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Abstract. Satellite retrievals of the column-averaged dry air
mole fractions of CO2 (XCO2) could help to improve car-
bon flux estimation due to their good spatial coverage. In
this study, in order to assimilate the GOSAT (Greenhouse
Gases Observing Satellite) XCO2 retrievals, the Global Car-
bon Assimilation System (GCAS) is upgraded with new as-
similation algorithms, procedures, a localization scheme, and
a higher assimilation parameter resolution. This upgraded
system is referred to as GCASv2. Based on this new sys-
tem, the global terrestrial ecosystem (BIO) and ocean (OCN)
carbon fluxes from 1 May 2009 to 31 December 2015 are
constrained using the GOSAT ACOS (Atmospheric CO2 Ob-
servations from Space) XCO2 retrievals (Version 7.3). The
posterior carbon fluxes from 2010 to 2015 are independently
evaluated using CO2 observations from 52 surface flask sites.
The results show that the posterior carbon fluxes could sig-
nificantly improve the modeling of atmospheric CO2 concen-
trations, with global mean bias decreases from a prior value
of 1.6± 1.8 ppm to −0.5± 1.8 ppm. The uncertainty reduc-
tion (UR) of the global BIO flux is 17 %, and the highest
monthly regional UR could reach 51 %. Globally, the mean

annual BIO and OCN carbon sinks and their interannual vari-
ations inferred in this study are very close to the estimates of
CarbonTracker 2017 (CT2017) during the study period, and
the inferred mean atmospheric CO2 growth rate and its inter-
annual changes are also very close to the observations. Re-
gionally, over the northern lands, the strongest carbon sinks
are seen in temperate North America, followed by Europe,
boreal Asia, and temperate Asia; in the tropics, there are
strong sinks in tropical South America and tropical Asia,
but a very weak sink in Africa. This pattern is significantly
different from the estimates of CT2017, but the estimated
carbon sinks for each continent and some key regions like
boreal Asia and the Amazon are comparable or within the
range of previous bottom-up estimates. The inversion also
changes the interannual variations in carbon fluxes in most
TransCom land regions, which have a better relationship with
the changes in severe drought area (SDA) or leaf area index
(LAI), or are more consistent with previous estimates for the
impact of drought. These results suggest that the GCASv2
system works well with the GOSAT XCO2 retrievals and
shows good performance with respect to estimating the sur-
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face carbon fluxes; meanwhile, our results also indicate that
the GOSAT XCO2 retrievals could help to better understand
the interannual variations in regional carbon fluxes.

1 Introduction

Atmospheric carbon dioxide (CO2) is one of the most impor-
tant greenhouse gases, and fossil fuel burning and land use
change are mostly responsible for its increase from the prein-
dustrial concentration. Terrestrial ecosystems and oceans
play very important roles in regulating the atmospheric CO2
concentration. Over the past 50 years, about 60 % of the an-
thropogenic CO2 emissions have been absorbed by the ter-
restrial ecosystems and oceans (IPCC, 2014); however, their
carbon uptakes have significant spatial differences and inter-
annual variations (Bousquet et al., 2000; Takahashi et al.,
2009; Piao et al., 2020). Therefore, it is very important to
quantify the global and regional carbon fluxes.

Atmospheric inversion is an effective method for esti-
mating the surface CO2 fluxes using globally distributed
atmospheric CO2 concentration observations (Enting and
Newsam, 1990; Gurney et al., 2002). It has robust perfor-
mance on global- or hemisphere-scale carbon budget esti-
mates (Houweling et al., 2015), but on regional scales, due
to the uneven distribution of in situ observations, the relia-
bility of inversion results varies greatly in different regions.
Generally, the inversions have large uncertainties in tropics,
Southern Hemisphere oceans and most continental interiors
such as South America, Africa, and boreal Asia (Peylin el
al., 2013). Satellite observation has a better spatial coverage,
especially over remote regions, and studies show that it can
be used to improve the carbon flux estimates (e.g., Cheval-
lier et al., 2007; Miller et al., 2007; Hungershoefer et al.,
2010). The Greenhouse Gases Observing Satellite (GOSAT)
(Kuze et al., 2009) – the first satellite mission dedicated to
observing CO2 from space – was launched in 2009. Many
inversions have utilized the GOSAT retrievals for column-
averaged dry air mole fractions of CO2 (XCO2) to infer sur-
face carbon fluxes (e.g., Basu et al., 2013; Maksyutov et al.,
2013; Saeki et al., 2013a; Chevallier et al., 2014; Deng et al.,
2014, 2016; Wang et al., 2018a, 2019). Takagi et al. (2011)
found that GOSAT XCO2 retrievals could significantly re-
duce the uncertainties in estimates of surface CO2 fluxes for
regions in Africa, South America, and Asia, where the spar-
sity of the surface monitoring sites is most evident. Basu
et al. (2013) showed that assimilating only GOSAT data
can effectively reproduce the observed CO2 time series at
the surface and Total Carbon Column Observing Network
(TCCON) sites in the tropics and the northern extra-tropics,
but this enhances seasonal cycle amplitudes in the southern
extra-tropics. Wang et al. (2019) also showed that GOSAT
XCO2 retrievals can effectively improve carbon flux estima-
tion, and the performance of the inversion with GOSAT data

only was comparable to the one using in situ observations.
Meanwhile, based on the inversions with GOSAT XCO2 re-
trievals, Liu et al. (2018) quantified the impacts of the 2011
and 2012 droughts on terrestrial ecosystem carbon uptake
anomalies over the contiguous US, Deng et al. (2016) com-
pared the distributions of drought and posterior carbon fluxes
in South America for the 2010–2012 period, and Detmers et
al. (2015) studied the impact of the strong La Niña episode
on the carbon fluxes in Australia from the end of 2010 to
early 2012. To date, most studies have focused on the impact
of GOSAT XCO2 retrievals on the inversion of surface car-
bon fluxes; however, in many regions, there are still large di-
vergences for carbon sinks between different inversions with
the same GOSAT data or between inversions with GOSAT
and in situ observations (e.g., Chevallier et al., 2014; Feng
et al., 2016; Wang et al., 2018a). Moreover, although some
studies have reported the impact of drought or extreme wet-
ness on the changes in carbon fluxes using inversions based
on GOSAT, few studies have comprehensively investigated
the impacts of GOSAT data on the interannual variations in
inverted land sinks in different regions (Feng et al., 2017;
Byrne et al., 2019).

In this study, we present a 6-year inversion from 2010 to
2015 for the global and regional carbon fluxes using only
the GOSAT XCO2 retrievals. The Global Carbon Assimi-
lation System (GCAS) is employed to conduct this inver-
sion, which was developed in China in 2015 (Zhang et al.,
2015) and updated in this study with a new scheme to assimi-
late XCO2 retrievals. The inverted multiyear averaged carbon
fluxes for the globe, global land and ocean, each TransCom
region (Gurney et al., 2002), and some other key areas are
shown and compared with previous top-down and bottom-up
(Jiang et al., 2016) estimates. The estimated interannual vari-
ations in carbon fluxes in each TransCom region are given
and discussed against changes in drought and leaf area in-
dex (LAI). This paper is organized as follows: Sect. 2 de-
tails the GCASv2 system as well as the prior fluxes, GOSAT
retrievals, and uncertainty settings. Section 3 briefly intro-
duces the experimental design. Results and discussions are
presented in Sect. 4, and conclusions are given in Sect. 5.

2 Methods and data

2.1 A new version of the Global Carbon Assimilation
System (GCASv2)

Figure 1 shows the flow chart of the GCASv2 system. In each
data assimilation (DA) window, there are two steps. In the
first step, the prior fluxes of Xb in each grid are indepen-
dently perturbed with a Gaussian random distribution and put
into a global atmospheric chemical transport model to simu-
late CO2 concentrations, which are then sampled according
to the locations and times of CO2 observations. The sampled
data are used in the assimilation module together with the
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Figure 1. Flow chart of the GCASv2 system.

CO2 observations to generate the optimized fluxes of Xa. In
the second step, the atmospheric transport model is run again
using the optimized fluxes of Xa in order to generate new
CO2 concentrations for the initial field of the next DA win-
dow. Using this method, if the flux in one window is overesti-
mated for some reason, it will affect the concentrations of the
next window; thus, the posterior flux of the next window will
compensate for the overestimation. This DA flow chart is dif-
ferent from the previous version of GCAS (GCASv1), which
runs the atmospheric transport model only once, and opti-
mizes the fluxes and the initial field of the next window syn-
chronously: in each window, there is relatively perfect initial
field (directly optimized using observations), the inversions
of each window are independent, and the amount of overes-
timation or underestimation in one window will continue to
accumulate until the end, leading to an overall overestimation
or underestimation. In addition, due to the relatively perfect
initial field, the differences between the simulated and ob-
served concentrations are only contributed by the errors in
the prior fluxes of current window, resulting in a relatively
smaller model–data mismatch, so as to weaken the assimila-
tion benefits on fluxes.

The perturbation of Xb represents the uncertainty of the
prior carbon flux, which is calculated using the following
function:

Xbi =X
b
0 + λ× δi ×X

b
0, i = 1,2, . . .,N, (1)

where δi represents random perturbation samples, which are
drawn from Gaussian distributions with a mean of zero and
a standard deviation of one; N is the ensemble size; and λ
is a set of scaling factors, which represents the uncertainty of
each prior flux. In GCASv1, λ is defined in different land and
ocean areas based on 22 TransCom regions (Gurney et al.,
2002) and 19 Olson ecosystem types, as in CarbonTracker
(CT, Peters et al., 2007). This means that in the same area,
the error of a prior flux is the same. Through assimilation,

the flux will be integrally enlarged or reduced. In GCASv2,
we change to use λ in each grid, meaning that for each grid,
the perturbations of prior fluxes are independent. In addi-
tion, the grid cell of λ is different from those of the prior
flux and the transport model, which could be set freely. Xb

0
is the prior carbon flux. Generally, there are four types of
carbon fluxes, namely the terrestrial ecosystem (BIO) car-
bon flux (i.e., net ecosystem exchange= ecosystem respira-
tion− gross primary production; NEE=ER−GPP), atmo-
sphere and ocean (OCN) carbon exchange, fossil fuel and
cement production (FOSSIL) carbon emission, and biomass
burning (FIRE) carbon emission, which are used to drive the
transport model to simulate the atmospheric CO2 concentra-
tion. In general, FOSSIL and FIRE fluxes are assumed to
have no errors, and only BIO and OCN fluxes are optimized
in an assimilation system (e.g., Gurney et al., 2002; Peters, et
al., 2007; Nassar et al., 2011; Jiang et al., 2013; Chevallier,
et al., 2019). In GCASv1, only the BIO flux was treated as
a state vector and optimized, and the OCN flux was directly
from the CarbonTracker (CT) output produced by the US Na-
tional Oceanic and Atmospheric Administration (NOAA). In
GCASv2, the state vector is set to be an optional item. Four
schemes are set: the first one is the same as the previous ver-
sion – only the BIO flux is optimized (Formula 2); the second
one is the same as the general scheme – namely both BIO
and OCN fluxes are state vectors (Formula 3); the third one
is that BIO, OCN, and FOSSIL fluxes are optimized at the
same time (Formula 4); and the fourth one is that only the
net flux is optimized (Formula 5). In this study, the second
scheme was selected.

Xbi =
(
Xbbio+ λbio× δi, bio×X

b
bio

)
+Xbocn+X

b
fossil+X

b
fire, i = 1,2, . . .,N (2)

Xbi =
(
Xbbio+ λbio× δi,bio×X

b
bio

)
+

(
Xbocn+ λocn× δi,ocn×X

b
ocn

)
+Xbfossil+X

b
fire, i = 1,2, . . .,N (3)

Xbi =
(
Xbbio+ λbio× δi,bio×X

b
bio

)
+

(
Xbocn+ λocn× δi,ocn×X

b
ocn

)
+

(
Xbfossil+ λfossil× δi,fossil×X

b
fossil

)
+Xbfire, i = 1,2, . . .,N (4)

Xbi =
(
Xbbio+X

b
ocn+X

b
fossil+X

b
fire

)
+ λnetflux× δi,netflux

×

(
Xb

bio+X
b
ocn+X

b
fossil+X

b
fire

)
, i = 1,2, . . .,N (5)

For the CO2 observations, in GCASv1, only the flask and
in situ observations were assimilated. In GCASv2, we added
a module to use satellite XCO2 retrievals. With this module,
simulated CO2 concentration profiles are converted to XCO2
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concentrations, and users can choose to assimilate flask and
in situ observations alone, satellite XCO2 retrievals alone, or
simultaneously assimilate these two types of data. The sim-
ulated CO2 concentration profiles are mapped into the satel-
lite retrieval levels and then vertically integrated based on a
satellite averaging kernel according to the following equation
(Connor, et al., 2008):

XCO2
m
= XCO2

b
+

∑
j
hjkj

(
A(x)− yb,j

)
, (6)

where j denotes the retrieval level, x is the simulated CO2
profile, A(x) is a mapping matrix, XCOb

2 is the prior XCO2,
hj is a pressure weighting function, and kj and yb,j are the
satellite column-averaging kernel and the prior CO2 profile
for retrieval, respectively.

To reduce the computational cost and the influence of
representative errors, a “super-observation” approach is also
adopted in GCASv2 based on the optimal estimation the-
ory (Miyazaki et al., 2012). A super-observation is gener-
ated by averaging all observations located within the same
model grid within a DA window. We assume that the obser-
vation errors of different stations at different times are inde-
pendent of each other. The standard deviation of the j th ob-
servation yj is rj . The super-observation ynew, standard de-
viation rnew, and corresponding simulations xnew,i from one
perturbed prior flux Xb

i are calculated as follows:

1/r2
new =

∑m

j=1
1/r2

j , (7)

ynew =
∑m

j=1
wjyj/

∑m

j=1
wj , (8)

xnew,i =
∑m

j=1
wjxj,i/

∑m

j=1
wj , (9)

where wj = 1/r2
j is the weighting factor, and m is the num-

ber of observations within a super-observation grid. The
super-observation error decreases as the number of observa-
tions used for the super-observation increases.

2.1.1 Ensemble square root filter (EnSRF) assimilation
algorithm

Besides the local ensemble transform Kalman filter
(LETKF), which has been implemented in GCASv1 in or-
der to avoid storing and inverting very large matrices during
analysis, in GCASv2, we added another assimilation algo-
rithm, namely the ensemble square root filter (EnSRF) algo-
rithm (Whitaker and Hamill, 2002), which has been success-
fully used in CT (Peters et al., 2005). EnSRF obviates the
need to perturb the observations, in contrast to the traditional
ensemble Kalman filter (EnKF) algorithm, and assimilates
observations in a sequential way. It shows better performance
than the method to assimilate observations simultaneously as
long as the observation errors are uncorrelated (Houtekamer
and Mitchell, 2001). The implementation process and setup
are detailed below.

After obtaining an ensemble of state vectors as described
in Sect. 2.1, ensemble runs of the atmospheric transport

model are conducted to propagate these errors in the model
with each ensemble sample of a state vector. The background
error covariance P b is calculated based on the forecast en-
semble from Eq. (10):

P b
=

1
n− 1

∑n

i=1

(
Xbi −X

b
)(
Xbi −X

b
)T
, (10)

where X
b

represents the mean of the ensemble samples.
Based on the background error covariance, the response of
the uncertainty in the simulated concentrations to the uncer-
tainty in emissions is obtained. Combing observational vec-
tor y, the state vector is updated according to the following
formulations:

X
a
=X

b
+K

(
y−HX

b
)
, (11)

K = P bH T
(
HP bH T

+R
)−1

, (12)

δXai = δX
b
i − K̃HδX

b
i . (13)

Sequential assimilation and independent observations are
also employed:

K̃=
(

1+
√
R/HP bH T +R

)−1

K, (14)

where H is the observation operator that maps the state vari-
able from model space to observation space; K is the Kalman
gain matrix of the ensemble mean depending on background
and observation error covariance R, representing the relative
contributions to analysis; K̃ is the Kalman gain matrix of the
ensemble perturbation; and emission perturbations after in-
version δXai can then be calculated. At the analysis step, the
ensemble meanX

a
is taken as the best estimate of the carbon

flux.

2.1.2 Atmospheric transport model

As in GCASv1 (Zhang et al., 2015), the Model for OZone
And Related chemical Tracers, version 4 (MOZART-4; Em-
mons et al., 2010) is adopted as the atmospheric transport
model in GCASv2. MOZART-4 is a flexible model, can be
run at essentially any resolution, and can be driven by essen-
tially any meteorological data set and with any emission in-
ventory (Emmons et al., 2010). In this system, we preset two
horizontal resolutions for MOZART-4 runs: one is approxi-
mately 2.8◦× 2.8◦, with transport model grids of 128× 64,
and the another is approximately 1.0◦× 1.0◦, with 360× 180
model grids. In the vertical direction, we use 28 layers. The
ERA-Interim reanalysis data sets from the European Centre
for Medium-Range Weather Forecasts (ECMWF) are used
to drive the model. ERA-Interim data sets include as many
as 128 meteorological variables and have a maximum spa-
tial resolution of approximately 80 km (T255 spectral) on
60 vertical levels from the surface up to 0.1 hPa. Only the
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variables required for MOZART-4 with a spatial resolution
of 1.0◦× 1.0◦ and 28 vertical levels for 3-D variables from
the surface to approximately 2.5 hPa are selected in this sys-
tem. The selected variables and vertical levels are shown in
Tables S1 and S2 in the Supplement.

2.1.3 DA window and localization

The DA window is set to 1 week in GCASv2, which is the
same as before. Theoretically, a longer DA window is better,
because CO2 is a stable species. Thus, the longer the win-
dow, the farther CO2 will be transported. In this way, more
observation stations will sense the flux change in one area;
therefore, more observations can be used to optimize the flux
of that place. For this reason, many previous ensemble-based
assimilation systems have used a longer DA window (e.g.,
Peters et al., 2005; Feng et al., 2009; Jacobson et al., 2020).
However, the farther that the observation station is from the
source, the weaker signal that the stations can sense. Bruh-
wiler et al. (2005) clearly showed that a pulse traveling from
a faraway place would contribute relatively little signal com-
pared with recent pulses from nearby source regions. In ad-
dition, limited by the EnKF method, this weak signal will
be masked by the method’s own unphysical signal (spuri-
ous correlation); in order to reduce this influence, we must
increase the ensembles, thereby greatly increasing the com-
putational cost. Miyazaki et al. (2011) tested the differences
between 3 d and 7 d DA windows and noted that more obser-
vational data will be available to constrain the surface flux
when using a longer DA window, but a longer window can
make the effect of model error more obvious. Thus, the as-
similation result can be improved as long as the observations
with spurious correlations can be neglected. However, spu-
rious correlations can be more serious with increases in the
DA window due to the limited number of ensembles. As a
result, a longer window system is not necessarily better than
a shorter window system. To avoid the influence of spuri-
ous signals, Kang et al. (2012) used a very short DA window
(6 h) in their assimilation system (LETKF_C) and pointed
out that the flux inversion with a long window (3 weeks) is
not as accurate as that obtained with a 6 h DA window, par-
ticularly in smaller-scale structures. During the development
of GCASv1, Zhang et al. (2015) tested different DA win-
dows and found that the longer the window, the larger the
optimized terrestrial carbon sink, resulting in a smaller opti-
mized annual atmospheric CO2 growth rate (AGR) compared
with the observed rate. Considering the fact that, due to the
release of satellite XCO2 retrievals like GOSAT and Orbiting
Carbon Observatory-2 (OCO-2), the atmospheric CO2 obser-
vations and coverage have increased significantly compared
with what was available in the past, we no longer need to
extend the DA window to include more observational data.
Figure S2 shows the mean super-observation (see Sect. 2.1,
only GOSAT XCO2) numbers during the study period that
each grid (3◦× 3◦) could have within a 1-week DA window

and localization scale (3000 km, see the next paragraph). In
most land areas and pantropical waters, each grid can already
have more than three super-observations. On average, each
grid over the land could have four super-observations. In this
study, two sensitivity tests in 2010 were conducted using 2-
and 4-week DA windows and the same localization scale; the
results of these tests are shown in Table S4. When the length
of the DA window was increased from 1 week to 4 weeks, the
respective mean super-observation number increased from
four to nine and the respective inverted global BIO flux in-
creased from −4.16 to −4.49 Pg yr−1, resulting in a larger
deviation of the simulated and observed AGR and larger sim-
ulation error against the surface observations. Therefore, we
still use the 1-week DA window in GCASv2.

As previously discussed, there are inevitably spurious cor-
relations in the EnKF method. Therefore, a localization scale,
which determines that only measurements located within a
certain distance (cutoff radius) of a grid point will influence
the analysis of this grid, must be set to reduce the effect
of spurious correlations. The localization technique in this
study is based on both the distance between one site and
one grid cell of λ, and the linear correlation coefficient be-
tween the simulated concentrations and the perturbed fluxes
for each parameter (λ)–observation pair. If the distance is less
than 500 km and the correlation coefficient is greater than
zero, the observations will be accepted for assimilation; if
the distance is greater than or equal to 500 km and less than
3000 km and the relationship between a parameter deviation
and its modeled observational impact is statistically signifi-
cant (p<0.05), the relationship is retained. Otherwise, the re-
lationship is assumed to be spurious noise. On average, 87 %
of the observations were spurious noise and were removed
in this study. The spurious observations will increase the in-
verted global land sink and enlarge the deviation of the sim-
ulated and observed AGR. For different TransCom regions,
the impact for the inverted BIO fluxes could be in the range
of −32 % to 40 % (Table S4). The scale of 3000 km is set
simply according to the globally averaged 80 m wind speed
during the day (4.96 m s−1, Archer and Jacobson, 2005) and
the length of the DA window (1 week).

2.2 Prior carbon fluxes

As described in Sect. 2.1, there are four types of prior car-
bon fluxes in GCASv2. In this study, FOSSIL carbon emis-
sions, which are an average of the Carbon Dioxide Informa-
tion Analysis Center (CDIAC) product (Andres et al., 2011)
and the Open-source Data Inventory of Anthropogenic CO2
(ODIAC) emission product (Oda et al., 2018), are obtained
from NOAA’s CT, version 2017 (CT2017, Peters et al., 2007,
with updates documented at http://carbontracker.noaa.gov,
last access: 4 March 2020). The FIRE CO2 emissions, which
are the average of the Global Fire Emissions Database ver-
sion 4.1 (GFEDv4) (Randerson et al., 2017) and the Global
Fire Emission Database from the NASA Carbon Monitor-

https://doi.org/10.5194/acp-21-1963-2021 Atmos. Chem. Phys., 21, 1963–1985, 2021

http://carbontracker.noaa.gov


1968 F. Jiang et al.: Regional CO2 fluxes during 2010–2015

ing System (GFED_CMS), are also taken from CT2017.
The OCN CO2 exchange is from the pCO2-Clim prior of
CT2017, which is derived from the Takahashi et al. (2009)
climatology of seawater pCO2. In addition, as shown in
Fig. 7 of the CT2017 release documentation (https://www.
esrl.noaa.gov/gmd/ccgg/carbontracker/CT2017/, last access:
3 March 2020), there are no data in many seas such as the
Sea of Japan, the Mediterranean, the Gulf of Mexico, and the
East China Sea; therefore, the fluxes in 2009 modeled us-
ing the global ocean circulation and biogeochemistry model
(OPA-PISCES–T) (Buitenhuis et al., 2006; Jiang et al., 2013)
are used to fill the areas with no data.

The BIO carbon flux, which is one of the essential prior
carbon fluxes in an assimilation system, was simulated us-
ing the Boreal Ecosystems Productivity Simulator (BEPS)
model (Chen et al., 1999; Ju et al., 2006) in this study. BEPS
is a process-based, remote sensing data driven, and mecha-
nistic ecosystem model. In this study, the BEPS model was
run starting from 2000. To simplify the initialization, the ini-
tial values of the different carbon pools are from a previous
BEPS simulation (Chen et al., 2019). In short, all carbon
pools were assumed to be in a state of dynamic equilibrium
from 1901 to 1910, and all carbon pools were determined by
solving a set of equations describing the dynamics of carbon
pools (Chen et al., 2003). The simulation was then forwarded
using historical data. Due to the lack of historical remotely
sensed LAI data, the averaged LAI from 1982 to 1986 rep-
resented that over the 1901–1981 period. All of our initial
carbon pools were then set to the states of carbon pools in
2000 according to Chen et al. (2019). The BEPS model was
also driven by the 1◦× 1◦ ERA-Interim reanalysis data sets,
including relative humidity, wind speed, air temperature, in-
coming solar radiation, and total precipitation. The other data
include LAI data and clumping index. The LAI was inverted
from surface reflectance data sets of Moderate Resolution
Imaging Spectroradiometer (MODIS) (Liu et al., 2012), and
the clumping index was derived from the MODIS Bidirec-
tional Reflectance Distribution Function (BRDF) products,
which provided the finest pseudo-multiangular data for the
land surface, according to the normalized difference between
hotspot and darkspot (NDHD) index (Chen et al., 2005; He
et al., 2012).

2.3 GOSAT XCO2 retrievals

The GOSAT XCO2 retrievals of the Atmospheric CO2 Ob-
servations from Space (ACOS) Version 7.3 Level 2 Lite prod-
uct (O’Dell et al., 2012; Crisp et al., 2012) at the pixel
level during the May 2009–December 2015 period is used
in this study (this product is bias corrected) (Wunch et al.,
2011). In order to achieve the most extensive spatial cover-
age with the assurance of using the best quality data avail-
able, the XCO2 retrievals are filtered with the warn_levels
and xco2_quality_flag parameters, which are provided along
with the product, prior to being used in the inversion sys-

Figure 2. Distributions of the observation sites used in this study.
Red solid circles are the 52 surface flask sites used for the evalu-
ations, the shading shows the 11 TransCom regions, and the blue
rectangle shows the Amazon region, which is defined following
Botta et al. (2012).

tem. Only the data with xco2_quality_flag greater than zero
are selected. The selected data are then divided into three
groups according to the value of warn_levels: warn_levels
less than 8, warn_levels greater than 9 and less than 12,
and warn_levels greater than 13. The group with the lowest
warn_levels has the best data quality, whereas the group with
the highest values has the worst data quality. The pixel data
are then averaged within the 1◦× 1◦ grid cell, and only the
group with best data quality in each grid is selected and then
averaged. The other variables like the column-averaging ker-
nel and the retrieval error (Formula 6), which are provided
along with the XCO2 product, are also dealt with using the
same method. This process is the same as Wang et al. (2019).

2.4 Evaluation data and method

Generally, direct validation of the optimized flux is im-
possible; instead, we indirectly evaluate the posterior flux
by comparing the forward-simulated atmospheric CO2 mix-
ing ratios against measurements (e.g., Jin et al., 2018;
Wang et al., 2019; Feng et al., 2020). First, the simu-
lated XCO2 are compared against the corresponding GOSAT
XCO2 retrievals to test the effectiveness of the assim-
ilation system (see Sect. 2.3 for the description of the
GOSAT XCO2 retrieval). Second, Surface CO2 observations
used for independent evaluations in this study are obtained
from the obspack_co2_1_GLOBALVIEWplus_v5.0_2019-
08-12 product. It is a subset of the Observation Package (Ob-
sPack) data product (ObsPack, 2019) and contains a collec-
tion of discrete and quasi-continuous measurements at sur-
face, tower, and ship sites, which are contributed by national
and universities laboratories around the world. In this study,
surface CO2 measurements from 52 flask sites are selected
to evaluate the posterior CO2 concentrations, which are all
provided by the NOAA Global Monitoring Laboratory (with
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a lab number of 1 in each filename). The locations of the
52 sites can be found in Fig. 2, and the corresponding site
codes as well as the latitude and longitude information are
listed in Table S3 in the Supplement.

During the evaluation, four basic statistical measures,
namely the mean bias (BIAS), mean absolute error (MAE),
root mean square error (RMSE), and correlation coefficient
(CORR), are calculated against the surface CO2 observations
and GOSAT XCO2 retrievals, respectively. The BIAS, MAE,
RMSE, and CORR reflect the overall model tendency, both
the model bias and error variance, and the linear correspon-
dence between the modeled and observed values or retrievals,
respectively. The functions of these four basic statistical mea-
sures are expressed as follows:

BIAS=
1
M

∑M

j=1

(
xj − yj

)
= y− x; (15)

MAE=
1
M

∑M

j=1
|xj − yj |; (16)

RMSE=

√
1
M

∑M

j=1

(
xj − yj

)2
; (17)

CORR=

∑M
j=1

(
xj − x

)(
yj − y

)√∑M
j=1

(
xj − x

)2√∑M
j=1

(
yj − y

)2 . (18)

Here, xj and yj denote the modeled and the observed values
or retrievals, respectively, at the j th out of M records, and
the overbars denote averages.

3 Experimental design

The assimilation system was run from 1 May 2009 to 31 De-
cember 2015. Two forward simulations with the prior and
posterior fluxes were also conducted from 1 May 2009 to
31 December 2015, respectively. For both assimilation and
forward runs, the initial field of 3-D CO2 concentrations at
00:00 UTC on 1 May 2009 was also from the CT2017 prod-
uct, and the MOZART-4 model was run with the 2.8◦× 2.8◦

resolution. The first 8 months are considered as a spin-up run,
and the results from 1 January 2010 to 31 December 2015 are
analyzed and evaluated in this study.

During the assimilation, the resolution of λ is the same as
the transport model. For the state vector, the second scheme
(Function 3) was adopted, namely the BIO CO2 exchanges
and OCN fluxes are optimized in this study, and the FOS-
SIL and FIRE carbon emissions are kept intact (the impact
of this assumption on both the inverted global and regional
BIO fluxes are very small; Table S4). Following Wang et
al. (2019), global annual uncertainties of 100 % and 40 % are
assigned to BIO and OCN CO2 exchanges, respectively. Ac-
cordingly, the uncertainties of the scaling factor (λ) for the
prior BIO and OCN fluxes in each DA window at the grid cell
level are assigned as 3 and 5, respectively. The model–data
mismatch error of XCO2 is constructed using the GOSAT

retrieval error, which is provided along with the ACOS prod-
uct. According to the previous works of Wang et al. (2019)
and Deng et al. (2014), all retrieval errors are also uniformly
inflated by a factor of 1.9 in this study, which is the same as
Wang et al. (2019), but a lowest error is added in this study,
which is fixed as 1 ppm.

4 Results and discussion

4.1 Evaluation for the inversion results

4.1.1 Evaluation using assimilated GOSAT XCO2
retrievals

Figure 3a shows the zonal mean XCO2 model–data mis-
match errors at different latitudes during the study period.
Compared with the GOSAT XCO2 retrievals, basically all
of the zonal mean BIAS values of the prior XCO2 at dif-
ferent latitudes are greater than 1 ppm, with a global mean
of 1.8± 1.3 ppm (average ± standard deviation); however,
for the posterior XCO2, most zonal average BIAS values are
within ± 0.5 ppm, with a global mean of −0.0± 1.1 ppm.
The global mean MAE and RMSE between the simulated
and GOSAT-retrieved XCO2 concentrations also decrease
from prior values of 2.0 and 2.2 ppm to 0.8 and 1.1 ppm,
respectively (Table 1), indicating that the model–data mis-
match errors between the simulated and retrieved XCO2
are significantly reduced. Overall, for both prior and poste-
rior concentrations, the BIAS in the Southern Hemisphere is
smaller than that in the Northern Hemisphere. In the same
hemisphere, the BIAS at low latitudes is smaller than that at
high latitudes. Figure 4 shows the spatial distribution of the
posterior XCO2 biases. It could be found that in most grids
(∼ 80 %), the biases are within ± 1 ppm. In the tropical Pa-
cific, North Pacific, North Atlantic, and tropical land, most
biases are positive, and in the northern extra-tropical lands,
negative biases are dominant. This pattern may be related to
the retrieval errors, and the large BIAS at high latitudes may
be attributed to the large retrieval errors in those areas, which
are caused by the lower solar elevation angle. Overall, this
small posterior BIAS, which is less than the retrieval error
(Crisp et al., 2012), indicates that the GCASv2 system works
well with the GOSAT XCO2 retrievals in this study.

4.1.2 Evaluation using independent surface
observations

Figure 3b shows the mean biases of the simulated surface
CO2 mixing ratios at each flask site at different latitudes. It
could be found that the BIAS values of the prior CO2 mixing
ratios are basically greater than 1 ppm at different latitudes,
with a global mean of 1.6± 1.8 ppm; after constraint with
the GOSAT XCO2 retrievals, the BIAS values at most sites
are within ± 1 ppm, with a global mean of −0.5± 1.8 ppm.
These BIAS values are similar to those of Basu et al. (2013),
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Table 1. Statistics of the simulated surface CO2 and XCO2 concentrations against the surface flask observations and GOSAT retrievals,
respectively.

BIAS∗ (ppm) MAE (ppm) RMSE (ppm) CORR

Prior Posterior Prior Posterior Prior Posterior Prior Posterior

XCO2 1.8± 1.3 −0.0± 1.1 2.0 0.8 2.2 1.1 0.95 0.96
Surface CO2 1.6± 1.8 −0.5± 1.8 2.1 1.4 2.4 1.9 0.96 0.96

∗ Mean ± standard deviation.

Figure 3. BIAS at different latitudes. Panel a shows the BIAS be-
tween the simulated and retrieved XCO2, and panel b shows the
ones between the simulated and observed CO2 mixing ratios. Error
bars represents the standard deviations of the biases at each latitude
and each site in panels (a) and (b), respectively.

Figure 4. Distributions of the BIAS of the posterior (cycles) sur-
face CO2 and (shading) XCO2 concentrations (simulations minus
observations or retrievals).

in which the average model–observation bias decreased from
a prior value of 1.95 ppm to −0.55 ppm. The MAE and
RMSE between the simulated and surface flask concentra-
tions are also decreased at most sites, with the global mean
MAE and RMSE decreasing from 2.1 and 2.4 ppm to 1.4
and 1.9 ppm, respectively (Table 1). The BIAS values in the

Northern Hemisphere are significantly larger than those in
Southern Hemisphere, because the carbon flux in the North-
ern Hemisphere is more complex than that in the Southern
Hemisphere (Wang et al., 2019). In addition, the posterior
BIAS values at most sites are negative, especially at mid-
latitudes in the Northern Hemisphere. The significant nega-
tive biases (less than 1 ppm) are mainly distributed in North
America, Europe, and central Asia, whereas positive biases
are mainly located along the east Asian coast (Fig. 4), in-
dicating that the carbon sinks in North America and Europe
might be overestimated in this study, whereas those in the up-
wind areas of east Asian coastal sites, mainly eastern China,
may be underestimated.

Moreover, it also could be found that the global mean prior
BIAS of XCO2 (about 1.8 ppm) is greater than the surface
concentrations (1.6 ppm), whereas the BIAS of XCO2 re-
duced by inversion (about 1.8 ppm) is less than the reduction
in BIAS in the surface concentrations (about 2.1 ppm). This
may be attributed to the fact that, on the one hand, although
the GOSAT XCO2 retrievals were bias corrected, there may
still be some systematic deviations; on the other hand, the
responses of surface observations to changes in the surface
carbon flux is faster than the XCO2 concentrations, so that
larger flux adjustments are needed to match the XCO2 con-
centration with ground data. A similar situation was reported
in Wang et al. (2019). In their study, GOSAT XCO2 retrievals
were used to optimize the terrestrial carbon flux in 2015.
Their inversion reduced the BIAS of simulated surface and
XCO2 (compared against TCCON sites) concentrations by
about 1.1 ppm and 0.9 ppm, respectively.

Figure 5 shows the time series of simulated and observed
CO2 mixing ratios at four sites: mlo, nwr, tik, and nat. The
mlo and nwr sites are two mountain stations located in the
center of the Pacific and western US, respectively, and nat
and tik are two coastal sites located in the Amazon and
Siberia, respectively (Fig. 2). Overall, the posterior mixing
ratios have a better agreement with the observations at all
four sites. The mlo site is an atmospheric baseline station. At
mlo, the posterior mixing ratio effectively reproduces the ob-
served concentration, whereas the prior concentrations have
been overestimated at this site since the summer of 2010,
especially during the summertime every year. Moreover, the
posterior concentrations during the wintertime are underes-
timated, and the underestimation gradually increases with

Atmos. Chem. Phys., 21, 1963–1985, 2021 https://doi.org/10.5194/acp-21-1963-2021



F. Jiang et al.: Regional CO2 fluxes during 2010–2015 1971

time. A similar situation also could be found at the nat site as
well as other sites located in the tropical and Southern Hemi-
sphere oceans (not shown). Figure S1 shows the interannual
variations in the global mean BIAS. Clearly, the biases of
surface CO2 gradually accumulate, leading to the relatively
large mean bias (−0.5 ppm). If we remove the impact of ac-
cumulation, the annual BIAS is about −0.1 ppm yr−1 (about
−0.2 PgC yr−1). There are no error accumulations at most
land sites, such as nwr and tik. These sites indicate that the
global net carbon sinks are slightly overestimated every year,
but in different lands, there are interannual variations.

4.2 Uncertainty reduction

The uncertainty reduction (UR) rate is another important
quantity to evaluate the performance of GCASv2 and the
effectiveness of GOSAT XCO2 retrievals in this system
(Chevallier et al., 2007; Takagi et al., 2011). Following
Chevallier et al. (2007), the UR is defined as

UR=
(

1−
σposterior

σprior

)
× 100, (19)

where σposterior and σprior are the posterior and prior uncer-
tainties, respectively. The URs on regional carbon flux es-
timates vary significantly over time and space (Deng et al.,
2014; Takagi et al., 2011). Table 2 lists the annual mean
1σ URs relative to the prior uncertainties during the 2010–
2015 period, which were aggregated in the 22 TransCom re-
gions and 4 large-scale regions. It shows that the annual mean
URs are in the range of 6 %–27 % over land regions. The re-
gions with large URs are temperate South America, south-
ern Africa, temperate North America, and Europe. The URs
over tropical and boreal regions are relatively small due to
the lower spatial coverage of XCO2. This distribution is sim-
ilar to the results of Deng et al. (2014), which are mainly
related to the spatial coverage of GOSAT XCO2. Regarding
the monthly URs, there are high URs in the warm season and
very low URs in cold seasons at high latitudes, the UR is sig-
nificant throughout the year at midlatitudes, and it is related
to the rainy season in tropical areas. In the rainy season, the
URs are very low due to the massive cloud coverage, whereas
in the dry season, the monthly URs are significant, with the
highest UR reaching 25 %. Figure 6 shows the monthly un-
certainties in temperate North America and Europe. In Eu-
rope, high URs are mainly noted during May–September,
and there are high URs in each month in temperate North
America, with the highest UR reaching 45 %. The highest
monthly UR is in temperate South America, with a value of
50 %. The highest monthly and annual URs are lower than
those given in previous studies (40 %–70 %; Takagi et al.,
2011; Deng et al., 2014; Saeki et al., 2013a), which may be
related to the grided state vector and shorter DA window used
in this study.

Over the ocean regions, the URs are very low, with values
in the range of 0.12 %–3.7 %. As shown in Formula (14), the

UR is mainly determined by the observational uncertainty
R and background error covariance P b (prior uncertainty).
Usually, a small R and large P b correspond to a large UR
and vice versa. As we used a scheme in which the prior un-
certainties were proportional to the prior fluxes, the regions
with small prior fluxes would have small prior uncertainties
and small URs. Compared with those over the lands, there
are much weaker fluxes and much larger XCO2 uncertain-
ties (Wunch et al., 2017) over the oceans, resulting in sig-
nificantly lower URs over the oceans. Previous studies (e.g.,
Takagi et al., 2011; Kadygrov et al., 2009) have also shown
very low URs over the oceans.

4.3 Global carbon budget

Table 3 presents the mean prior and posterior global carbon
budgets during the 2010–2015 period of this study. For com-
parison, the mean global carbon budgets from Global Carbon
Budget 2018 (GCP2018; Le Quéré et al., 2018), CT2017, and
Jena CarboScope (JCS; Rödenbeck, 2005) are also shown.
Both CT2017 and JCS estimates of the surface–atmosphere
CO2 exchange were based on the atmospheric measurements
of CO2 concentrations. In this study, the JCS product of
s04oc_v4.3 is adopted. It should to be noted that JCS only
provides the net biosphere exchange (NBE), which is the sum
of BIO carbon flux and FIRE carbon emissions, and no indi-
vidual FIRE carbon emissions data are available. For com-
parison, the FIRE carbon emissions used in this study, which
is from CT2017, is also applied to the JCS data, namely the
BIO carbon flux of JCS in this paper is obtained from the
NBE of JCS minus the FIRE carbon emission of this study.

The mean posterior BIO carbon flux during the 2010–
2015 period in this study is −4.24± 3.51 PgC yr−1 (neg-
ative or positive mean carbon uptake or release from or
to the atmosphere, same thereafter), and the OCN flux is
−2.56± 1.10 PgC yr−1; after considering the FOSSIL car-
bon emission (9.58 PgC yr−1) and FIRE carbon emission
(2.02 PgC yr−1), the mean global net carbon flux (i.e., AGR)
inverted in this study is 4.80± 3.67 PgC yr−1. Both the pos-
terior BIO and OCN carbon fluxes are stronger than the prior
fluxes, and the posterior global net carbon flux is weaker
than the prior fluxes. Compared with the others, both poste-
rior BIO and OCN fluxes are close to the values of CT2017,
but higher than the values of JCS. The AGR of GCP2018
was estimated directly from atmospheric CO2 measure-
ments, which were provided by the NOAA Earth System Re-
search Laboratory (ESRL) (Dlugokencky and Tans, 2018);
therefore, it could be considered as a true value. The pos-
terior AGR in this study (4.8 PgC yr−1) is slightly lower
than GCP2018 and very close to CT2017. Compared with
GCP2018, the deviations of prior and JCS AGR are 0.15 and
0.10 PgC yr−1, whereas those of posterior and CT2017 are
−0.11 and −0.12 PgC yr−1, respectively.
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Figure 5. Modeled and observed CO2 time series at four surface stations.

Table 2. Annual mean prior uncertainties and reduction rates (UR) aggregated in different TransCom regions during the 2010–2015 period.

Region Prior uncertainties UR Region Prior uncertainties UR
(PgC yr−1) (%) (PgC yr−1) (%)

Boreal North America 0.82 7.8 North Pacific 0.49 0.29
Temperate North America 1.62 26.4 West Pacific 0.15 0.47
Tropical South America 1.28 6.4 East Pacific 0.42 3.71
Temperate South America 1.27 27.2 South Pacific 0.33 0.42
Northern Africa 1.5 5.9 Arctic Ocean 0.30 0.14
Southern Africa 1.35 15.9 North Atlantic 0.27 0.17
Boreal Asia 1.24 15.6 Tropical Atlantic 0.13 0.60
Temperate Asia 1.23 10.3 South Atlantic 0.25 0.46
Tropical Asia 0.77 8.0 Southern Ocean 0.40 0.12
Australia 0.50 10.0 North Indian Ocean 0.17 0.43
Europe 1.31 19.8 South Indian Ocean 0.35 0.33
Northern lands 2.91 19.9 Northern oceans 0.65 0.13
Tropical lands 2.57 9.0 Tropical oceans 0.51 2.82
Southern lands 1.38 24.4 Southern oceans 0.68 0.27
Global lands 4.24 17.1 Global oceans 1.11 0.84

4.4 Regional carbon flux

Figure 7 shows the distributions of the mean prior and
posterior annual BIO and OCN carbon fluxes as well as
their differences during the 2010–2015 period. For the prior
BIO flux, carbon uptakes mainly occur over eastern North
America, the Amazon, southern Brazil, western Europe,
southern Russia, eastern China, South Asia, and the Malay

Archipelago; and carbon releases mainly occur in west-
ern North America, the eastern Amazon, Argentina, most
of Africa, the former Indochinese Peninsula, and parts of
eastern Europe and Russia. For the prior OCN flux, car-
bon uptakes mainly occur in midlatitude regions in both
hemispheres, whereas carbon sources are mainly in tropi-
cal oceans and the Southern Ocean. After constraint with the
GOSAT XCO2 retrievals, the overall patterns of carbon sinks
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Table 3. Mean global carbon budgets during the 2010–2015 period estimated in this study as well as those from the prior fluxes, GCP2018,
CT2017, and JCS (PgC yr−1).

Prior Posterior GCP2018 CT2017 JCS

Fossil fuel and industry (FOSSIL) 9.58 9.58 9.49 9.62 9.31
Biomass burning (FIRE) 2.02 2.02 1.52a 2.03 2.02
Terrestrial ecosystem (BIO) −4.07± 4.24 −4.24± 3.51 −3.13 −4.29 −4.07
Ocean (OCN) −2.47± 1.11 −2.56± 1.10 −2.46 −2.57 −2.25
Budget imbalance – – −0.52 – –
Net biosphere exchange (NBE)c

−2.05± 4.24 −2.22± 3.51 −2.12 −2.27 −2.05
Global net carbon flux (AGR) 5.06± 4.38 4.80± 3.67 4.91b 4.79 5.01

a Land use change emissions. b Atmospheric growth in GCP2018. c For GCP2018, it is the sum of BIO, FIRE, and budget imbalance,
and for the others, it is the sum of BIO flux and FIRE emissions.

Figure 6. Monthly uncertainties in (a) temperate North America
and (b) Europe.

and sources are similar to the prior patterns. However, the
BIO sinks in eastern and central North America, the eastern
Amazon, tropical Africa, the former Indochinese Peninsula,
and southwestern Russia are obviously increased; on the con-
trary, in western North America, temperate South Amer-
ica, extra-tropical Africa, South Asia, southwestern China,
North China, Siberia, and parts of southern and northern Eu-
rope, the carbon sources are increased. For the OCN flux, in
most tropical and Northern Hemisphere oceans, the carbon
sinks are slightly increased, whereas the carbon sources are
slightly enhanced in most Southern Hemisphere oceans.

Table 4 lists the aggregated mean annual prior and pos-
terior BIO carbon fluxes during the 2010–2015 period for
the 11 TransCom land regions (Fig. 2; Gurney et al., 2002)
as well as three aggregated large-scale regions, i.e., north-
ern lands, tropical lands, and southern lands. Northern lands
include boreal North America, temperate North America, bo-
real Asia, temperate Asia, and Europe; tropical lands include
tropical South America, tropical Asia, northern Africa, and
southern Africa; and southern lands include temperate South
America and Australia. For the prior, the largest carbon sink
is in tropical South America, followed by boreal Asia and

Figure 7. Distributions of the mean annual terrestrial ecosystem and
ocean carbon fluxes: (a) prior, (b) posterior, and (c) their differences
(posterior–prior) (unit: gC m−2 yr−1).

temperate Asia, and the weakest carbon flux is in southern
Africa. After optimization using GOSAT XCO2 retrievals,
the carbon sinks of temperate North America and south-
ern Africa are significantly increased and those in Australia
and Europe are also enhanced. However, in temperate South
America, northern Africa, boreal Asia, and temperate Asia,
the carbon sinks are decreased. Very small changes are found
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in boreal North America, tropical South America, and tropi-
cal Asia, especially for tropical South America. However, as
shown in Fig. 7, there are obvious changes over different ar-
eas in tropical South America; thus, the zero change in statis-
tics in this region may just be a coincidence. For the Amazon
region (Fig. 2), the estimated BIO flux is decreased from a
prior of −0.52± 1.46 to −0.45± 1.28 PgC yr−1. The largest
carbon sink occurs in temperate North America, followed by
tropical South America and Europe, and the weakest sink ap-
pears in northern Africa.

For comparison, Table 4 also lists the mean BIO carbon
fluxes of CT2017 and JCS for the same period. For the
three large-scale regions, i.e., northern lands, tropical lands,
and southern lands, their carbon sinks from this study are
also similar to CT2017. However, in each region, the distri-
butions of carbon sinks between this study and CT2017 are
significantly different. In the northern lands, the carbon sinks
estimated by this study are more evenly distributed, although
temperate North America has the largest carbon sink, and
those in boreal Asia, temperate Asia, and Europe are also
very strong and comparable. However, in CT2017, the car-
bon sinks are mainly distributed in boreal Asia and temperate
Asia, accounting for more than 70 % of the total sink in the
northern lands. The sinks in temperate North America and
Europe are very weak or even neutral. In tropical lands, this
study shows strong carbon sinks in tropical South America
and tropical Asia as well as a weak sink in Africa, whereas
CT2017 shows the opposite pattern. In southern lands, this
study shows comparable sinks in temperate South America
and Australia, whereas CT2017 shows a strong sink in tem-
perate South America and very weak one in Australia. Com-
pared with JCS, except for temperate North America and
southern Africa, the carbon sinks are comparable in other re-
gions. Using different observations as constraints might be
one of the main reasons for differences among these stud-
ies. Many studies have shown differences between the con-
straints with in situ observations and XCO2 retrievals (e.g.,
Wang et al., 2019; Deng et al., 2014). Furthermore, these dif-
ferences may be also related to the different prior BIO carbon
fluxes among these studies, especially for the tropical land.
The distribution of the posterior BIO fluxes in this study and
CT2017 are consistent with the corresponding prior fluxes in
the tropical lands (Table 4). Using the same GOSAT XCO2
retrievals, Deng et al. (2014) adopted a similar prior flux to
this study, which was also simulated using the BEPS model
but globally neutralized, to infer the land fluxes for 2010.
The distributions of Deng et al. (2014) are roughly consis-
tent with this study, whereas Wang et al. (2019) applied the
prior flux from CT2016 to optimize the fluxes for 2015 and
showed a similar distribution of land sinks over the tropical
lands to that of CT2017.

Compared with other studies, the land fluxes (includ-
ing FIRE but excluding FOSSIL) in South America
(−0.45± 1.51 PgC yr−1), Europe (−0.51± 1.05 PgC yr−1),
boreal Asia (−0.35± 1.05 PgC yr−1), tem-

perate Asia (−0.35± 1.10 PgC yr−1), tropical
Asia (−0.21± 0.71 PgC yr−1), and Australia
(−0.13± 0.45 PgC yr−1) are comparable with the for-
est sinks in these regions during the 2000–2007 period
estimated using forest inventory data by Pan et al. (2011).
However, the land fluxes in Africa and North America are
significantly different from the estimates of Pan et al. (2011).
In North America, based on inventory-based calculations,
the Second State of the Carbon Cycle Report (SOCCR2;
Hayes et al., 2018) estimated that the average annual net
land ecosystem flux was −0.96 PgC yr−1; after considering
the outgassing and wood product emissions, they reported
that the land-based carbon sink was −0.606 PgC yr−1

(± 75 %) during the 2004–2013 time period. The land flux
estimated in this study (−1.07 PgC yr−1) is close to the
bottom-up estimate of the net land ecosystem flux, but it
is much stronger than the reported land-based carbon sink
of SOCCR2. In Africa, Ciais et al. (2011) showed a com-
prehensive estimate for its carbon balance, given a sink of
−0.2 PgC yr−1 (excluding land use change emissions) based
upon observations. Our estimate of the BIO flux in Africa
is very consistent with this result. Moreover, most recently,
Palmer et al. (2019) inferred the carbon fluxes of pantrop-
ical lands in 2015 and 2016 using both GOSAT and the
NASA OCO-2 XCO2 retrievals and showed that net carbon
emissions from the African biosphere dominate pantropical
atmospheric CO2 signals, which are similar to the results of
this study. In boreal Asia, the land sink estimated by bottom-
up approaches was in the range of −0.11 to −0.76 PgC yr−1

(Hayes et al., 2011; Nilsson et al., 2003; Dolman et al.,
2012; Zamolodchikov et al., 2017). CT usually reports a
very strong carbon sink (Jacobson et al. 2020; Peters et al.,
2007; Zhang et al., 2014), and one possible reason for this is
that there are not enough surface observations in Asia boreal
regions. Saeki et al. (2013b) conducted an inversion with a
focus on the Siberia region, and they also derived a large
sink of −0.56± 0.79 PgC yr−1 using the NOAA data alone;
however, after adding additional observations in Siberia,
they obtained a weaker uptake of −0.35± 0.61 PgC yr−1.
Our estimate (−0.35± 1.05 PgC yr−1) is in the range of
bottom-up estimates and is very consistent with the inver-
sion focused on Siberia (Saeki et al., 2013b). In Europe,
previous GOSAT-based inversions consistently derived
a very large European sink, which was in the range of
−0.6 to −1.8 PgC yr−1(Basu et al., 2013; Chevallier et al.,
2014; Deng et al., 2014), whereas those constrained using
surface observations were much weaker, in the range of 0 to
−0.4 PgC yr−1 (Peters et al., 2007, 2010; Peylin et al., 2013;
Scholze et al., 2019). Our estimate of the BIO flux in Europe
is smaller than the previous GOSAT-based inversions and is
close to the estimate of Pelylin et al. (2013). In the Amazon
region, the posterior land flux is −0.45± 1.28 PgC yr−1,
which is in the range of the previous long-term forest
biomass sink estimates of−0.28 to−0.49 PgC yr−1 (Phillips
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Table 4. Regional BIO and FIRE flux in the 11 TransCom land regions (PgC yr−1).

Regions Fire This study CT2017 JCS

Prior Posterior Prior Posterior

Boreal North America 0.065 −0.26± 0.82 −0.28± 0.75 −0.05 −0.39 −0.31
Temperate North America 0.022 −0.49± 1.62 −0.88± 1.19 −0.14 −0.23 −0.21
Tropical South America 0.220 −0.66± 1.28 −0.66± 1.20 0.02 −0.11 −0.43
Temperate South America 0.142 −0.30± 1.27 −0.15± 0.93 −0.16 −0.42 0.13
Northern Africa 0.385 −0.18± 1.50 −0.05± 1.41 −0.47 −0.82 −0.11
Southern Africa 0.628 0.01± 1.35 −0.14± 1.14 −0.63 −0.55 −0.66
Boreal Asia 0.097 −0.61± 1.24 −0.45± 1.05 −0.18 −0.99 −0.51
Temperate Asia 0.065 −0.51± 1.23 −0.42± 1.10 −0.15 −0.66 −0.69
Tropical Asia 0.258 −0.45± 0.77 −0.47± 0.71 −0.05 −0.07 −0.73
Australia 0.097 −0.16± 0.50 −0.23± 0.45 −0.15 −0.07 −0.08
Europe 0.015 −0.46± 1.31 −0.52± 1.05 −0.18 0 −0.44
Northern landsa 0.26 −2.33± 2.91 −2.55± 2.33 −0.7 −2.27 −2.16
Tropical landsb 1.49 −1.28± 2.57 −1.32± 2.34 −1.13 −1.55 −1.93
Southern landsc 0.24 −0.46± 1.38 −0.38± 1.04 −0.31 −0.49 0.05

a Northern lands include boreal North America, temperate North America, boreal Asia, temperate Asia, and Europe. b Tropical lands
include tropical South America, tropical Asia, northern Africa, and southern Africa. c Southern lands include temperate South
America and Australia.

et al., 2009; Brienen et al., 2015) but is larger than the other
inversions (e.g., Deng et al., 2016; Gatti et al., 2014).

4.5 Interannual variations

4.5.1 Global land and ocean fluxes

Figure 8 shows the interannual variations in the prior and
posterior BIO and OCN fluxes. Overall, from 2010 to 2015,
the prior BIO fluxes show an increasing trend, but for the pos-
terior fluxes, there is no significant trend. Large differences
between the prior and posterior fluxes mainly occur in 2010
and 2015. In 2010, the posterior sink is much stronger than
the prior, whereas the posterior sink is much weaker than
the prior in 2015. For the OCN flux, both prior and poste-
rior fluxes show consistently upward trends, and the posterior
sinks are basically stronger than the prior ones every year ex-
cept for 2015. For the AGR (Fig. 9), the prior value shows
a significant downward trend, whereas the posterior value
shows a slightly increasing trend. As for the BIO fluxes, large
differences mainly occur in 2010 and 2015.

Compared with the other products, the interannual vari-
ations in the posterior BIO fluxes (Fig. 8a) are consistent
with the inversions of CT2017 and JCS as well as the es-
timates of GCP2018. For each year, the inversions of this
study are within the range of CT2017 and JCS, but they are
higher than GCP2018. However, because GCP2018 has the
budget imbalance item and the land use change emission is
different from the FIRE emission, the BIO flux in GCP2018
is different from this study; therefore, direct comparison with
GCP2018 is not meaningful. For OCN fluxes, overall, there
are no significant differences among different estimates, and
the upward trend of this study is similar to that of GCP2018

Figure 8. Interannual variations in global (a) BIO and (b) OCN
fluxes of the prior and posterior as well as GCP2018, CT2017, and
Jena CarboScope (JCS).

and higher than those of CT2017 and JCS. The interannual
variation in AGR in this study is also very consistent with
GCP2018 (Fig. 9). Except for 2012 and 2015, the absolute
deviations of AGR between this study and GCP2018 are
within 0.3 PgC yr−1.

4.5.2 Regional land fluxes

Figure 10a, b, and c show the prior and posterior interannual
variations in the BIO fluxes in the northern lands, tropical
lands, and southern lands, respectively. In the northern lands,
the interannual variations in both prior and posterior fluxes
are similar to the corresponding global land totals (Fig. 8a),
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Figure 9. Interannual variations in the atmospheric CO2 growth
rates.

i.e., upward trend for the prior flux and no trend with the pos-
terior flux, indicating that the interannual variations in global
BIO fluxes are dominated by the fluxes in the northern lands.
In the tropical lands, the interannual variations in posterior
fluxes are similar to the prior fluxes; however, compared with
the prior sinks in 2010 and 2011, the posterior sinks are much
stronger, whereas in 2013 and 2015, they are much weaker.
In the southern lands, there are large differences in the inter-
annual variations between the prior and posterior fluxes. For
the prior flux, the highest sink is in 2011 and the weakest is
in 2012; after 2012, the prior flux sink increases year by year,
whereas the posterior flux sink decreases from 2010 to 2013
and then increases thereafter.

Drought is one of the most important factors affecting ter-
restrial carbon sinks, and severe drought will generally sig-
nificantly reduce carbon sinks (e.g., Ma et al., 2012; Zhao
and Running, 2010; Ciais et al., 2005; Gatti et al., 2014;
Phillips et al., 2009; Vicente-Serrano et al., 2013). Previ-
ous studies (e.g., Liu et al., 2018) have used the GOSAT
XCO2 retrievals to infer the impact of droughts on terrestrial
ecosystem carbon uptake anomalies. Figure 10d shows the
severe drought areas (SDAs) in the three large-scale regions
every year, which were calculated according to the monthly
standardized precipitation–evapotranspiration index at 12-
month timescales (SPEI12; Beguería et al., 2010). Here, the
SPEIbase v2.5 database is used, and severe drought is defined
as an SPEI12 less than −1.5 (Paulo et al., 2012). In addition,
only severe droughts that occur in forests, shrubs, and crops
are considered in this study. It was found that the posterior
fluxes have better correlations with the SDAs in all three re-
gions, i.e., a larger SDA leads to a weaker carbon sink and
vice versa. The correlation coefficients between carbon sinks
and SDAs in the northern lands, tropical lands, and southern
lands increase from prior values of −0.1, −0.25, and −0.44
to −0.53, −0.67, and −0.76, respectively, indicating that
the inversion has improved the interannual variations in BIO
fluxes at large scales. In addition, a strong El Niño event hap-
pened during 2015–2016, and many researchers have stud-
ied the responses of tropical land carbon fluxes to this strong
event (e.g., Wang et al., 2018b; Liu et al., 2017; Bastos et

al., 2018; Koren et al., 2018). Liu et al. (2017) found that,
relative to the 2011 La Niña, the pantropical biosphere re-
leased 2.5± 0.34 PgC more carbon into the atmosphere in
2015. Bastos et al. (2018) showed a smaller difference in
carbon fluxes between 2015 and 2011, using both bottom-up
and top-down approaches, which was in the range of −0.7
to −1.9 PgC yr−1. In this study, compared with the prior, our
inversion significantly enhances the difference between 2011
and 2015 (Fig. 10b) and shows that 2015 released 1.35 PgC
more than 2011 in the pantropical region (defined following
Liu et al., 2017), which is much lower than the result from
Liu et al. (2017) but agrees well with the result of Bastos et
al. (2018).

Moreover, Fig. 11 shows the prior and posterior interan-
nual variations in the BIO fluxes for the 11 TransCom land
regions. In North America, including temperate North Amer-
ica and boreal North America, the prior fluxes show an up-
ward trend, whereas the posterior fluxes show a downward
trend. In boreal Asia and temperate Asia, there are signif-
icant upward trends for the prior fluxes, but no significant
trends are found in the posterior fluxes. In temperate South
America, although the prior and posterior fluxes show trends
of weakening first and then increasing, the years in which
the carbon sink is weakest are not consistent: the prior flux
is weakest in 2012, whereas the posterior flux is weakest
in 2013. Similarly, in northern Africa, the prior and poste-
rior fluxes show a trend of increasing and then decreasing,
but the prior flux is strongest in 2014, whereas the poste-
rior flux is strongest in 2011. In other regions, such as tropi-
cal South America, tropical Asia, southern Africa, Australia,
and Europe, the trends between the prior and posterior fluxes
are similar, especially in tropical South America and tropi-
cal Asia where the prior and posterior fluxes are very close
every year. In southern Africa and Australia, the posterior
fluxes have more significant interannual variations than the
prior fluxes, and in Europe, the posterior sink is much weaker
in 2015 and is stronger in 2010 and 2013 than the prior sink.

As above, here we also investigate the relationships be-
tween the interannual variations in carbon sinks and SDAs
in the 11 TransCom land regions. As shown in Table 5, in
temperate South America, boreal Asia, and Europe, the pos-
terior sinks have a better correlation with the SDAs than
the prior sinks; specifically, in Europe, the correlation co-
efficient increases from a prior value of −0.33 to −0.85.
However, in other regions, there is no obvious improvement,
and in some regions, such as boreal North America, tem-
perate North America, northern Africa, and southern Africa,
the relationships even become worse. One possible reason
for this is that there are usually higher annual mean tem-
peratures in drought years, which might extend the growing
season for vegetation, thereby enhancing the carbon uptake
and offsetting the impacts of drought. A previous study by
Wolf et al. (2016) showed that temperate North America ex-
perienced an extreme summer drought event in 2012, along
with the warmest spring on record. They quantified the im-
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Figure 10. Prior and posterior interannual variations in the BIO fluxes in the (a) northern lands, (b) tropical lands, and (c) southern lands,
respectively, and (d) severe drought areas of the abovementioned regions.

Figure 11. Prior and posterior interannual variations in the BIO fluxes for (a) boreal North America, (b) temperate North America, (c) tropical
South America, (d) temperate South America, (e) northern Africa, (f) southern Africa, (g) boreal Asia, (h) temperate Asia, (i) tropical Asia,
(j) Australia, and (k) Europe.
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Table 5. Correlation coefficients of severe drought areas (SDAs) and the regional mean LAI with the BIO sinks in each region.

Regions SDA LAI

Prior Posterior Prior Posterior

Boreal North America −0.29 0.36 −0.4 0.62
Temperate North America −0.54 −0.27 0.31 0.73
Tropical South America −0.1 −0.2 0.64 0.49
Temperate South America −0.41 −0.74 0.72 0.24
Northern Africa 0.51 0.2 0.81 0.89
Southern Africa −0.53 0.41 0.35 0.9
Boreal Asia −0.17 −0.35 0.49 0.1
Temperate Asia 0.33 0.33 0.55 0.38
Tropical Asia −0.03 0.16 0.69 0.71
Australia −0.85 −0.73 0.88 0.83
Europe −0.33 −0.85 0.85 0.58

pact of this climate anomaly on the carbon cycle and con-
cluded that the warm spring largely increased spring car-
bon uptake and, thus, compensated for reduced carbon up-
take induced by the summer drought. Liu et al. (2018) re-
ported that because of the compensating effect of the car-
bon flux anomalies between the northern and southern US
in 2011 and between spring and summer in 2012, the an-
nual carbon uptake decreased by 0.10± 0.16 PgC in 2011
and increased by 0.10± 0.16 PgC in 2012 over the US com-
pared with the average state. In this study, compared with
the mean flux during the 2010–2015 period, the carbon sink
in temperate North America decreased by 0.09 PgC yr−1 in
2011 and increased by 0.14 PgC yr−1 in 2012, which is very
close to the result of Liu et al. (2018). In Australia, both
the prior and posterior fluxes have very good relationships
with the SDAs. The significantly enhanced carbon uptake
during the 2010–2012 period is consistent with the findings
of Detmers et al. (2015), who inferred an even stronger car-
bon sink of −0.77± 0.10 PgC yr−1 from the end of 2010
to early 2012 using the GOSAT XCO2 product. They also
confirmed that this enhanced sink was related to the strong
La Niña episode, which brought a record-breaking amount
of precipitation, resulting in enhanced vegetation growth. In
tropical South America, the impacts of the 2010 drought on
the carbon uptake over the Amazon have been extensively
studied (e.g., Doughty et al., 2015; Gatti et al., 2014; van
der Laan-Luijkx et al., 2015). The year 2010 was a drought
year, whereas 2011 was a wet year in the Amazon region.
Comparing 2010 with 2011, Gatti et al. (2014) estimated that
the no-fire carbon exchange was reduced by 0.22 PgC yr−1,
van der Laan-Luijkx et al. (2015) derived a decrease in the
biospheric uptake ranging from 0.08 to 0.26 PgC yr−1, and
Doughty et al. (2015) concluded that drought suppressed
Amazon-wide photosynthesis by 0.23–0.53 PgC yr−1. In this
study, our inversion reduces the difference in carbon uptake
between 2010 and 2011 from a prior of 0.62 PgC yr−1 to

0.28 PgC yr−1, which is much more consistent with the pre-
vious estimates.

Carbon uptake occurs mainly through photosynthesis by
vegetation leaves. The LAI is a measure of leaf area per unit
area. Buchmann and Schulze (1999) showed that there are
strong relationships between the interannual changes in car-
bon uptake and the LAI in grasslands, C4 crops, and conif-
erous forests, but no significant relationship in broad-leaved
forests; Chen et al. (2019) also showed that from 1981 to
2016, the increase in the LAI contributed significantly to the
increase in global BIO carbon sinks. Therefore, we further
investigate the relationships between the interannual changes
in carbon sinks and the LAI in the 11 TransCom regions (Ta-
ble 5). Here, the LAI data are from the Global Inventory
Modeling and Mapping Studies (GIMMS) LAI3g product,
which has a spatial resolution of 1/12◦ and a time interval
of 15 d (Zhu et al., 2013). As shown in Table 5, in boreal
North America, temperate North America, northern Africa,
and southern Africa, compared with the prior fluxes, there are
better relationships between the posterior carbon sinks and
LAIs: the correlation coefficients increase from prior values
of −0.4, 0.31, and 0.35 to 0.62, 0.73, and 0.90 respectively,
suggesting that the inversion of this study may also improve
the interannual variations in carbon sinks in these four re-
gions at a certain extent.

5 Summary and conclusions

In this study, we upgrade the GCAS system to GCASv2 us-
ing new assimilation algorithms, procedures, and a localiza-
tion scheme, as well as higher assimilation parameter res-
olution and the ability to assimilate XCO2 retrievals. We
then use the GOSAT XCO2 retrievals to constrain terres-
trial ecosystem and ocean carbon fluxes from 1 May 2009
to 31 December 2015, with the GCASv2 system. We com-
pare the simulated prior and posterior XCO2 against the cor-
responding GOSAT XCO2 retrievals to test the effectiveness
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of the assimilation system and evaluate the posterior carbon
fluxes by comparing the posterior CO2 mixing ratios against
observations from 52 surface flask sites. The distribution and
interannual variations in the posterior carbon fluxes at both
global and regional scales from 2010 to 2015 are shown and
discussed.

Compared with the GOSAT XCO2 retrievals, the global
mean BIAS and RMSE decrease from prior values of
1.8± 1.3 and 2.2 ppm to −0.0± 1.1 and 1.1 ppm, respec-
tively, indicating that the GCASv2 system works well with
the GOSAT XCO2 retrievals. Independent evaluations using
surface flask CO2 concentrations showed that the posterior
carbon fluxes could significantly improve the modeling of at-
mospheric CO2 concentrations, with the global mean BIAS
and RMSE decreasing from prior values of 1.6± 1.8 and
2.4 ppm to −0.5± 1.8 and 1.9 ppm, respectively. The large
negative biases are mainly distributed in North America and
Europe, indicating the overestimates of carbon sinks over
these areas. Evaluations also show that the biases gradually
increase along with time in most tropical and Southern Hemi-
sphere ocean sites, but no accumulation is found at most land
sites. This indicates that the carbon sinks may be overesti-
mated every year at the global scale, but in different lands,
the deviations of the estimates may differ each year.

Globally, the mean annual BIO carbon sink and the in-
terannual variations inferred in this study are very close
to the estimates of CT2017 during the study period, and
the estimated mean AGR and interannual changes are also
very close to the observations, with a mean annual bias of
−0.11 PgC yr−1. Regionally, the inversion shows that in the
northern lands, the carbon sink of temperate North America
is the strongest, and those in boreal Asia, temperate Asia, and
Europe are also very strong and comparable; in the tropics,
there are strong sinks in tropical South America and tropical
Asia, but a very weak sink in Africa. These distributions are
significantly different from the estimates of CT2017, prob-
ably due to the different prior fluxes and CO2 observations
used for inversion. However, our estimates in most regions or
on most continents are comparable or are in the range of pre-
vious bottom-up estimates. The inversion also changed the
interannual variations in carbon sinks in most TransCom and
hemispheric-scale land regions, leading to their better rela-
tionship with the variations in severe drought or LAI and
indicating that the inversion with GOSAT XCO2 retrievals
may help to better understand the interannual variations in
regional carbon fluxes.
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