

Supplement of

Mercury isotopic compositions in fine particles and offshore surface seawater in a coastal area of East China: implications for Hg sources and atmospheric transformations

Lingling Xu et al.

Correspondence to: Jinsheng Chen (jschen@iue.ac.cn) and Lingling Xu (linglingxu@iue.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Chamical spacios	(CX	D	DMS		
	r	p-value	r	p-value		
Cl	0.411 ^a	0.003	-0.064	0.729		
NO ₃ -	0.398	0.004	-0.004	0.984		
SO_4^{2-}	-0.514	0.000	-0.063	0.732		
Na^+	-0.319	0.023	-0.203	0.265		
\mathbf{NH}_{4}^{+}	0.045	0.753	-0.014	0.941		
\mathbf{K}^+	0.572	0.000	0.110	0.550		
Ca^{2+}	-0.040	0.782	0.139	0.449		
Mg^{2+}	0.063	0.659	-0.293	0.104		
OC	0.436	0.001	0.380	0.032		
EC	-0.075	0.600	0.521	0.002		

Table S1 Spearman correlation of $Hg_{PM2.5}$ content with chemical species in $PM_{2.5}$ at the CX and DMS.

^a r values higher than 0.30 are marked in bold

Date (Y/M/D)	Hg content	δ ²⁰² Hg (‰)	2σ	Δ ¹⁹⁹ Hg (‰)	2σ	∆ ²⁰¹ Hg (‰)	2σ	Δ ²⁰⁰ Hg (‰)	2σ
	Hg _{PM2.5} (µg g ⁻¹)				Hg _{PM2.5}	at the CX			
2017.11.8	0.76	-0.48	0.25	-0.10	0.03	-0.07	0.13	0.13	0.07
2017.11.17	0.69	-1.11	0.25	0.03	0.03	0.09	0.13	0.17	0.07
2017.12.19	1.10	0.08	0.25	0.22	0.03	0.34	0.13	0.12	0.07
2017.12.21	0.51	-1.01	0.25	0.35	0.03	0.36	0.13	0.23	0.07
2018.3.21	0.76	-0.72	0.25	-0.17	0.03	-0.06	0.13	0.08	0.07
2018.4.4	0.61	-0.80	0.25	0.52	0.03	0.48	0.13	0.06	0.07
2018.4.25	0.87	-0.62	0.25	0.41	0.03	0.31	0.13	0.09	0.07
2018.4.26	0.54	-0.26	0.25	0.20	0.03	0.26	0.13	-0.01	0.07
2018.5.25	0.90	-0.50	0.25	0.09	0.03	0.20	0.13	0.14	0.07
2018.6.6	0.78	-0.68	0.25	0.15	0.03	0.19	0.13	0.06	0.07
	Ндрм2.5 (µg g ⁻¹)			Hį	дрм2.5 at the	DMS			
2017.7.26	0.40	0.34	0.35	0.22	0.08	0.08	0.10	0.27	0.04
2017.8.9	1.19	-0.68	0.35	0.20	0.08	0.46	0.10	0.06	0.04
2017.11.1.	1.81	-0.40	0.35	-0.15	0.08	-0.07	0.10	0.14	0.04
2017.11.8	1.55	0.54	0.35	0.05	0.08	0.02	0.10	0.09	0.04
2017.12.20	0.34	0.49	0.35	0.32	0.08	0.62	0.10	0.17	0.04
2018.1.10	1.96	0.54	0.35	0.40	0.08	0.41	0.10	0.17	0.04
2018.1.17	0.69	-0.44	0.35	-0.07	0.08	-0.20	0.10	0.08	0.04
2018.2.13	0.95	0.43	0.35	0.47	0.08	0.65	0.10	0.22	0.04

Table S2 Mass concentrations and isotopes of Hg_{PM2.5} at the CX and DMS, as well as concentrations and isotopes of total Hg in the offshore surface seawater.

2018.2.7	2.80	1.10	0.35	0.38	0.08	0.59	0.10	0.15	0.04
2018.3.21	0.59	-0.78	0.35	-0.22	0.08	-0.29	0.10	0.07	0.04
	Hgseawater (ng L ⁻¹))		Total H	g in the surfac	e seawater			
2017.7.7	10.94	-0.32	0.15	-0.03	0.08	-0.01	0.10	0.11	0.04
2017.7.19	4.66	-0.32	0.15	0.12	0.08	0.09	0.10	0.04	0.04
2017.8.3	6.19	-0.67	0.15	-0.32	0.08	-0.25	0.10	-0.08	0.04
2017.8.31	6.41	-0.32	0.15	-0.03	0.08	0.02	0.10	0.02	0.04
2017.9.19	16.06	-0.31	0.15	0.19	0.08	0.10	0.10	0.10	0.04
2017.9.28	10.12	-0.40	0.15	0.02	0.08	0.05	0.10	-0.01	0.04
2017.10.25	23.55	-0.33	0.15	-0.01	0.08	-0.01	0.10	0.01	0.04
2017.11.14	15.84	-0.48	0.15	-0.04	0.08	0.13	0.10	-0.01	0.04
2017.11.28	12.51	-0.22	0.15	0.05	0.08	-0.04	0.10	0.02	0.04
2017.12.18	10.02	-0.21	0.15	0.07	0.08	0.08	0.10	0.06	0.04
2017.12.29	8.80	-0.54	0.15	-0.21	0.08	-0.08	0.10	0.04	0.04
2018.1.16	11.06	0.16	0.15	-0.01	0.08	0.02	0.10	0.05	0.04
2018.1.30	10.97	-0.53	0.15	-0.03	0.08	-0.01	0.10	0.08	0.04
2018.3.20	10.25	-0.49	0.15	-0.03	0.08	0.00	0.10	0.08	0.04
2018.3.30	14.60	-0.40	0.15	-0.05	0.08	0.02	0.10	0.07	0.04
2018.4.16	6.81	-0.19	0.15	-0.09	0.08	-0.10	0.10	0.04	0.04
2018.4.27	6.80	-0.20	0.15	0.13	0.08	0.06	0.10	0.03	0.04
2018.5.14	6.24	-0.43	0.15	-0.07	0.08	-0.04	0.10	0.04	0.04
2018.6.15	1.88	-0.40	0.15	-0.04	0.08	-0.04	0.10	0.07	0.04
2018.6.29	15.93	-0.37	0.15	-0.01	0.08	0.03	0.10	0.06	0.04

T (i	δ^{202} Hg Δ^{199} Hg		Δ^{201} Hg	Δ^{200} Hg	D	
Locations	(‰)	(‰)	(‰)	(‰)	Keterences	
Industrial (CV) Ningho, Ching	-0.61 ±0.35 (-	0.17 ±0.22 (-	0.21 ±0.18 (-	0.11 ±0.07 (-		
Industriai (CA), Mingdo, China	1.11~0.08)	0.17~0.52)	0.07~0.48)	0.01~0.23)	This study	
Mountain (DMS) Ningho China	0.12 ±0.63 (-	0.16 ±0.24 (-	0.23 ±0.36 (-	0.14 ± 0.07	This study	
Mountain (DMS), Milgoo, China	0.78~1.10)	0.22~0.47)	0.29~0.66)	$(0.06 \sim 0.28)$		
Coast of Grand Bay, Mississippi, USA	-0.87 (-1.61~-0.12)	0.83 (0.36~1.36)	0.73 (0.30~1.20)	0.14 (0.06~0.26)	Rolison et al., 2013	
Mt. Dameishan, Ningbo, China	-0.26	-0.07		0.03	Yu et al., 2016	
Mt Waliquan high altituda sita	-0.83 ±0.39 (-1.41~-	0.27 ± 0.22 (-	0.26 ± 0.18 (-	$0.07\ \pm 0.03$		
wit. wanguan, ingh annude she	0.19)	0.02~1.05)	0.06~0.80)	(0.01~0.14)		
M4 Ailes high altitude site	-0.84 ±0.29 (-1.38~-	0.66 ± 0.32	0.56 ± 0.30 (-	0.09 ± 0.05 (-		
Mt. Anao, nigh attitude site	0.30)	(0.06~1.27)	0.02~1.19)	0.05~0.20)	Fu et al., 2019	
Mt Changhai Forast sida	-1.45 ±0.45 (-2.48~-	0.36 ±0.34 (-	0.23 ± 0.31 (-	$0.10\ \pm 0.04$		
Wit. Changbai, Polest side	0.75)	0.15~1.17)	0.23~0.99)	(0.02~0.19)		
Huaniao island, marine boundary	-0.88 ±0.31 (-1.37~-	0.35 ± 0.34 (-	0.17 ± 0.29 (-	$0.08\ \pm 0.04$		
layer site	0.30)	0.20~1.08)	0.34~0.79)	(0.02~0.18)		
Beijing, China	-0.71 (-2.18~0.51)	0.05 (-0.53~0.57)	0.02	0.09 (0.02~0.17)	Huang et al., 2016	
Central Beijing, China	-1.00 (-1.39~-0.51)	-0.04 (-1.39~0.46)	-0.09 (-1.41~0.41)		Huang et al., 2020	
Beijing, China	-0.53 (-1.49~0.55)	0.14 (-0.53~1.04)		0.07 (-0.02~0.21)	Huang et al., 2019	
Beijing, China	-1.11 (-1.56~-0.71)	-0.31 (-1.12~0.37)	-0.35 (-1.17~0.19)	0.02 (-0.03~0.07)	Xu et al., 2019	

Table S3Summary of isotopic compositions of HgPM in recent studies

Changchun, China	-1.60 (-2.46~-0.65)	-0.12 (-0.54~0.21)	-0.17 (-0.54~0.09)	0.03	(-0.06~0.14)	
Chengdu, China	-0.74 (-1.75~1.07)	-0.02 (-0.45~0.15)	-0.11 (-0.47~0.10)	0.03	(-0.03~0.11)	
Guiyang, China	-1.42	0.19	0.10		0.06	Huang et al., 2015
Xi'an, China	-0.80 (-1.45~0.08)	-0.02 (-0.34~0.25)				Xu et al., 2017
Downtown, Guiyang, China	-1.26	0.05			0.01	
Downtown, Guiyang, China	-0.42	0.04			0.03	Yu et al., 2016
Suburban/industrial, Guiyang, China	-0.64	0.02			0.02	
Landfill site, Urban Kolkata, India	-0.58	0.03	0.04		0.03	
Industrial site, Urban Kolkata, India	-2.41	-0.15	-0.13		0.03	Das et al., 2016
Traffic site, Urban Kolkata, India	-1.65	0.02	-0.01		0.04	
Near CFPP, Xiamen, China	-1.01 (-3.05~0.01)	-0.27 (-0.77~0.20)	-0.26 (-0.60~0.20)	0.10	(-0.06~0.27)	Huang et al., 2018

Das, R., Wang, X. F., Khezri, B., Webster, R. D., Sikdar, P. K., Datta, S.: Mercury isotopes of atmospheric particle bound mercury for source apportionment study in urban Kolkata, India, Elementa-Science of the Anthropocene, **4**, 1-12, 2016.

Fu, X. W., Zhang, H., Feng, X. B., Tan, Q. Y., Ming, L. L., Liu, C., Zhang, L. M.: Domestic and Transboundary Sources of Atmospheric Particulate Bound Mercury in Remote Areas of China: Evidence from Mercury Isotopes, Environmental Science & Technology, **53**(4), 1947-1957, 2019.

Huang, Q., Liu, Y. L., Chen, J. B., Feng, X. B., Huang, W. L., Yuan, S. L., Cai, H. M., Fu, X. W.: An improved dual-stage protocol to pre-concentrate mercury from airborne particles for precise isotopic measurement, Journal of Analytical Atomic Spectrometry, **30**(4), 957-966, 2015.

Huang, Q., Chen, J. B., Huang, W. L., Fu, P. Q., Guinot, B., Feng, X. B., Shang, L. H., Wang, Z. H., Wang, Z. W., Yuan, S. L., Cai, H. M., Wei, L. F., Yu, B.: Isotopic composition for source identification of mercury in atmospheric fine particles, Atmospheric Chemistry and Physics, 16(18), 11773 - 11786, 2016.

Huang, Q., Chen, J. B., Huang, W. L., Reinfelder, J. R., Fu, P. Q., Yuan, S. L., Wang, Z. W., Yuan, W., Cai, H. M., Ren, H., Sun, Y. L., He, L.: Diel variation in mercury stable isotope ratios records photoreduction of PM2.5-bound mercury, Atmospheric Chemistry and Physics, **19**(1), 315-325, 2019.

Huang, Q., Reinfelder, J. R., Fu, P. Q., Huang, W. L.: Variation in the mercury concentration and stable isotope composition of atmospheric total suspended particles in Beijing, China, Journal of Hazardous materials, 383, 121131, 2020.

- Huang, S. Y., Sun, L. M., Zhou, T. J., Yuan, D. X., Du, B., Sun, X. W.: Natural stable isotopic compositions of mercury in aerosols and wet precipitations around a coal-fired power plant in Xiamen, southeast China, Atmospheric Environment, 173, 72-80, 2018.
- Rolison, J. M., Landing, W. M., Luke, W., Cohen, M., Salters, V. J. M.: Isotopic composition of species-specific atmospheric Hg in a coastal environment, Chemical Geology, 336, 37-49, 2013.
- Xu, H. M., Sonke, J. E., Guinot, B., Fu, X. W., Sun, R. Y., Lanzanova, A., Candaudap, F., Shen, Z. X., Cao, J. J.: Seasonal and Annual Variations in Atmospheric Hg and Pb Isotopes in Xi'an, China, Environmental Science & Technology, **51**(7), 3759-3766, 2017.
- Xu, H. M., Sun, R. Y., Cao, J. J., Huang, R. J., Guinot, B., Shen, Z. X., Jiskra, M., Li, C. X., Du, B. Y., He, C., Liu, S.X., Zhang, T., Sonke, J. E.: Mercury stable isotope compositions of Chinese urban fine particulates in winter haze days: Implications for Hg sources and transformations, Chemical Geology, 504, 267-275, 2019.
- Yu, B., Fu, X. W., Yin, R. S., Zhang, H., Wang, X., Lin, C. J., Wu, C. S., Zhang, Y. P., He, N. N., Fu, P. Q., Wang, Z. F., Shang, L. H., Sommar, J., Sonke, J. E., Maurice, L., Guinot, B., Feng, X. B.: Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation, Environmental Science & Technology, 50(17), 9262-9269, 2016.

		C	X		DMS				
Components	δ^{20}	δ^{202} Hg		Δ^{199} Hg		δ^{202} Hg		Δ^{199} Hg	
	r	p-value	r	p-value	r	p-value	r	p-value	
Levoglucosan	-0.820 ^a	0.007	0.109	0.781	0.480	0.160	0.430	0.214	
Cl-	-0.778	0.014	0.201	0.604	0.128	0.725	-0.152	0.676	
NO ₃ -	0.418	0.229	-0.042	0.907	0.407	0.243	0.139	0.701	
SO_4^{2-}	-0.564	0.090	-0.188	0.603	-0.614	0.059	-0.309	0.385	
Na^+	-0.055	0.881	0.370	0.293	-0.571	0.084	-0.406	0.244	
$\mathbf{NH4}^{+}$	0.030	0.934	-0.612	0.060	-0.128	0.725	-0.176	0.627	
\mathbf{K}^+	-0.055	0.881	0.042	0.907	0.396	0.257	0.784	0.007	
Ca^{2+}	0.164	0.651	0.758	0.011	0.061	0.867	0.213	0.555	
Mg^{2+}	0.188	0.603	0.818	0.004	0.000	1.000	-0.188	0.603	
OC	0.036	0.920	0.462	0.179	0.036	0.920	0.309	0.385	
EC	-0.200	0.580	-0.103	0.777	-0.231	0.521	0.176	0.627	

Table S4 Spearman correlation of δ^{202} Hg and Δ^{199} Hg with chemical components contents in PM_{2.5} at the CX and DMS.

^a r values higher than 0.30 with *p*-value < 0.05 are marked in bold

Fig. S1 72-h backward air trajectories associating with $PM_{2.5}$ samples for Hg isotopes analysis starting every 4 h arriving at the (a) CX and (b) DMS (6 trajectories for one sample).

Fig. S2 Fire map in (a) March 2018 and (b) March 19~21, 2018. The study region is marked by blue triangle. <u>https://firms.modaps.eosdis.nasa.gov/</u>

industrial area.