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Abstract. Following a continuous increase in the surface ozone (O3) level from 2013 to 2019, the overall
summertime O3 concentrations across China showed a significant reduction in 2020. In contrast to this overall
reduction in surface O3 across China, unexpected surface O3 enhancements of 10.2± 0.8 ppbv (23.4 %) were
observed in May–June 2020 (relative to 2019) over the Sichuan Basin (SCB), China. In this study, we use high-
resolution nested-grid GEOS-Chem simulation, the eXtreme Gradient Boosting (XGBoost) machine learning
method, and the exposure–response relationship to determine the drivers and evaluate the health risks due to the
unexpected surface O3 enhancements. We first use the XGBoost machine learning method to correct the GEOS-
Chem model–measurement O3 discrepancy over the SCB. The relative contributions of meteorology and anthro-
pogenic emission changes to the unexpected surface O3 enhancements are then quantified with a combination
of GEOS-Chem and XGBoost models. In order to assess the health risks caused by the unexpected O3 enhance-
ments over the SCB, total premature mortalities are estimated. The results show that changes in anthropogenic
emissions caused a 0.9± 0.1 ppbv O3 reduction, whereas changes in meteorology caused an 11.1± 0.7 ppbv O3
increase in May–June 2020 relative to 2019. The meteorology-induced surface O3 increase is mainly attributed
to an increase in temperature and decreases in precipitation, specific humidity, and cloud fractions over the SCB
and surrounding regions in May–June 2020 relative to 2019. These changes in meteorology combined with the
complex basin effect enhance biogenic emissions of volatile organic compounds (VOCs) and nitrogen oxides
(NOx), speed up O3 chemical production, and inhibit the ventilation of O3 and its precursors; therefore, they
account for the surface O3 enhancements over the SCB. The total premature mortality due to the unexpected
surface O3 enhancements over the SCB has increased by 89.8 % in May–June 2020 relative to 2019.
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1 Introduction

Surface ozone (O3) is largely generated from its local an-
thropogenic (fossil fuel and biofuel combustions) and natu-
ral (biomass burning, BB; lightning; and biogenic emissions)
precursors, such as volatile organic compounds (VOCs), ni-
trogen oxides (NOx), and carbon monoxide (CO), via a chain
of photochemical reactions (Cooper, 2019; Sun et al., 2018).
An additional portion of surface O3 is transported from dis-
tant regions via long-range transport or from the stratosphere
(Akimoto et al., 2015; H. Y. Wang et al., 2020). Surface O3
is one of the most harmful air pollutants, and it threatens hu-
man health and crop production (Fleming et al., 2018; Lu
et al., 2020; Sun et al., 2018; Van Dingenen et al., 2009).
Exposure to ambient O3 pollution evokes a series of health
risks including stroke, respiratory disease (RD), hyperten-
sion, cardiovascular disease (CVD), and chronic obstructive
pulmonary disease (COPD) (Brauer et al., 2016; Lelieveld et
al., 2013; Li et al., 2015; Liu et al., 2018; Lu et al., 2020;
P. Wang et al., 2020). Lu et al. (2020) estimated that the pre-
mature RD mortalities attributable to ambient O3 exposure in
69 Chinese cities in 2019 reached up to 64 370.

Surface O3 variability is sensitive to both emissions and
meteorological changes (Liu and Wang, 2020a, b; X. Lu et
al., 2019a). Meteorological conditions affect surface O3 vari-
ability indirectly through changes in the natural emissions of
its precursors or directly via changes in wet and dry removal,
dilution, chemical reaction rates, and transport flux (Li et al.,
2019a; Lin et al., 2008; Liu and Wang, 2020a; X. Lu et al.,
2019b). A reduction in temperature can lessen O3 produc-
tion by slowing down the chemical reaction rates (Fu et al.,
2015; Lee et al., 2014; Liu and Wang, 2020a) or reducing the
biogenic VOC and NOx emissions (Guenther et al., 2006;
Im et al., 2011; Tarvainen et al., 2005). Dryer meteorological
conditions can result in an increase in surface-level O3 (He
et al., 2017; Kalabokas et al., 2015; Liu and Wang, 2020a).
Depending on which process dominates the influence of the
planetary boundary layer height (PBLH) on surface pollu-
tants, a higher PBLH can either reduce surface-level O3 by
diluting O3 and its precursors into a larger volume of air
(Sanchez-Ccoyllo et al., 2006; X. Wang et al., 2020) or in-
crease surface-level O3 by transporting more O3 from the
upper troposphere or lessening NO abundance for O3 titra-
tion (He et al., 2017; Liu and Wang, 2020a; Sun et al., 2009).
Precipitation has been verified to decrease surface-level O3
through the wet removal of its precursors, and clouds reduce
surface-level O3 by decreasing the oxidative capacity of the
atmosphere and enhancing scavenging of atmospheric oxi-
dants (Lelieveld and Crutzen, 1990; Liu and Wang, 2020b;
Shan et al., 2008; Steinfeld, 1998). A higher wind speed
can decrease surface-level O3 by fast ventilation of O3 and
its precursors (X. Lu et al., 2019a; Sanchez-Ccoyllo et al.,
2006).

Emissions of air pollutants affect surface O3 variability
by perturbing the abundances of hydroperoxyl (HO2) and
alkylperoxyl (RO2) radicals, which are the key atmospheric
constituents in formation of O3 (Liu and Wang, 2020b).
Many previous studies have verified a non-linear relationship
between O3 and its precursors (e.g. Atkinson, 2000; Liu and
Wang, 2020b; X. Lu et al., 2019b; Sun et al., 2018; Wang
et al., 2017). If surface O3 formation regime lies within the
VOC-limited region, reductions in VOC emissions will result
in a reduction in surface-level O3. Similarly, if the surface O3
formation regime lies within the NOx-limited region, reduc-
tions in NOx emissions will result in a reduction in surface-
level O3 (Atkinson, 2000; Wang et al., 2017). If surface O3
formation regime lies within transitional region, reductions
in either VOC or NOx emissions will result in a reduction
in surface-level O3. Atmospheric aerosols can affect the sur-
face O3 level through either heterogeneous reactions of reac-
tive gases (Li et al., 2018; Lou et al., 2014; Lu et al., 2012;
Stadtler et al., 2018) or by affecting the solar radiation for
gases’ photolysis and oxidation (Li et al., 2011; X. Lu et al.,
2019a, b; Xing et al., 2017).

Understanding the drivers of surface O3 variability has
strong implications for O3 mitigation (Chen et al., 2020;
X. Lu et al., 2019a; Sun et al., 2018). China has experienced
a continuous increase in surface-level O3 despite the im-
plementation of NOx control measures since 2013 (Liu and
Wang, 2020a, b; Lu et al., 2018, 2020). Many studies have at-
tempted to determine the drivers of high-O3 events that have
occurred in specific regions and during specific time periods
across China. Most of these studies have focused on the most
densely populated and highly industrialized areas in eastern
China, whereas studies in the remaining part of the country
are still limited (Liu and Wang, 2020a, b; K. D. Lu et al.,
2019a, b, 2012; H. C. Wang et al., 2020; Wang and Lu, 2019;
Wang et al., 2017). As China has a vast territory with a wide
range of emission levels and meteorological conditions, O3
variability and its drivers may vary both temporally and geo-
graphically; thus, the results from one region are not likely to
be applied nationally. In addition, previous studies typically
use state-of-the-art chemical transport models (CTMs) with
sensitivity simulations to quantify the drivers of O3 variabil-
ity, e.g. fixed meteorology but varied emission levels to quan-
tify the influences of emission changes or vice versa (Liu and
Wang, 2020a, b; K. D. Lu et al., 2019a). However, uncertain-
ties in local meteorological fields, emission estimates, and
model mechanisms can lead to a discrepancy in CTMs that
may affect the accuracy of O3 predictions as well as their
sensitivities to changes in emissions and meteorology (X. Lu
et al., 2019a; Young et al., 2018). This is particularly rele-
vant for the Sichuan Basin (SCB), one of the most industri-
alized and populated city clusters in western China, where
large discrepancies between measured and modelled surface
O3 are found due to the complex terrain (X. Lu et al., 2019a;
X. Wang et al., 2020).
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Figure 1. Surface O3 enhancements over the SCB region in May–June 2020 relative to 2019. (a) Spatial distributions of May–June mean
O3 concentrations over the SCB region in 2019. Number (N) denotes the available measurement sites for this year. We average the O3
concentrations at all measurement sites in each city to form an O3 dataset representative of the respective city. Panel (b) is the same as
panel (a) but for 2020. Panel (c) shows the differences between 2020 and 2019. (d) Trends in May–June mean ozone concentrations from
2015 to 2020 averaged for all Chinese cities (red) and for the SCB city cluster (blue). Grey shading represents the mean ± 1σ SD across all
cities. The base map of the figure was created using the Basemap package in Python.

After a continuous increase in surface-level O3 from
2013 to 2019, the summertime (May–August) O3 concen-
tration across China showed a significant reduction in 2020
(Fig. 1d). In this study, we use high-resolution nested-grid
GEOS-Chem simulation, the eXtreme Gradient Boosting
(XGBoost) machine learning method, and the exposure–
response relationship to determine the drivers and evaluate
the health risks due to the unexpected surface O3 enhance-
ments. We first use the XGBoost machine learning method
to correct the GEOS-Chem model–measurement O3 discrep-
ancy over the SCB. The relative contributions of meteorol-
ogy and anthropogenic emission changes to the unexpected
surface O3 enhancements are then quantified using a combi-
nation of the GEOS-Chem and XGBoost models. In order to
assess the health risks caused by the unexpected O3 enhance-
ments over the SCB, total premature mortalities are also es-
timated.

2 Methods and data

2.1 Surface O3 data and auxiliary data over the SCB

China has identified nine city clusters that show rapid pop-
ulation growth as well as advanced economical, societal,
and cultural development with respect to the rest of the
country. The SCB contains the fourth-largest city cluster in
China after the Yangtze River Delta (YRD), the Pearl River
Delta (PRD), and Beijing–Tianjin–Hebei (BTH). The loca-
tion of the SCB city cluster is shown in Fig. S1 in the Sup-
plement. With Chongqing and Chengdu as the dual core
cities, more than a dozen cities over the SCB, including Mi-
anyang, Deyang, Yibin, Nanchong, Dazhou, and Luzhou,
have achieved rapid economic development and industrial
upgrades. As the region with the strongest economic strength
and best economic foundation in western China, the SCB
region is home to many industries, such as the energy and
chemical industry, electronic information, food processing,
equipment manufacturing, ecotourism, and modern finance.
Due to the fact that the SCB is one of the most densely popu-
lated and highly industrialized regions in China and owing to
its basin terrain, which is favourable to the accumulation of
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air pollutants, the SCB is a newly emerging region of severe
air pollution in China (K. D. Lu et al., 2019b, 2012).

Surface O3 measurements over the SCB are available
from the China National Environmental Monitoring Centre
(CNEMC) network (http://www.cnemc.cn/en/, last access: 2
July 2021). The CNEMC network has routinely measured the
concentrations of CO, O3, NO2, SO2, and particulate matter
(PM10 and PM2.5) at 122 sites in 22 key cities over the SCB
since 2015. The mean geolocation, population, the number
of measurement sites, and the data range of each city are
summarized in Table 1. The altitude of these cities ranges
from 0.3 to 4.3 km a.s.l. (above sea level), and the popula-
tion ranges from approximately 822 000 to 32.054 million.
The number of measurement sites in each city ranges from
2 to 21. Surface O3 measurements at all measurement sites
are based on similar differential absorption ultraviolet (UV)
analysers. The hourly mean time series of surface O3 concen-
trations cover the period from January 2015 to present at all
measurement sites in the 22 cities. After removing unreliable
measurements with the filter criteria used in Lu et al. (2020)
(see Sect. S1 in the Supplement for further details), we aver-
aged the O3 concentrations at all measurement sites in each
city to form an O3 dataset representative of the respective
city. The O3 metric used in this study is the daily maximum
8 h average (MDA8).

As the vertical distributions of tropospheric HCHO and
NO2 are weighted heavily toward the lower troposphere
over polluted regions, many studies have used tropospheric
column measurements of these gases to represent near-
ground-level conditions (Streets et al., 2013; Sun et al.,
2021b, 2018). In this study, the tropospheric NO2 and
HCHO columns from the TROPOspheric Monitoring Instru-
ment (TROPOMI) Level 3 products are used to investigate
the changes in O3 precursors in May–June 2020 with re-
spect to 2019. TROPOMI overpasses China at approximately
13:30 LT (local time) with a ground pixel size of 7× 7 km.
Pixels with quality assurance values of less than 50 % for
HCHO and 75 % for NO2 are not included in present work.

2.2 GEOS-Chem nested-grid simulation

We use the high-resolution nested-grid GEOS-Chem model
version 12.2.1 to simulate surface O3 over the SCB (Bey et
al., 2001). Simulations are conducted at a horizontal resolu-
tion of 0.25◦× 0.3125◦ over the nested domain (15–55◦ N,
70–140◦ E) covering China and the surrounding regions. The
boundary conditions for the nested-grid GEOS-Chem simu-
lation are archived from the global simulation at a 2◦× 2.5◦

resolution (Sun et al., 2021a, b; Yin et al., 2019, 2020) We
spun up the model for 1 year to remove the influence of
the initial conditions. We first ran the global simulation at
a 2◦× 2.5◦ resolution and then interpolated the restart file on
1 January 2018 into high resolution (0.25◦× 0.3125◦) for the
nested domain in order to initialize the nested model simula-
tion from January 2019 to June 2020.

The simulations were driven by the GEOS-FP meteoro-
logical field at the native resolution of 0.25◦× 0.3125◦ with
47 layers from the surface to 0.01 hPa at the top. The PBLH
and surface meteorological variables are implemented at 1 h
intervals, and other meteorological variables are at 3 h in-
tervals. The time step applied in the model for transport is
5 min, whereas the time step for chemistry and emissions
is 10 min (Philip et al., 2016) The non-local scheme for
the boundary layer mixing process is from Lin and McEl-
roy (2010), wet deposition is from Liu et al. (2001), and
dry deposition is generated with the resistance-in-series al-
gorithm (Wesely, 1989; Zhang et al., 2001). The photol-
ysis rates are from the FAST-JX v7.0 photolysis scheme
(Bian and Prather, 2002). The chemical mechanism follows
the universal tropospheric–stratospheric chemistry extension
(UCX) mechanism (Eastham et al., 2014). The GEOS-Chem
simulation outputs 47 layers of O3 and other atmospheric
constituents over China with a temporal resolution of 1 h.

We use the Community Emissions Data System (CEDS)
inventory for global anthropogenic emissions at the latest
2017 level, which is overwritten by the Chinese anthro-
pogenic emissions with the Multi-resolution Emission Inven-
tory for China (MEIC) in 2019 (Hoesly et al., 2018; Li et
al., 2017; McDuffie et al., 2020; Zheng et al., 2018). An-
thropogenic emissions are fixed for 2019 and 2020. Global
BB and biogenic emissions were from the Global Fire Emis-
sions Database (GFED v4) inventory (Giglio et al., 2013) and
the Model of Emissions of Gases and Aerosols from Nature
(MEGAN version 2.1) inventory (Guenther et al., 2012) re-
spectively. Soil NOx emissions (Hudman et al., 2010; Lu et
al., 2021) and lightning NOx (Murray et al., 2012) emissions
are calculated online in the model.

2.3 Correction of the GEOS-Chem discrepancy using a
machine learning method

We used the XGBoost machine learning method to correct
the GEOS-Chem model–measurement O3 discrepancy over
the SCB following Keller et al. (2021). The same method-
ology has also been applied in our companion study (Yin
et al., 2021b) examining ozone changes over the eastern
China from 2019 to 2020. It uses the Gradient Boosting
Decision Tree (GBDT) framework to iteratively train the
GEOS-Chem model–measurement discrepancy and improve
the model predictions in a stage-wise manner. The XGBoost
method minimizes the loss function by adding a weak learner
to optimize the objective function. The optimization objec-
tive function used in XGBoost model is expressed as follows:

L(t)
'

∑n

i=1

[
l
(
yi, ŷ

(t−1)
)
+ gift (xi)+

1
2
hif

2
t (xi)

]
+� (ft ) ; (1)

Atmos. Chem. Phys., 21, 18589–18608, 2021 https://doi.org/10.5194/acp-21-18589-2021

http://www.cnemc.cn/en/


Y. Sun et al.: The drivers and health risks of unexpected surface O3 enhancements over the SCB, China 18593

Table 1. Measurement sites in the SCB city cluster. All sites are organized alphabetically. Population statistics are based on the seventh
nationwide population census in 2020 provided by National Bureau of Statistics of China.

Name Latitudinal mean Longitudinal mean Altitudinal mean (km) Population Number of sites Time period

Abazhou 31.91◦ N 102.21◦ E 3.5 822 587 3 2015–present
Bazhong 31.85◦ N 106.75◦ E 0.8 2 712 894 4 2015–present
Chengdu 30.69◦ N 104.04◦ E 0.5 20 938 000 10 2015–present
Chongqing 29.58◦ N 106.51◦ E 0.4 32 054 200 21 2015–present
Dazhou 31.22◦ N 107.5◦ E 1.0 5 385 422 5 2015–present
Deyang 31.12◦ N 104.39◦ E 0.5 3 456 161 4 2015–present
Ganzizhou 30.05◦ N 101.96◦ E 3.5 1 107 431 2 2015–present
Guang’an 30.48◦ N 106.63◦ E 1.7 3 254 883 6 2015–present
Guangyuan 32.44◦ N 105.85◦ E 2.1 2 305 657 4 2015–present
Leshan 29.57◦ N 103.76◦ E 0.5 3 160 168 4 2015–present
Liangshanzhou 27.87◦ N 102.28◦ E 2.3 4 858 359 5 2015–present
Luzhou 28.9◦ N 105.43◦ E 0.3 4 254 149 4 2015–present
Meishan 30.07◦ N 103.85◦ E 0.8 2 955 219 6 2015–present
Mianyang 31.48◦ N 104.73◦ E 0.7 4 868 243 4 2015–present
Nanchong 30.8◦ N 106.09◦ E 0.3 5 607 565 6 2015–present
Neijiang 29.59◦ N 105.05◦ E 0.5 3 140 678 4 2015–present
Panzhihua 26.56◦ N 101.69◦ E 2.6 1 212 203 5 2015–present
Suining 30.58◦ N 105.71◦ E 0.5 2 814 196 4 2015–present
Ya’an 29.99◦ N 103.01◦ E 3.1 1 434 603 4 2015–present
Yibin 28.78◦ N 104.62◦ E 2.0 4 588 804 6 2015–present
Zigong 29.35◦ N 104.75◦ E 0.3 2 489 256 6 2015–present
Ziyang 30.13◦ N 104.64◦ E 0.5 2 308 631 5 2015–present

gi = ∂ŷ(t−1) l
(
yi, ŷ

(t−1)
)
; (2)

hi = ∂
2
ŷ(t−1) l

(
yi, ŷ

(t−1)
)
. (3)

Here, gi and hi are the respective first- and second-order
gradients of the loss function, L(t) represents the optimiza-
tion objective function to be solved at the t th iteration,
l
(
yi, ŷ

(t−1)) is the loss function representing the difference
between the prediction for the ith sample at the (t-1)th iter-
ation and the real values yi , and function f (t) is the amount
of change at the t th iteration. Overall, the objective function
consists of a two-order Taylor approximation expansion of
the loss function and the regularization term (�(ft )), which
penalizes the complexity of the model and prevents over-
fitting of the model. Compared with the traditional GBDT
method, XGBoost method has the following advantages: it
effectively handles missing values, it prevents overfitting,
and it reduces computing time by using parallel and dis-
tributed computing methods.

As the GEOS-Chem model–measurement discrepancy is
usually site-specific, we train a separate XGBoost model for
each site. Similar to the method of Keller et al. (2021), we use
a full seasonal cycle of hourly measurements in 2019 at each
site as the learning samples, and we use GEOS-Chem input
of emissions and meteorological parameters, output concen-
trations of atmospheric constituents, and time information as
training input data. In order to properly incorporate emis-
sions and meteorological factors that affect O3 production,

we have included the GEOS-Chem simulated concentrations
of 43 atmospheric chemical constituents, emissions of 21 at-
mospheric chemical constituents, 10 meteorological parame-
ters, and 4 time parameters (e.g. hour, day, month, and year)
into the data training. All of these training input data are sum-
marized in Table S1 in the Supplement and have been stan-
dardized as shown in Eq. (2) in Sect. S2 in the Supplement.
We choose a learning rate of 0.35, a maximum tree depth of
6, L1 and L2 regularization terms of 0 and 1, a mean square
loss function, and the root-mean-square error (RMSE) eval-
uation metric in the data training.

We use the k-fold cross-validation method to test the per-
formance of the XGBoost model (k = 1− n). First, all sam-
ple data are randomly and uniformly divided into k groups,
where one group is taken as the test dataset and the remain-
ing k-1 groups are taken as the training dataset. We then start
to train the model and use the test dataset to evaluate the per-
formance of the trained model. We repeated this process k
times using different groups of datasets as the test data. The
training model is finally determined if all of the k groups of
experiments show similar performance. This method ensures
the stability and robustness of the XGBoost model and avoids
overfitting. In this study, a 10-fold cross-validation method is
applied (i.e. we divide the O3 measurements in 2019 into 10
groups of sub-data): the training dataset accounts for 90 %
of the total sample data, and the test dataset accounts for the
remaining 10 %. We also attempted to use 60 % and 80 % of
the sample data as the training dataset but did not find a sig-
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nificant influence on the results; this indicates the robustness
of the XGBoost training model.

2.4 Quantifying meteorological and emission
contributions

We have used the GEOS-Chem model only as well as a com-
bination of the GEOS-Chem and XGBoost models (hereafter
referred to as GEOS-Chem-XGBoost) to quantify the contri-
butions of meteorology and anthropogenic emissions to the
unexpected surface O3 enhancements over the SCB in 2020,
following Yin et al. (2021b). For the GEOS-Chem method, as
the anthropogenic emissions are fixed, the simulated O3 dif-
ferences between 2020 and 2019 can be attributed to changes
in meteorological conditions and are calculated as follows:

G_Met=G2020−G2019. (4)

The contribution from anthropogenic emission changes can
then be quantified as follows:

G_Emis= (Meas2020−Meas2019)−G_Met. (5)

In the above-mentioned equations, G_Met and G_Emis rep-
resent the meteorology and anthropogenic emission contri-
butions respectively, Meas2019 and Meas2020 represent O3
measurements in 2019 and 2020 respectively, and G2019 and
G2020 represent GEOS-Chem O3 simulations in 2019 and
2020 respectively.

As the GEOS-Chem-XGBoost model has corrected the
GEOS-Chem model–measurement discrepancy in 2019, we
assume that it can provide accurate predictions of the surface
O3 measurements in 2020 if the anthropogenic emissions re-
main unchanged. This assumption is valid because the prob-
ability density functions (PDFs) of key O3 precursors and
meteorological parameters for the training data within a full
seasonal cycle of 2019 cover the range of variation in these
factors in May–June 2020 (Figs. S2 and S3 in the Supple-
ment). To predict O3 evolution in 2020, all input parame-
ters (except anthropogenic emissions) fed into each GEOS-
Chem-XGBoost model are updated to match the measure-
ments in 2020, whereas anthropogenic emissions are fixed
at the 2019 levels. As a result, the differences between the
GEOS-Chem-XGBoost predictions for 2020 and the 2020
measurements are attributed to the changes in anthropogenic
emissions (Eq. 6). The meteorology-induced contributions
are then obtained, as shown in Eq. (7), by subtracting the
anthropogenic-emission-induced contributions.

XG_Emis=Meas2020−XG2020 (6)
XG_Met= (Meas2020−Meas2019)−XG_Emis (7)

In the above equations, the acronyms are similar to those
in Eqs. (4) and (5) but for the GEOS-Chem-XGBoost
method. By correcting the model–measurement discrepancy,
the GEOS-Chem-XGBoost model is expected to provide a
more accurate O3 sensitivity to changes in both meteorology
and anthropogenic emissions as will be discussed later.

2.5 Health risks evaluation

We have assessed the total premature mortalities, includ-
ing all non-accidental causes of death, hypertension, CVD,
RD, COPD, and stroke, attributed to ambient O3 exposure
in all cities in the SCB in 2019 and 2020. We first calcu-
lated the O3-induced daily premature mortalities based on
the exposure–response relationship described in Cohen et
al. (2004), which has been used in many subsequent studies
(Anenberg et al., 2010; Liu et al., 2018; Wang et al., 2021).
We then added up the daily premature mortalities within the
May–June period and for the whole year respectively in or-
der to get the total O3-induced premature mortalities in the
respective periods. The population data used in this study in-
clude all age groups, which may result in higher daily mor-
talities than expected (Liu et al., 2018; Wang et al., 2021).
According to Cohen et al. (2004), the daily premature mor-
talities attributable to ambient O3 exposure can be estimated
using the following equation (Cohen et al., 2004):

1x =

{
0, (if Cmeas−Cthres ≤ 0)
Cmeas−Cthres, (if Cmeas−Cthres ≥ 0) , (8)

1M = y0
[
1− exp(−β1x)

]
×Pop, (9)

where 1M represents the daily premature mortalities due to
ambient O3 exposure. The representative daily mean O3 con-
centration for a specific city Cmeas is an average of all of the
measurements in the city. The variable y0 is the daily base-
line mortality rate for each disease averaged from all ages
and genders. We follow the method of Wang et al. (2021)
and use the daily y0 value for each disease from the lat-
est China Health Statistical Yearbook in 2018. β represents
the increase in daily mortality as a result of each 10 µg cm3

(∼ 5.1 ppbv) increase in the daily O3 concentration, which
has often been referred to as the concentration response func-
tion (CRF) in previous studies. We collected the CRF values
from those used in Yin et al. (2017) and Wang et al. (2021).
1x represents the incremental O3 concentration relative to
the threshold concentration Cthres of 35.1 ppbv, which is ob-
tained from Lim et al. (2012) and Liu et al. (2018). “Pop”
represents the population exposed to ambient O3 pollution
and is available from the seventh nationwide population cen-
sus in 2020, provided by National Bureau of Statistics of
China. The daily y0 and β values for all non-accidental
causes of death, hypertension, CVD, RD, COPD, and stroke
are summarized in Table S2 in the Supplement.
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3 Unexpected surface O3 enhancements over the
SCB in 2020

Figures 1a and b show the May–June mean MDA8 O3 con-
centrations at all measurement sites in the SCB in 2019 and
2020. The May–June mean MDA8 O3 concentrations aver-
aged over all cities in the SCB region in 2019 and 2020 are
48.1 and 58.3 ppbv respectively, which are 11.0 ppbv lower
and 1.2 ppbv higher than those averaged over all Chinese
cities during the corresponding periods. Due to the fact that
the SCB is the most densely populated and highly industri-
alized region in western China, land use, industrialization,
infrastructure construction, and urbanization in this region
have expanded rapidly in recent years, resulting in the high-
est anthropogenic emissions of O3 precursors and the high-
est surface O3 levels being found in the area (Fig. S4 in the
Supplement). Although the O3 levels in the SCB city cluster
are lower than those in the three most developed city clus-
ters in eastern China (i.e. the BTH; the Fenwei Plain, FWP;
and the YRD), the SCB region has been classified by the
Chinese Ministry of Environmental and Ecology (MEE) as
a new pollution region with respect to O3 mitigation (Sun
et al., 2021b; H. C. Wang et al., 2020; Wang and Lu, 2019;
Zou et al., 2019). Due to the combination of basin topogra-
phy, stationary meteorological fields, and high anthropogenic
emissions, the SCB city cluster has the potential to develop
frequent high-O3 events (such as those found in the BTH,
FWP, and YRD).

We find significant O3 enhancements of 10.2± 0.8 ppbv
(mean ± 1σ SD), or 23.4 %, averaged over all cities in the
SCB in May–June 2020 with respect to the 2019 levels
(Fig. 1c). The largest enhancements are observed in the most
densely populated areas around the megacities of Chongqing
and Chengdu (11.8± 0.6 ppbv, or 29.9 %). These year-to-
year O3 enhancements over the SCB reach a record high in
the 2015–2020 period, following an increasing change rate of
1.2 % yr−1 from 2015 to 2017 and then a decreasing change
rate of −0.7 % yr−1 from 2017 to 2019. These surface O3
enhancements mainly reflect regional emissions and meteo-
rology changes in the SCB and surrounding regions, as the
lifetimes of surface O3 and most of its precursors are too
short to undergo long-range transport.

The significant O3 enhancements over the SCB in May–
June 2020 relative to 2019 are the inverse of the over-
all decrease in surface O3 levels across China during the
same period (Fig. 1d). After a continuous increase in sur-
face O3 levels from 2013 to 2019 by approximately 5 % yr−1

(Fig. 1d), the MDA8 O3 averaged over all cities outside of
the SCB across China in May–June 2020 relative to 2019 lev-
els showed a significant reduction of 5.3± 0.5 ppbv (8.3 %).
Such O3 reductions are widespread in eastern China, espe-
cially in the BTH, FWP, and YRD regions, and we have in-
vestigated their drivers in a separate study (Yin et al., 2021b).

4 Model performance assessment

We use the normalized root-mean-square error (NRMSE),
normalized mean bias (NMB), and Pearson correlation co-
efficient (R) to assess the performance of the GEOS-Chem-
XGBoost model. For each measurement site, we analysed
these metrics for both training (blue) and test (red) datasets,
as shown in Fig. S5 in the Supplement. We define the
NRMSE as the RMSE normalized by the difference between
the 95th and 5th percentile concentrations, and we define the
NMB as the mean bias normalized by average concentration
at the given measurement site. The formulas for the above-
mentioned metrics are summarized in Sect. S2 in the Supple-
ment.

The GEOS-Chem-XGBoost model predictions for surface
O3 over the SCB show no bias when evaluated against the
training data, with an NMB of 0.01, NRMSE values of less
than 0.1, and an R value between 0.93 and 1.0. Compared
with the training data, the performance on the test data shows
a higher variability, with an average NMB of −0.04, an
NRMSE of 0.22, and anR of 0.83. We find no significant dif-
ference in predictive performance between clean (less than
the Cthres defined in Sect. 2.5) and polluted measurement
sites. A number of factors likely contribute to the relatively
poorer statistical results at some sites such as Ganzizhou, Le-
shan, and Suining. First, the training data for these sites may
include certain temporal events that are not easily generaliz-
able, such as unusual emission activity (e.g. BB, fireworks,
and the closure of nearby point sources) or weather patterns
that are not properly observed, which might be prone to over-
fitting. In addition, the differences in surface O3 variabilities
between the training data and the test data at these sites are
relative larger than at other sites, which can contribute to a
relative poorer performance.

We use the SHapely Additive exPlanations (SHAP) ap-
proach to examine how the GEOS-Chem-XGBoost model
uses the input variables to make a prediction. The SHAP ap-
proach is based on game-theoretic Shapely values and rep-
resents a measure of each predictor’s responsibility for a
change in the model prediction (Lundberg and Lee, 2017).
The SHAP values are computed separately for each model
prediction and offer detailed insight into the importance of
each input variable for this prediction while also considering
the role of variables interactions (Keller et al., 2021; Lund-
berg et al., 2020). Figure 2 shows the SHAP value distribu-
tion for all of the major O3 predictors averaged over all cities
in the SCB. The results show that all variables that are ex-
pected to be associated with O3 formation can affect model
O3 prediction. Generally, the temperatures (at the surface,
2 m height, and 10 m height) are the most important predic-
tors for the GEOS-Chem model–measurement discrepancy
over the SCB, followed by the uncorrected GEOS-Chem-
simulated O3, reactive nitrogen (e.g. NO2 and peroxyacetyl
nitrate – PAN), atmospheric oxidants (Ox and hydrogen per-
oxide – H2O2), fine aerosols, VOCs (isoprene and propane
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Figure 2. The importance of input variables for the XGBoost model trained to correct the GEOS-Chem model–measurement O3 discrepancy
over the SCB. Shown are the distribution of the SHAP values for each variable averaged over all cities in the SCB, ranked by the average
importance of each feature. A higher SHAP value indicates higher feature importance. The acronyms are defined in Table S1. For clarity,
only the top 30 variables are shown. See Fig. S6 in the Supplement for the relative importance of all variables.

– C3H8), hour of the day, and meteorological variables in-
cluding horizontal and vertical wind speeds (u10 m, v10 m).
All of these factors have tight connections to surface O3 for-
mation over the SCB; thus, it is not surprising that the GEOS-
Chem model–measurement discrepancies are most sensitive
to them (Seinfeld and Pandis, 2016).

We have compared the performance of GEOS-Chem and
GEOS-Chem-XGBoost with respect to capturing the mea-
sured surface O3 levels. Figure 3a shows the time series of
measured and model-predicted O3 concentrations averaged
over all cities in the SCB region. Figure 3b shows a histogram
of the differences between the GEOS-Chem-XGBoost pre-
dictions and the measurements. The GEOS-Chem simula-
tions generally capture the daily variability in MDA8 O3 over
the SCB, but they show a high bias of 7.8± 5.0 ppbv (17.5 %)
across all measurement sites within the SCB region. The dis-
crepancy can be mainly attributed to uncertainties in the hor-
izontal transport and vertical mixing schemes simulated by
the GEOS-Chem model at a relatively coarse spatial resolu-
tion compared with the measurements at a single point, but it
can also be associated with the errors in emission estimates,
the chemical mechanism, and the sub-grid-scale local me-
teorological processes. Specifically, errors in O3 predictors
with high SHAP values are more likely to result in a large
model–measurement discrepancy. For example, the GEOS-
Chem model overestimates the correlations between the sur-
face O3 concentration and temperature (Fig. S7a in the Sup-
plement), indicating that this overestimation of the O3 tem-

perature sensitivity is one of the major factors contributing to
higher GEOS-Chem model O3 predictions.

By iteratively training and correcting the GEOS-Chem
model–measurement discrepancy in the O3 temperature sen-
sitivity, the correlations between temperature and the surface
O3 concentration predicted by the GEOS-Chem-XGBoost
model were in good agreement with the measurements
(Fig. S7a). With respect to the performance of reproduc-
ing the sensitivities of O3 to other meteorological parame-
ters such as humidity, cloud fraction, and precipitation, the
GEOS-Chem-XGBoost model is also better than the GEOS-
Chem model (Fig. S7b–d). After correcting the errors in
all O3 predictors, the GEOS-Chem-XGBoost model signif-
icantly improves the prediction of surface O3 concentra-
tions in all cities over the SCB compared with GEOS-Chem
(Fig. S8 in the Supplement). It shows a bias of 0.5± 0.3 ppbv
for all O3 measurements in 2019 over the SCB. As a result,
the overall GEOS-Chem-XGBoost model performance is ac-
ceptable and can support further investigation of the drivers
of the unexpected surface O3 enhancements over the SCB in
May–June 2020.
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Figure 3. Measured and modelled O3 variability over the SCB in 2019 (a). Measured, GEOS-Chem-predicted, and GEOS-Chem-XGBoost-
predicted O3 values are denoted by black solid, grey dashed, and purple dashed lines respectively. Panel (b) presents a histogram of the
differences between the GEOS-Chem-XGBoost predictions and the measurements.

5 Attribution

5.1 Separation of meteorological and anthropogenic
emission contributions

We quantify the surface O3 enhancements in May–June 2020
over the SCB to changes in anthropogenic emissions and me-
teorological conditions according to Eqs. (6) and (7) respec-
tively. Differences between the measured and GEOS-Chem-
XGBoost-predicted O3 in May–June 2020, as indicated by
the shaded areas in Fig. 4a, represent the anthropogenic-
emission-induced O3 changes in 2020 relative to 2019.
The mean contributions driven by changes in anthropogenic
emissions and meteorological conditions are summarized in
Fig. 4b. Due to the different change rates in anthropogenic
emissions in May and June 2020 (see Sect. 5.3), the changes
in anthropogenic emissions caused an overall increase in

the surface O3 level in May but a reduction in the surface
O3 level in June (Fig. 4a). For the May–June mean con-
tributions averaged over all cities in the SCB, changes in
anthropogenic emissions caused a 0.9± 0.1 ppbv O3 reduc-
tion, and changes in meteorology caused a 11.1± 0.7 ppbv
O3 increase; these values correspond to −8.0 % and 108 %
of the relative contributions to the total O3 enhancement
(10.2± 0.8 ppbv) over the SCB in May–June 2020 respec-
tively. As a result, the anthropogenic-emission-induced O3
reductions are dominantly overwhelmed by the meteorology-
induced O3 increases, leading to the unexpected O3 enhance-
ments over the SCB in 2020.

We compare the meteorology-induced and anthropogenic-
emission-induced contributions to the unexpected surface
O3 enhancements estimated by the GEOS-Chem-XGBoost
model and to those estimated by the GEOS-Chem model
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Figure 4. (a) Comparison of the GEOS-Chem-XGBoost O3 predictions with the 2020 measurements. Red (blue) shading represents periods
when GEOS-Chem-XGBoost predictions are higher (lower) than the actual measurements in 2020, indicating that changes in anthropogenic
emissions led to an O3 increase (decrease) in 2020. All values shown are 7 d averages for presentation purposes. (b) Attribution of surface
O3 enhancements over the SCB in May–June 2020 relative to 2019. Filled coloured bars denote O3 change as seen from measurements as
well as O3 change due to changes in anthropogenic emissions and meteorological conditions estimated by the GEOS-Chem-XGBoost model
and the GEOS-Chem model. Black vertical bars represent 1σ SD across cities.

only (Fig. 4b). Both methods show that changes in meteo-
rology contribute significantly to the O3 enhancements, al-
though the absolute magnitudes differ slightly from each
other. For example, the anthropogenic-emission-induced O3
reduction calculated with the GEOS-Chem model only is
0.94 ppbv, whereas the value calculated with the GEOS-
Chem-XGBoost model is 1.36 ppbv. Using the subtraction
in Eq. (5) and the average over all cities, the propagation of
systematic model discrepancies that are common to all mea-
surements sites was effectively minimized, which can miti-
gate the difference in attribution results between the GEOS-
Chem and GEOS-Chem-XGBoost methods. However, as
demonstrated in Fig. S8, model discrepancies may differ be-
tween regions and time periods. Therefore, the GEOS-Chem-
XGBoost approach is expected to provide a more accurate

and consistent estimate of O3 change attribution than the
GEOS-Chem model alone.

5.2 Meteorological contribution

Figure 5 shows the terrain elevations and May–June mean
wind fields and surface pressures over the SCB and sur-
rounding regions. The terrain altitudes, at a resolution of
3× 3 arcmin, indicate a rapid change in altitude from the Ti-
betan Plateau (4.0–5.0 km) and Yunnan–Kweichow Plateau
(2–3 km) to the SCB (0.5 km). The SCB is located in the sad-
dle between the Tibetan Plateau and the Yunnan–Kweichow
Plateau (Chen et al., 2009; Sun et al., 2021c). Figure 5b
shows the May–June mean wind fields at 500 m overlaid
with surface pressure available from GEOS-FP fields at a
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Figure 5. Terrain elevations (a) and surface temperature and wind
fields (b) over the SCB and surrounding regions. The spatial reso-
lutions for panels (a) and (b) are 3× 3 arcmin and 0.25◦× 0.25◦

respectively. In panel (a), the white area is the Tibetan Plateau
(with altitudes of 4–5 km a.s.l.), the yellow area is the Yunnan–
Kweichow Plateau (2–3 km a.s.l), and the green area is the SCB
(0.5–1 km a.s.l). The base map of the figure was created using the
Basemap package in Python.

0.25◦× 0.3125◦ resolution. In May–June, the Tibetan high
forms over the middle region of the Tibetan Plateau and
the western Pacific subtropical high shifts westward to the
west of the SCB (Chen et al., 2009). The southwesterly East
Asian summer monsoon generates a cyclonic pattern over
the southeastern part of the SCB. Driven by large-scale cir-
culations, southwesterly flow enters the eastern part of the
SCB near the northwestern edge of the Yunnan–Kweichow

Plateau, while strong northwesterly flow enters the SCB near
the eastern edge of the Tibetan Plateau. The interaction of
these two flows results in a convergent zone of northward jet
stream over the eastern part of the SCB due to the westward
shift in the western Pacific subtropical high and the block-
ing effect of topography. Furthermore, strong instability of
vertical convection could originate over the basin and move
toward the eastern part of the SCB as dry air continuously
enters the upper layer over the SCB (Chen et al., 2009). This
process makes the SCB a favourable region for trapping air
pollutants (Chen et al., 2009; Liu et al., 2003).

Figure 6 shows the May–June mean differences in vertical
velocity, precipitation, temperature, specific humidity, cloud
fraction, and the PBLH between 2020 and 2019. In May–
June 2020, the northwestern, central western, and south-
ern areas of China experienced anomalous strong droughts
(https://quotsoft.net/air/, last access: 12 June 2021.), leading
to a significant increase in temperature and decreases in pre-
cipitation, specific humidity, and cloud fractions compared
with the 2019 levels (Fig. 6). These changes in meteoro-
logical conditions could enhance the natural emissions of
O3 precursors and speed up O3 chemical production. Mean-
while, the SCB basin effect inhibited the ventilation of O3
and its precursors, which further enhanced O3 accumulation
over the SCB. As a result, we conclude that the meteoro-
logical anomalies combined with the complex basin effect
caused the surface O3 enhancements over the SCB in 2020.
Although a higher PBLH over the SCB in May–June 2020
relative to 2019 may have reduced surface O3 levels by di-
luting O3 and its precursors into a larger volume of air, this
reduction effect was overwhelmed by the aforementioned en-
hancement effect. There is no strong evidence of a change in
the horizontal transport from other regions (Fig. 5b) or the
vertical transport from the free troposphere to the surface
(Fig. 6a) over the SCB in May–June 2020 relative to 2019
(Lefohn et al., 2012; Skerlak et al., 2014; Stohl et al., 2003;
H. C. Wang et al., 2020; H. Y. Wang et al., 2020; P. Wang et
al., 2020; Wang and Lu, 2019; Wirth and Egger, 1999). It is
worth noting that, with similar meteorological anomalies in
May–June 2020 relative to 2019, O3 enhancements were not
observed in northwestern China, such as the Xinjiang Uygur
Autonomous Region and the Inner Mongolia Autonomous
Region, or in southern China, such as the Pearl River Delta
(PRD) region, which is also one of the nine well-developed
city clusters in China with severe air pollution. This can be
partly attributed to low anthropogenic emissions of O3 pre-
cursors in northwestern China (Zheng et al., 2018) and to
the fact that strong land–sea exchange, driven by the sum-
mer monsoon, in coastal regions facilitates the ventilation of
O3 and its precursors in the PRD region. Furthermore, the
meteorology-induced O3 enhancements are probably over-
whelmed by the anthropogenic-emission-induced O3 reduc-
tions in northwestern and southern China.
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Figure 6. May–June mean differences in vertical pressure velocity (a), precipitation (b), temperature (c), specific humidity (d), cloud fraction
(e), and PBLH (f) between 2020 and 2019 over the SCB and surrounding regions. All of these meteorological parameters are from the GEOS-
FP dataset. The vertical pressure velocity is prescribed at the PBLH, whereas the other parameters are prescribed at the surface. The base
map of the figure was created using the Basemap package in Python.

5.3 Emission contribution

To suppress the spread of coronavirus (COVID-19) in China
during the pandemic in 2019, the Chinese government sealed
off several cities starting in January 2020; this included im-
plementing a measures such as closing local businesses and
halting public transportation at an unprecedented scale (Li
et al., 2019b; Steinbrecht et al., 2021; Yin et al., 2021a).
These prevention measures quickly spread nationwide. Al-
though the COVID-19 lockdowns in all cities were lifted be-
fore May, there were still restrictions on public transporta-

tion, businesses, social activities, and industrial manufactur-
ing, which could have caused domestic anthropogenic emis-
sion reductions in both HCHO and NOx . Furthermore, the
MEE continues to mitigate NOx emissions following the
2018–2020 action plan to defend blue skies, and it has also
implemented the 2020 action plan to mitigate VOCs. This
new action plan issues a number of control measures includ-
ing the implementation of stringent VOC emission standards,
the replacement of raw and auxiliary materials with a low
VOC content, and the mitigation of unorganized emissions
(emissions that are discharged without passing through an
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exhaust cylinder or stack). Driven by the above-mentioned
factors, the TROPOMI-observed tropospheric HCHO and
NO2 over China in May–June 2020 decreased by 2.0± 0.3 %
(averaged for all Chinese cities) and 1.1± 0.2 % relative to
2019 respectively. Due to the relative short lifetime of both
HCHO and NO2 in the troposphere, these reductions mostly
reflect local emission changes. These reductions in domestic
anthropogenic emissions dominated the significant reduction
in summertime MDA8 O3 across China in 2020 relative to
2019.

Following the method of Sun et al. (2018), we have
used the HCHO/NO2 ratios to investigate the O3 production
regime over the SCB region. The results show that the satel-
lite observations of HCHO/NO2 ratios in May–June in most
cities over the SCB indicate a shift toward high values from
2019 to 2020, but the O3 chemical sensitivity in 2020 still
lies within the transitional regime (Fig. S9, in the Supple-
ment; Jin et al., 2017; Jin and Holloway, 2015). Meanwhile,
the O3 chemical sensitivity in May 2020 is similar to that in
June, indicating that the O3 variability in May–June 2020 is
sensitive to both NOx and VOCs. The recently available Chi-
nese statistical data on anthropogenic emissions provided by
the MEE show that the anthropogenic VOC concentrations
over the SCB have decreased by 5.0 % and 3.5 % in May and
June in 2020 relative to the 2019 level respectively. The an-
thropogenic NOx increased by 1.5 % and decreased by 1.7 %
during the same periods respectively (Zheng et al., 2021).
The increase in anthropogenic NOx in May 2020 relative
to 2019 is attributed to an increase in NOx emissions from
the power plant sector, which was not affected by the post-
lockdown restrictions to suppress the spread of COVID-19
(Table S3 in the Supplement). For the May–June aggrega-
tion, the anthropogenic VOC and NOx emissions over the
SCB decreased by 4.3 % and 0.3 % respectively (Zheng et
al., 2021). These independent analyses of the anthropogenic
emissions explain the different predicted O3 changes due to
anthropogenic emissions alone in May (increase) vs. June
(decrease) in the SCB.

In contrast to the widespread reductions in both HCHO
and NO2 across the BTH, FWP, and YRD regions, we find
notable increases in both HCHO and NO2 in the SCB in
May–June 2020 relative to the 2019 levels. The tropospheric
HCHO and NO2 columns averaged over all cities in the
SCB region increased by (2.8± 0.3 %) and (5.1± 0.5 %) in
2020 relative to the 2019 levels respectively. As both anthro-
pogenic VOC and NOx emissions in the SCB showed de-
creasing change rates in May–June 2020 relative to 2019,
these regional increases in both HCHO and NO2 could be at-
tributed to natural emission enhancements in both VOCs and
NO2. Indeed, natural emissions of biogenic VOCs and soil
NOx calculated online in the GEOS-Chem model show in-
creasing change rates in May–June 2020 relative to 2019 in
the SCB and surrounding regions (Fig. 7). These enhanced
biogenic VOC and NOx emissions are most likely driven

by the hotter and dryer meteorological conditions in area
(Fig. 7).

Finally, we concluded that natural emission enhancements
of both NOx and VOCs induced by the unexpected meteoro-
logical anomalies could account for the O3 enhancements in
May–June 2020 over the SCB, and their contributions have
been included in the meteorology-driven ozone enhancement
as discussed in Sect. 5.2. However, in present work, we were
not able to determine which specific VOC species are the
most relevant for O3 enhancements nor could we quantify
the relative contributions of VOC and NOx enhancements to
O3 enhancements in the SCB. A series of sensitivity stud-
ies might be able to address this important issue, but this is
beyond the scope of present work.

6 Health risks caused by O3 enhancements in the
SCB

Figure 8 presents the total premature mortalities from all
non-accidental causes of death, hypertension, CVD, RD,
COPD, and stroke attributable to ambient O3 exposure in all
cities over the SCB during May–June in 2019 and 2020. The
statistical results for each city in 2019 and 2020 are sum-
marized in Tables S4 and S5 in the Supplement respectively.
The surface O3 enhancements over the SCB in May–June
2020 relative to 2019 result in dramatically higher health
risks. The estimated total premature mortalities from all non-
accidental causes of death due to surface O3 enhancements
in May–June 2020 over the SCB is 5455, which is 89.8 %
higher than that in the same period in 2019 (i.e. 2874). All
of the above-mentioned O3-induced diseases over the SCB
have significant increases in total mortalities in May–June
2020 relative to 2019. The highest health risk among these
diseases is from CVD, which is 741 in May–June 2019, fol-
lowed by RD (236), COPD (231), and hypertension (223).
This O3-induced health risk rank over the SCB is consistent
with those in the YRD, BTH, and PRD reported in previous
studies (Liu et al., 2018; Lu et al., 2020; Yin et al., 2017;
Wang et al., 2021). In May–June 2020, total mortalities from
CVD, RD, COPD, hypertension, and stroke over the SCB
reached respective values of 1405, 450, 439, 418, and 46 due
to significant O3 enhancements. The change rates for these
diseases are 89.6 %, 90.7 %, 90.1 %, 87.4 %, and 91.7 % re-
spectively.

From a whole-year view, the estimated total premature
mortalities from all non-accidental causes of death due to
surface O3 exposure over the SCB in 2019 and 2020 are
16 772 and 18 301 respectively (Tables S4 and S5). All O3-
induced diseases within May–June 2019 account for about
∼ 17.0 % of those for the whole year in 2019, and this per-
centage reaches up to ∼ 30.0% in 2020 (Fig. S10 in the
Supplement). The total premature mortalities from all non-
accidental causes of death due to surface O3 exposure over
the SCB increased by 1528 for the whole year in 2020 rela-
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Figure 7. May–June mean differences in O3 precursors between 2020 and 2019: (a) TROPOMI-observed HCHO, (b) biogenic VOCs,
(c) TROPOMI-observed NO2, and (d) soil NOx . Biogenic VOCs and soil NOx are available from GEOS-Chem model online calculations.
The base map of the figure was created using the Basemap package in Python.

tive to 2019 (Fig. S11 in the Supplement), which is 40.8 %
lower than that within the May–June period in 2020 relative
to 2019 (i.e. 2581). This indicates that the O3 level over the
SCB showed an overall decreasing change rate in all months
except May–June in 2020 relative to 2019, which resulted in
a decrease (by 1053) in O3-induced diseases during the pe-
riod.

We further investigated the O3-induced diseases in the
two most densely populated cities in the SCB (i.e. Chengdu
and Chongqing) during May–June in 2019 and 2020. The
premature mortalities from all O3-induced diseases in each
city in 2020 (relative to 2019) are dependent on the regional
population, the surface O3 level, and the enhancement level
(Eq. 9). Due to the fact that they have the largest popula-
tions and highest O3 enhancements, the estimated total pre-
mature mortalities in Chengdu and Chongqing accounted for
46.9 % of total O3-induced mortalities in the SCB during
May–June 2020 (Fig. 8b, c). As the O3 levels and enhance-
ment in Chengdu are larger than those in Chongqing, the to-
tal O3-induced mortalities in Chengdu are higher, even with
the area’s smaller population. The change rates for all O3-
induced diseases are about 75 % in Chengdu and 160 % in
Chongqing during May–June 2020 relative to 2019, which
are much higher than the enhancement of ozone levels in the

two cities (29.9 %). In order to reduce the O3-induced health
risk, strident O3 control policies are necessary in densely
populated cities.

7 Conclusions

Understanding the drivers and health risks of surface high-
O3 events has strong implications for O3 mitigation. After
a continuous increase in the surface O3 level from 2013 to
2019, the overall summertime O3 concentration across China
showed a significant reduction in 2020. In contrast to this
overall reduction in surface-level O3 across China, unex-
pected surface O3 enhancements of 10.2± 0.8 ppbv (23 %)
were observed in May–June 2020 (relative to 2019) over
the Sichuan Basin (SCB), China. In this study, we have
used high-resolution nested-grid GEOS-Chem simulation,
the eXtreme Gradient Boosting (XGBoost) machine learning
method, and the exposure–response relationship to determine
the drivers and evaluate the health risks of the unexpected
surface O3 enhancements.

By iteratively training and correcting the GEOS-
Chem model–measurement discrepancies, the GEOS-Chem-
XGBoost model significantly improves the prediction of sur-
face O3 concentrations compared with the GEOS-Chem. It
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Figure 8. Total daily mortality from all non-accidental causes of
death, CVD, RD, COPD, hypertension, and stroke attributable to
ambient O3 exposure over the SCB during May–June in 2019 and
2020.

shows a bias of 0.5± 0.3 ppbv against all O3 measurements
over the SCB. As a result, the overall GEOS-Chem-XGBoost
model performance is acceptable and can support further in-
vestigation of the drivers of unexpected surface O3 enhance-
ments over the SCB in May–June 2020. The results show that
changes in anthropogenic emissions caused a 0.9± 0.1 ppbv
O3 reduction and that changes in meteorology caused a
11.1± 0.7 ppbv O3 increase. The meteorology-induced sur-
face O3 increase is mainly attributed to an increase in tem-
perature and decreases in precipitation, specific humidity,
and cloud fractions over the SCB and surrounding regions in
2020 relative to the 2019 levels. These changes in meteorol-
ogy combined with the complex SCB basin effect enhanced

biogenic emissions of VOCs and NOx , sped up O3 chemical
production, and inhibited the ventilation of O3 and its pre-
cursors, thereby causing surface O3 enhancements over the
SCB.

The unexpected surface O3 enhancements over the SCB
in May–June 2020 relative to 2019 resulted in dramatically
higher health risks. The estimated total premature mortali-
ties due to these events in the SCB during May–June 2020 is
5455, which is 89.8 % higher than that in the same period in
2019 (i.e. 2874). We further investigated the O3-induced dis-
eases in the two most densely populated cities over the SCB
(i.e. Chengdu and Chongqing) during May–June in 2019 and
2020. Due to the fact that these cities have the largest pop-
ulations and highest O3 enhancements, the estimated total
premature mortalities in Chengdu and Chongqing accounted
for 46.9 % of total O3-induced mortalities over the SCB. The
change rates for all O3-induced diseases are about 75 % in
Chengdu and 160 % in Chongqing during May–June 2020
relative to 2019, which are much higher than the enhance-
ment of ozone levels in the two cities (29.9 %). In order to
reduce the O3-induced health risks, strident O3 control poli-
cies are necessary in densely populated cities.
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