_EPIC_CMAQ_BIDI)
(Shen et al., 2020). Emissions for other species also come
from the 2011 NEI.

2.3 CMAQ and its adjoint

We use CMAQ v5.0 (Byun and Schere, 2006; USEPA,
2012) and its adjoint (Zhao et al., 2020), driven by mete-
orological fields produced from the Weather Research and
Forecasting (WRF) Model v3.8.1 with grid nudging using
the North American Regional Reanalysis dataset (NOAA,
2019). The simulated meteorological fields show good agree-
ment with surface observations (Fig. S2) (NOAA, 2020).
The CB05 chemical mechanism was adopted for gas-phase
chemistry (Yarwood et al., 2005). The model implements
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ISORROPIA-II in the aerosol module (AERO06) to calcu-
late the gas–particle partitioning of NH3 and NH+4 (Foun-
toukis and Nenes, 2007). The simulation domain covers the
contiguous US (CONUS) and part of Canada and Mexico
with a 36 km by 36 km horizontal resolution and 13 vertical
layers extending up to 14.5 kPa (∼ 16 km) (Fig. 1). To evalu-
ation CMAQ model performance, the simulated gas–particle
partitioning ratio of NH3–NH+4 and NH+4 deposition is com-
pared with observations from AMoN, the Clean Air Status
and Trends Network, and the National Atmospheric Depo-
sition Program (NADP) (Figs. S3 and S4). CMAQ captures
the overall spatial pattern of these governing processes for
atmospheric NH3 abundance, considering the uncertainties
in emissions, model parameters, and meteorological fields.
Expanded evaluation of CMAQ model performance in sim-
ulating gas–particle partitioning and nitrogen deposition has
been conducted in previous studies (Chen et al., 2019, 2020).
Monthly simulations are conducted for April, July, and Oc-
tober in 2011 with a 10 d spin-up for each month.

2.4 Hybrid inversion approach

We chose the hybrid inversion approach to combine the ad-
vantage of the faster computational speed of the mass balance
method and the better optimization performance of the 4D-
Var method. The first step is to apply the IMB approach to
adjust the a priori (2011 NEI) NH3 emission at 216 km by
216 km resolution (referred to as the coarse grid hereafter)
based on the ratio between the monthly averaged observed
(�o) and simulated (�a) NH3 column density at the satellite
overpassing time, iteratively. At each iteration, the emission
in each grid cell is scaled by the ratio following the equation
below:

Et =
�o

�a
×Ea, (2)

where Et and Ea are the new and a priori emission estimates,
respectively. The method has been described in detail in pre-
vious studies (Li et al., 2019; Cooper et al., 2017; Martin et
al., 2003). The IMB is applied at the coarse grid so that the
NH3 column will be dominated by the local emissions in-
stead of transport from neighboring grids (Li et al., 2019).
The coarse resolution also reduces the uncertainty associ-
ated with IASI-NH3 as the number of retrievals increases in
each grid cell. For grid cells with mean relative error larger
than 100 %, the satellite observations are considered to be too
noisy to provide useful constraints and the a priori emission
estimates are retained. The iteration stops when the normal-
ized mean square error either decreases by less than 10 %
or begins to increase. The final scaling factor (ε0) for each
grid cell is the multiplication of the scaling factors derived at
each iteration and downscaled to 36 km by 36 km resolution
by assigning the same value to the six-by-six grid matrix.
This scaling factor is applied to the 2011 NEI emissions to
create the revised a priori estimate for the 4D-Var inversion.

Next, the 4D-Var inversion is performed. The solution of
the optimization problem is sought iteratively by minimiz-
ing the cost function (J ) defined as the combination of error-
weighted, squared difference between the emission scaling
factor and unity and the error-weighted, squared difference
between IASI-NH3 and the simulated column density, as be-
low:

J = γ (εi− ε0)
T S−1

a (ε− ε0)+ (�o−F(ε))
T

S−1
o (�o−F(ε)). (3)

ε is the monthly emission scaling factor to be optimized at
each iteration where ε = log(Et/Ea) on the 36 km by 36 km
CMAQ grid, consisting of 6104 overland grid cells in the
CONUS. Sa and So are error covariance matrices for the
a priori emission estimates and IASI-NH3 retrievals, respec-
tively. With limited information on the spatial correlation of
the error covariance, the two matrices are assumed to be diag-
onal (Paulot et al., 2014; Zhu et al., 2013). For So, the grid av-
erage absolute error is used to represent the observational er-
ror. Our test shows that negative�o will lead to a continuous
decrease in the adjusted emission for the grid cell because
modeled column density cannot become negative. To limit
the influence of these negative �o, their original weights are
multiplied by 0.01. For Sa, the uncertainty in each grid cell
is assumed to be 100 % of the a priori emissions. F(ε) is
CMAQ-simulated NH3 column density sampled at the satel-
lite passing time if there is at least one IASI-NH3 retrieval
in that grid cell; γ is the regularization factor balancing the
relative contribution of the a priori emission inventory and
IASI-NH3 retrievals to the J value. γ is chosen to be 800
for April and 500 for July and October based on the L-curve
criteria (Hansen, 1999) (Fig. S5).

The gradients of the cost function to NH3 emissions are
calculated by the CMAQ adjoint model. In each iteration,
the emission-weighted monthly averaged sensitivities in each
grid cell are supplied to the L-BFGS-B optimization routine
contained in the “optimr” package in R to find the scaling
factors that will achieve the minimum of the cost function
(Zhu et al., 1997; Byrd et al., 1995). NH3 column density is
re-simulated using adjusted emissions by the new set of scal-
ing factors. The iteration process is terminated when the de-
crease in J is less than 2 % or the local minimum is reached
(Li et al., 2019; Zhu et al., 2013).

2.5 Posterior evaluation

The posterior emissions are evaluated by comparing the
model simulation from optimized emissions with observa-
tions. Simulated results are compared with ambient NH3
concentrations from AMoN (NADP, 2014) and the NH+4 wet
deposition from NADP (NADP, 2019). The simulated NH3
concentration in ppmv is converted to micrograms per cubic
meter (µg m−3) using local temperature and pressure from
the model meteorological inputs. For evaluation against the
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NH+4 wet deposition, the simulated deposition is scaled by
the ratio between measured and simulated precipitation to
eliminate the bias introduced by precipitation fields (Appel
et al., 2011).

3 Results

3.1 Optimization performance evaluation

The optimized NH3 emissions reduce the bias in the NH3
columns between the satellite observation and the model
prediction as shown by the decrease in the values of nor-
malized root mean square error (NRMSE) and normalized
mean biases (NMBs) in Fig. 2. There are negative biases
using 2011 NEI in all 3 months, especially in areas with
high emission rates. Although the IMB inversion can lower
the NRMSE, it tends to over-adjust and introduce a pos-
itive bias, likely because of the coarse resolution and ne-
glect of the impact of transport. The 4D-Var inversion ef-
fectively decreases the positive bias and further reduces the
NRMSE. The cost function value reduces by 85, 46, and
38 % with the 4D-Var inversion in April, July, and October,
respectively. We find that it is more challenging to adjust the
emissions in April than in the other 2 months because of the
greater differences in the magnitude and the spatial distribu-
tion of the emissions. The optimized NH3 emission success-
fully captures the high NH3 column density in the South-
ern States (Texas and Oklahoma), reducing the NRMSE by
half in that region. Despite the general improvement in the
model performance, negative biases in July increase in Cal-
ifornia’s San Joaquin Valley. Scaling up the emission in the
San Joaquin Valley will result in high NH3 concentrations
downwind even when the local NH3 emissions downwind
are zeroed, whereas the IASI-NH3 observed concentrations
downwind are low. The transported hotspot downwind of the
San Joaquin Valley in CMAQ only occurs in July, suggest-
ing near-field removal may not be captured at the current
resolution, and warrants further investigation. Grid-by-grid
comparison between model-simulated NH3 column density
using the a priori and optimized estimates with IASI-NH3
shows improved agreement in both high- and low-emission
grid cells after optimization (Fig. S6). It shows that the hy-
brid inversion approach can alleviate the weakness of direct
4D-Var inversion, which tends to over-adjust high-emission
regions and under-adjust low-emission regions, mainly be-
cause the IMB inversion provides a better initial state.

The IMB inversion took three iterations to achieve the con-
vergence condition for each month, and subsequently the 4D-
Var inversion took 10, 4, and 6 iterations for April, July, and
October, respectively. Fewer iterations are needed with the
hybrid approach than the direct 4D-Var inversion, which typ-
ically takes up to 15 to 20 iterations of adjoint simulation
(Paulot et al., 2014; Zhang et al., 2018a). The CPU time of
a forward simulation is only one-fifth of an adjoint simula-

tion. In total, the CPU time required by the hybrid approach
is expected to be one-third to two-thirds lower than the direct
4D-Var inversion approach.

3.2 Optimized estimate of NH3 emissions

The monthly total NH3 emission in the CONUS increases
by 35 % in April, 18 % in July, and 10 % in October for
the optimized estimates. Spatially, the distribution for high-
emission regions shifts from the Midwest in the 2011 NEI
to the Southern States in the optimized estimates in April,
whereas the hotspot regions remain consistent in July and
October (Fig. 3). Regional total emissions are summarized
according to the USDA farm production regions, which de-
fine the areas with similar crop production activities (Cooter
et al., 2012). In general, the regional variation of NH3 emis-
sions in April is dominated by fertilizer application. The opti-
mized estimates in the Corn Belt and Lake States regions are
lower than the 2011 NEI, where high contributions from fer-
tilizer applications were estimated. In contrast, the optimized
estimates are 2–3 times higher than the 2011 NEI estimates
in the Delta States and Southern States, where the a priori es-
timates for NH3 emission from fertilizer application are low.
The higher NH3 emission estimates in the Southern States
are driven by the enhanced NH3 column densities from IASI
over that region. IASI-NH3 column densities are higher in
2011 than those in adjacent years (Fig. S7), which coin-
cides with the higher surface temperature observed in 2011
(NOAA 2019) (Fig. S8). NH3 emission will increase due to
enhanced NH3 volatilization from agricultural lands under
warmer conditions (Bash et al., 2013; Shen et al., 2020). In
fact, the optimized NH3 emission pattern in April is more
consistent with the spatial pattern of inorganic nitrogen fer-
tilizer estimated based on plant demand (Cooter et al., 2012).
NH3 emission in 2011 estimated by CMAQ with a NH3 bidi-
rectional exchange model also predicted higher NH3 emis-
sion in the Southern States (Shen et al., 2020). The ratio be-
tween NH3 emission estimates in Southern States and those
within the CONUS is 26 and 18 % in the optimized estimates
and estimates including NH3 bidirectional exchange, respec-
tively. In comparison, the ratio is only 10 % in the a pri-
ori NEI estimates, suggesting a potential low bias in 2011
NEI. In July, regional differences are smaller except for the
Northern Plain and Mountain region. In the Northern Plain,
the NH3 emission is 66 % higher in the optimized estimates,
driven by the emission increase in hotspot areas with con-
centrated animal feeding operations (CAFOs) (USDA, 2012;
Van Damme et al., 2017, Clarisse et al., 2019). The potential
bias in different sectors suggests the need for sectoral inver-
sion when a larger observational dataset becomes available
in the future. In October, the relative difference is less than
10 % in most of the regions, indicating that the 2011 NEI ap-
propriately reflects the NH3 emission pattern. There is a sig-
nificant increase in the NH3 emissions in Mexico during all 3
months. Such an emission increment is crucial to improving
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Figure 2. CMAQ-simulated monthly average NH3 column density for April, July, and October 2011 using the a priori emissions (a, b, c),
the emissions adjusted by IMB (d, e, f), and the final optimized emissions using the hybrid approach (g, h, i). For comparison with the
IASI-NH3 retrievals, simulated NH3 columns at the passing time were derived when there were observations in that grid cell. Normalized
root mean square error (NRMSE) and normalized mean bias (NMB) between the simulated values and IASI-NH3 are provided. Residue map
(IASI-NH3− simulated NH3 column densities) is shown in the corner of each plot.

the model performance in both Mexico and the southwestern
US. However, it was not a goal of this study to determine
emissions biases in Mexico given the limited information on
NH3 emissions.

The total NH3 emissions in the optimized estimates are
623, 564, and 335 Gg per month in April, July, and Octo-
ber, respectively. In comparison, the emission estimates in
the 2011 NEI are 462, 475, and 304 Gg per month for the
3 months. Similar to a bottom-up agricultural NH3 emis-
sion inventory (MASAGE_NH3) and two inverse-model-
optimized estimates based on NH+4 wet deposition, we find
a higher emission in the spring season (Paulot et al., 2014;
Gilliland et al., 2006), while others, including the NEI, es-
timate a summertime peak (Zhu et al., 2013; USEPA, 2015;
Cooter et al., 2012; Cao et al., 2020). The large variation be-
tween different inventories warrants both improved informa-
tion on bottom-up inventories and more observations to sup-
port inverse model optimization in the spring season. Bet-
ter knowledge about agricultural activities and more inde-

pendent ground and space observations are needed. Besides
the a priori emission inventory and observational constraints,
the inversion performance will also be affected by other pro-
cesses (e.g., gas–particle partition, transport, cloud and pre-
cipitation, and dry and wet deposition) governing the atmo-
spheric abundance of NH3. Future works refining the per-
tinent processes will also help improve the optimized NH3
emission estimates. It should also be noted that there are
interannual variations in emission inventories developed for
different years. The good spatial agreement with IASI-NH3
indicates that the 2011 NEI captures the NH3 emission pat-
tern in general in these 2 months. Although the inversion is
only applied for the selected 3 months, the simulated NH3
column densities using the a priori inventory are consistently
lower than the IASI-NH3 observations in 2011 (Fig. S9), sug-
gesting that the NH3 emission estimates in 2011 NEI may be
biased low in other months, too.
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Figure 3. The spatial distribution of monthly total NH3 emission from the a priori (a, b, c) and optimized (d, e, f) estimates in April, July,
and October. The total emission based on the a priori and optimized estimates is summarized for each USDA farm production region (g, h,
i). The source contributions to total emission are shown for the a priori estimates.

3.3 Evaluation of the optimized emission estimates
against independent datasets

The robustness of the NH3 emission optimization is evalu-
ated by comparing the model outputs using both the a priori
and optimized emission estimates with independent obser-
vations. The bias and uncertainties inherited in the CMAQ
forward model and its adjoint, as well as the assumptions
made about the uncertainties of the a priori emission inven-
tory and IASI-NH3 observations, will all influence the ro-
bustness. Here, we choose to evaluate the outputs against
(1) biweekly average ambient NH3 concentrations measured
by AMoN and (2) weekly average NH+4 wet deposition mea-
sured by NADP (Fig. 4).

In general, the optimized NH3 emission reduces the nega-
tive NMB when comparing the CMAQ outputs with AMoN
NH3 concentration for all 3 months. There is a greater
improvement at the high-concentration end than the low-
concentration end because both the IASI satellite and the pas-
sive samplers at the AMoN sites have higher uncertainties in
areas with low NH3 abundance (Van Damme et al., 2015a;
Puchalski et al., 2011). Yet the NRMSE gets higher and R2

gets lower in April, indicating a higher spatial variation in
the residuals. There is an over-adjustment for sites in Penn-
sylvania in April, where there is a hotspot observed by IASI
on 14 and 15 April. The hotspot possibly came from a large
transported plume at a higher altitude from the central US to
Pennsylvania (Figs. S10 and S11), which is not measured by
ground observations at AMoN sites at biweekly resolution.
If that is the case, the hybrid inverse modeling framework
would have difficulties in reproducing the long-range trans-
port contribution for two reasons. First, local emissions in
Pennsylvania would be enhanced in the IMB inversion, and
inter-grid transport were neglected at 216 km by 216 km res-
olution. Second, the following 4D-Var inversion very likely
reached a local optimal by adjusting emissions from local
and surrounding grid cells near the observed hotspot rather
than grid cells at distance. Furthermore, the IASI-NH3 col-
umn densities may be overestimated because vertical pro-
files with the highest concentrations near the surface were
assumed in the retrieval process (Whitburn et al., 2016).

For evaluation against NADP observations, there is a no-
ticeably improved agreement in April, with reduced negative
NMB and reduced discrepancies for most of the data pairs.
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Figure 4. Evaluation of the simulated NH3 surface concentration (a, b, c) and NH+4 wet deposition (d, e, f) against biweekly NH3 concen-
tration observations from AMoN and weekly NH+4 wet deposition observations from NADP, respectively. The orange circles and blue dots
represent comparison using the a priori and optimized NH3 emission estimates, respectively. Summary statistics including sample size (N ),
normalized mean bias (NMB), normalized root mean square error (NRMSE), least square error regression slope and intercept, and R square
(R2) for all comparisons are listed below the plots.

For July, the emission optimization only slightly improved
the model performance. For October, the optimization in-
creased the NMB from −1.8 to 4.8 %. This indicates that
NH3 emission is not the dominant explanatory factor for bias
in simulated NH+4 wet deposition that is commonly observed
in chemical transport models (Appel et al., 2011; Paulot et
al., 2014). A better representation of the cloud, precipita-
tion, and deposition processes in the WRF Model and CMAQ
is needed to close the gap between simulated and observed
NH+4 deposition amount. Overall, the improved model opera-
tional performance for ambient NH3 suggests that the inverse
model optimization applied in this study provides improve-

ments in the NH3 emission estimates during all 3 months in
most of the CONUS, except in Pennsylvania and surround-
ing regions in April. The hybrid inverse modeling technique
may over-adjust local emissions in hotspots dominated by
long-range transport.

4 Implications

4.1 Ambient aerosol concentration

As a major precursor of ambient aerosol formation, the NH3
emission inventory is believed to be a major source of un-
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certainty in PM2.5 assessment in several parts of the CONUS
(Henze et al., 2009; Schiferl et al., 2014; Heald et al., 2012),
which can further bias the source contribution assessments
on PM2.5-related health impacts (Lee et al., 2015; Zhao et
al., 2020). Comparison of the simulated PM2.5 mass concen-
tration using the a priori and optimized NH3 emission esti-
mates shows that the NH3 emission bias in April is a major
factor for bias in the modeled PM2.5 concentration leading to
high or low bias in ammonium nitrate (NH4NO3) formation
(Fig. 5). The relative change of the monthly average PM2.5
concentration is over 5 % in one-fifth of the CONUS, includ-
ing an increase in the Northeast, the Pacific West, the Rocky
Mountains, part of Texas, and the Gulf Coast region, and
a decrease in the Midwest. For most of these regions, over
90 % of the change is driven by the change in concentration
of NH+4 and NO−3 .

Comparison of the simulated monthly average NH+4 and
NO−3 concentration using the a priori estimates against ambi-
ent monitoring network data (USEPA, 2018) shows that there
is a high bias in the Midwest region and Pennsylvania state,
and a low bias for the rest of the sites (Table 1). Simulations
using the optimized NH3 emission estimates reduce the high
bias in the Midwest region but exacerbate the high bias in
Pennsylvania state and the surrounding areas. For the other
sites, the impact of optimization is mixed but minor in gen-
eral.

For the Midwest, our optimized NH3 emission is 12 %
lower than the 2011 NEI, leading to a 5–30 % decrease in
NH+4 and NO−3 concentration. Overestimation of NO−3 in the
Midwest has been recognized in previous model evaluations.
Previous studies have attempted to moderate the high bias by
lowering the nitric acid (HNO3) concentration through ei-
ther lowering both the daytime and nighttime HNO3 forma-
tion rate or raising the deposition removal rate (Heald et al.,
2012; Zhang et al., 2012; Walker et al., 2012). It was found
that such modification in the model parameterization can-
not fully account for the overestimation (Heald et al., 2012;
Zhang et al., 2012; Walker et al., 2012). Our study implies
that the springtime overestimation can partly be explained by
the overestimation in NH3 emissions which drives the high
bias in NH4NO3 formation.

The large increase of the NH4NO3 concentration in Penn-
sylvania state and the surrounding areas is due to the over-
amplified local NH3 emissions in the optimized estimates to
match the high NH3 column density in IASI-NH3 2011, as
discussed earlier. It leads to a higher magnitude of biases in
NH+4 and NO−3 concentration as compared to ground mea-
surements. The fact that the simulated ambient NH3 con-
centration, NH+4 concentration, and NH+4 wet deposition us-
ing the optimized NH3 estimates are biased high in com-
parison with independent ground measurements suggests the
enhanced NH3 abundance observed from IASI is possibly
driven by long-range transport at higher altitudes instead of
local surface emissions.

For the rest of the CONUS, there is only a slight impact
of the optimization on simulated NH4NO3 formation. For
example, although the NH3 emission is doubled in the San
Joaquin Valley in California, the modeled NH+4 and NO−3
concentrations are still biased low using the optimized esti-
mates. A sensitivity test using GEOS-Chem shows that the
San Joaquin Valley region is nitric-acid-limited instead of
ammonia-limited (Walker et al., 2012), suggesting that there
is an underestimation in HNO3 formation. A comparison of
the simulated and measured speciated PM2.5 shows that there
is a low bias in non-volatile cation concentrations at the sites
in the San Joaquin Valley, limiting the formation of NH4NO3
through gas–particle partitioning (Chen et al., 2019). Thus,
attempts to close the gap between the simulated and mon-
itored NH+4 and NO−3 concentrations by scaling NH3 emis-
sion alone are ineffective and might lead to an overestimation
in local NH3 emissions.

For July and October, there is a very limited difference
between the simulated PM2.5 concentration using the opti-
mized and a priori NH3 emission estimates, as expected, be-
cause the change in NH3 emission is minor. There are only 1
and 4 % of the CONUS with a relative change in PM2.5 con-
centration over 5 %, respectively. This result shows that the
uncertainty in NH3 emission estimates is moderate and is not
a major contributor to biases in modeled PM2.5 in July and
October.

4.2 Reactive nitrogen deposition

The uncertainties in NH3 emission inventory also impact
the reactive nitrogen (Nr) deposition assessment, which in-
forms the ecosystem impacts evaluation and effective mit-
igation actions (Ellis et al., 2013). To evaluate the impact
of the NH3 emission optimization on simulated Nr deposi-
tion, the Nr deposition amount simulated using optimized
and a priori emission estimates is analyzed in all biodiversity-
protected areas designated by the USGS (Fig. S12) within the
CONUS (USGS, 2018). In total, the Nr deposition increased
by 27, 9, and 5 % on average in these protected areas in
April, July, and October, respectively. A regional comparison
based on the Level I ecoregions (Pardo et al., 2015) shows
that the deposition increment is the highest in the Tropical
Wet Forests (+64 %), followed by the Great Plain region
(+46 %), in April (Fig. 6). Although the overall increase is
small in July and October, the increment can be high in in-
dividual ecoregions, including Southern Semiarid Highlands
(+95 % in July) and Temperate Sierras (+62 % in July). In
addition to the increment in deposition amount, higher NH3
emission, especially in intensive agriculture regions, may in-
dicate higher source contribution from agricultural NH3 than
previous estimates (Lee et al., 2016).

Driven by the increase in the reduced form of Nr (NH3 and
NH+4 ) deposition, a higher share of the reduced form of Nr
to the total Nr deposition is found in most of the ecoregions
for all 3 months than in the NEI-based estimates. More detri-
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Figure 5. The changes in monthly average PM2.5, NH+4 , and NO−3 mass concentration in April due to the NH3 emission adjustment in
the optimized estimates. The change is defined as concoptimized− conca priori, where concoptimized and conca priori represent the simulated
monthly average mass concentration using the optimized and a priori NH3 emission estimates, respectively. The difference between the
observed NH+4 and NO−3 mass concentration and simulated concentrations using the a priori NH3 emission (concobs− conca priori, where
concobs represents the observed monthly average mass concentration) is overlaid using colored dots with the same color scheme.

Table 1. Statistical summary of the correlation between simulated monthly average NH+4 and NO−3 concentrations and observations in
April∗.

NH+4 Midwest Penn Other

a priori optimized a priori optimized a priori optimized

N 47 37 115

NMB 0.27 0.22 0.00 0.07 −0.35 −0.35
NRMSE 0.40 0.35 0.28 0.30 0.45 0.44
slope 0.52 0.54 0.41 0.39 0.60 0.65
R2 0.57 0.65 0.24 0.18 0.25 0.28

NO−3 Midwest Penn Other

a priori optimized a priori optimized a priori optimized

N 69 38 240

NMB 0.64 0.55 0.25 0.43 −0.39 −0.38
NRMSE 0.96 0.88 0.66 0.73 0.63 0.65
slope 0.44 0.46 0.29 0.29 0.62 0.55
R2 0.76 0.78 0.33 0.31 0.28 0.25

∗ The correlation between observed concentrations and simulated ones based on a priori and optimized
NH3 emission estimates is compared. The sites are grouped as the Midwest region, Pennsylvania state and
surrounding areas, and other areas.

mental impacts on sensitive species and biodiversity are ex-
pected when this change in dominant Nr form is considered
in addition to the increase in magnitude because the growth
of many sensitive plant species will be inhibited by a high
NH+4 -to-NO−3 ratio in soil and water (Bobbink and Hicks,
2014).

5 Conclusions

We apply the newly developed multiphase adjoint of the
CMAQ v5.0 chemical transport model and NH3 column ob-
servations from the satellite-borne IASI to optimize NH3
emissions estimates in the CONUS using a hybrid in-

version modeling approach. The approach consists of a
coarse-resolution iterative mass balance inversion (216 km
by 216 km) and a fine-resolution 4D-VAR inversion (36 km
by 36 km) and is performed using IASI-NH3 observations
in April, July, and October. The hybrid approach overcomes
the over-adjusting problem for high-emission areas in the di-
rect 4D-Var method and reduces the computational cost, but
it may introduce over-adjustment in special cases where the
NH3 abundance is dominated by transport instead of local
emissions.

We use the NH3 emission from 2011 NEI, commonly used
in regional and national simulations and assessments as the
a priori emission. We find that the optimized NH3 emission
inventory differs greatly with the 2011 NEI in April. The
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Figure 6. The changes in the simulated monthly reactive nitrogen (Nr) deposition amount in protected areas for biodiversity conservation
caused by the emission adjustment in April, July, and October. For each month, the left bar is for the a priori deposition amounts and the
right bar is for the optimized deposition amounts. The deposition is grouped for 10 Level I ecoregions defined by the Commission for
Environmental Cooperation, including Northern Forests (NF), Great Plains (GP), Northwestern Forested Mountains (NFM), Marine West
Coast Forest (MWCF), North American Deserts (NAD), Mediterranean California (MC), Southern Semiarid Highlands (SSH), Temperate
Sierras (TS), and Tropical Wet Forests (TWF).

emission in the Midwest is overestimated and the emission
in the Southern States is underestimated in the 2011 NEI.
Overall, the optimized emission is 35 % higher in April. The
optimized emission estimates in July and October are also
higher (18 and 10 %) than the 2011 NEI estimates, but the
spatial distribution agrees well. The IASI-NH3 observations
indicate a consistent underestimation of NH3 emissions in
California’s San Joaquin Valley in all 3 months; however,
the inverse modeling fails to properly scale up the emissions
in July. The evaluation of simulation outputs against ground
measurements including ambient NH3 concentrations from
AMoN and NH+4 wet deposition from NADP shows that the
optimized NH3 emission estimates reduce the NMB between
model outputs and independent observations, especially in
April. The NRMSE remains high, indicating (1) the potential
to further optimize NH3 emission estimates when more rep-
resentative observations of ambient NH3 abundance become
available and (2) the need to address the uncertainties in other
processes affecting the NH3 abundance, such as gas–particle
partitioning, dry and wet deposition, and in-cloud processes.

Application of the optimized NH3 emission estimates also
yields a better agreement between the simulated and ob-
served PM2.5 concentration in April in the Midwest region
by improving the model performance on simulated NH+4 and
NO−3 . This is consistent with previous findings that the uncer-
tainty in NH3 emission is a key factor limiting the model per-
formance of PM2.5. The optimized NH3 emission estimates

in general increase the Nr deposition amount and the rela-
tive importance of reduced-form Nr, highlighting the impor-
tance of constraining NH3 emission estimates for accurately
assessing nitrogen deposition and ecosystem health over sen-
sitive regions.
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