

Supplement of

Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe

Clara M. Nussbaumer et al.

Correspondence to: Clara M. Nussbaumer (clara.nussbaumer@mpic.de)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Overview of applied rate constants.

rate constant	value / calculation [cm^3 molecule ⁻¹ s ⁻¹]
k_{CH_4+OH} ¹	$1.85 \times 10^{-12} \times exp(-1690 \mathrm{K}/T)$
$k_{CH_3CHO+OH}$ ¹	$4.7 \times 10^{-12} \times exp(345 \mathrm{K}/T)$
k_{CH_3OH+OH} ¹	$2.85 \times 10^{-12} \times exp(-345 \mathrm{K/T})$
$k_{CH_3O_2+NO}^{1}$	$2.3 imes 10^{-12} imes exp(360 { m K}/T)$
$k_{CH_3O_2+HO_2}$ ¹	$3.8 imes 10^{-13} imes exp(780 { m K}/T)$
$k_{CH_3O_2+OH}$ ¹	$3.7 \times 10^{-11} \times exp(350 \mathrm{K}/T)$
$k_{C_5H_8(OH)O_2+NO}^2$	$9.0 imes 10^{-12}$
$k_{C_5H_8(OH)O_2+HO_2}^2$	1.3×10^{-11}
$k_{C_5H_8(OH)O_2+RO_2}^2$	$6.6 imes 10^{-14}$
$k_{C_5H_8+OH}^{1}$	$2.1 \times 10^{-11} \times exp(465 \mathrm{K/T})$
$k_{C_5H_8+O_3}$ ¹	$1.05 \times 10^{-14} \times exp(-2000 {\rm K/T})$
$k_{C_2H_4+O_3}$ ¹	$6.82 \times 10^{-15} \times exp(-2500 \mathrm{K/T})$
$k_{CH_3OOH+OH}$ ¹	$5.3 \times 10^{-12} \times exp(190 \mathrm{K/T})$
1 3	$1.0 \times 10^{-39} \times [O_2] \times exp(5820 \mathrm{K/T})$
k_{DMS+OH}	$1.13 \times 10^{-11} \times exp(-253 \text{ K/T}) + \frac{1}{1+5.0 \times 10^{-30} \times [O_2] \times exp(6280 \text{ K/T})}$
$k_{HCHO+OH}$ ¹	$5.4 \times 10^{-12} \times exp(135 \mathrm{K/T})$
k_{O_3+NO} ¹	$2.07 \times 10^{-12} \times exp(-1400 \mathrm{K/T})$
$k_{O_3+OH}{}^4$	$1.7 \times 10^{-12} \times exp(-940 \mathrm{K/T})$
$k_{O_3+HO_2}$ ³	$2.03 \times 10^{-16} \times (T/400 \mathrm{K})^{4.57} \times exp(693 \mathrm{K}/T)$
$k_{O^1D+O_2}^{1}$	$3.2 \times 10^{-11} \times exp(67 \mathrm{K/T})$
$k_{O^1D+N_2}^{0}$	$2.15 \times 10^{-11} \times exp(110 \mathrm{K/T})$
$k_{O^1D+H_2O}^{0}$ 1	$2.14 imes 10^{-10}$
¹ IUDAC Test C	2 Sumpor at al. 2001; 3 Atlangan at al. 2004; 4 Atlangan at al. 2006;

¹ IUPAC Task Group; ² Sumner et al., 2001; ³ Atkinson et al., 2004; ⁴ Atkinson et al., 2006;

Figure S1. (a) Diurnal profile of HO₂ and calculated RO₂ during CYPHEX through equating P(O₃) from NO₂ photolysis and P(O₃) from reaction of NO with HO₂ and RO₂ (b) O₃ production calculated via the photolytic reaction of NO₂, and the reaction of HO₂ and RO₂ with NO, assuming [HO₂]=[RO₂]. We use the rate constant $k_{NO+CH_3O_2}$ as surrogate for k_{NO+RO_2} . Both panels show close agreement which justifies the assumption that [HO₂]=[RO₂].

Table S2. Coefficients for the calculation of j(HCHO) and j(CH₃CHO) according to Equation (S1).

species	a_1	$a_2 [s]$	b_1	b ₂ [s]
HCHO	1.719	-1.768×10^4	4.701×10^{-3}	-3.471×10^{-2}
CH_3CHO	1.516×10^{-1}	-8.970×10^{2}	4.567×10^{-5}	1.711×10^{-3}

$$j(species)_{parameter} = a_1 \times j(O^1D) + a_2 \times (j(O^1D))^2 + b_1 \times j(NO_2) + b_2 \times (j(NO_2))^2$$
(S1)

Figure S2. Correlations of measured j(HCHO) (molecular plus radical channel) with (a) $j(O_1D)$ and (b) $j(NO_2)$ from spectroradiometer measurements. The correlation of measured and parameterized j(HCHO) according to Equation (S1) is shown in panel (c). Only one out of ten data points from the original data set is shown for clarity.

	total uncertainty [%]			time resolution [min]			
trace gas	CYPHEX	HOPE	HUMPPA	CYPHEX	HOPE	HUMPPA	
NO	20	10	5	5s	1	5	
NO_2	30	10	6	5s	1	5	
O_3	5	5	10	1	1	5	
HCHO	16	16	34	10	5	5	
CH_4	2	5	5	1	1	5	
OH	28.5	30	30	4	5	10	
HO_2	36	40	40	14s	5	10	
C_2H_4	10	-	-	1h	-	-	
C_5H_8	14.5	15	15	45	1-4h	5	
CH_3OH	41	14	20	1	1.5-3h	2h	
CH_3CHO	27	13	20	1	1.5-3h	30	
CH_3COCH_3	17	-	-	1	-	-	
DMS	17	-	-	1	-	-	
CH_3OOH	9	-	-	12	-	-	
j(O ¹ D)	10	10	10	10	1	30	
$j(NO_2)$	10	10	10	10	1	5	
j(HCHO)	20	20	20	10	1	5	
j(CH ₃ CHO)	20	-	-	10	-	-	
j(CH ₃ COCH ₃)	20	-	-	10	-	-	
j(CH ₃ OOH)	20	-	-	10	-	-	
BLH	-	20	20	-	-	-	
v_d	-	54	54	-	-	-	

Table S3. Total uncertainties and time resolution of the data used in this study.

Figure S3. Temporal development of the HCHO concentration and the NO_2 photolysis frequency during each research campaign. For HOPE and HUMPPA, these plots can be used for determining the HCHO deposition velocity at nighttime.

Figure S4. Diurnal average of HCHO concentrations including the rate of change dHCHO/dt.

Figure S5. Individual panels of all HCHO production terms.

			CYPHEX		HOPE		HUMPPA	
term	calculation	MU	AV1	AV2	MU	AV	MU	AV
		HCHO)					
P(CH ₄ +OH)	$k \times [CH_4] \times [OH] \times \alpha_1$	29	37 (61)	33 (54)	30	52 (62)	30	49 (49)
P(CH ₃ CHO+OH)	$k \times [CH_3CHO] \times [OH] \times \alpha_1 \times \alpha_2$	39	57 (79)	50 (67)	33	75 (80)	36	71 (71)
$P(CH_3OH+OH)$	$k \times [CH_3OH] \times [OH]$	50	41 (60)	39 (59)	33	65 (74)	36	85 (81)
$P(C_5H_8+OH)$	$k \times [C_5H_8] \times [OH] \times$ yield	32	55 (71)	54 (71)	34	92 (96)	34	96 (104)
P(HCHO) _{basic}	$\sum P_n$ (basic)	31	40 (61)	22 (34)	31	42 (45)	31	38 (39)
P(HCHO)all	$\sum \mathbf{P}_n$ (all)	28	38 (58)	-	-	-	-	-
L(HCHO+OH)	$k \times [HCHO] \times [OH]$	33	44 (64)	42 (62)	34	65 (76)	45	113 (118)
$L(HCHO+h\nu)$	j(HCHO)×[HCHO]	26	32 (-)	31 (-)	26	59 (-)	39	111 (-)
L(HCHO) deposition	$[\text{HCHO}] \times \frac{v_d}{BLH}$	-	-	-	63	69 (73)	58	112 (117)
L(HCHO)	$\sum L_n^{DLII}$	26	34 (57)	25 (52)	34	40 (51)	44	77 (87)
		O_3						
$P(NO_2+h\nu)$	$j(NO_2) \times [NO_2]$	32	59 (-)	57 (-)	14	58 (-)	12	44 (-)
$P(O_3)$	$P(NO_2+h\nu)$	32	59 (-)	57 (-)	14	58 (-)	12	44 (-)
$L(O_3+NO)$	$k \times [O_3] \times [NO]$	21	46 (51)	42 (55)	11	97 (119)	11	63 (93)
$L(O_3+h\nu)$	$j(O^1D) \times [O_3] \times \alpha$	11	32 (-)	30 (-)	11	71 (-)	14	50 (-)
$L(O_3+OH)$	$k \times [O_3] \times [OH]$	29	37 (58)	35 (57)	30	58 (66)	32	53 (54)
$L(O_3+HO_2)$	$k \times [O_3] \times [HO_2]$	36	27 (41)	23 (35)	40	57 (55)	41	42 (56)
L(O ₃) deposition	$[O_3] \times \frac{v_d}{BLH}$	-	-	-	21	24 (24)	22	21 (23)
L(O ₃)	$\sum L_n^{DLII}$	16	37 (44)	35 (49)	10	90 (98)	13	51 (49)

Table S4. Calculated uncertainties resulting from the measurement uncertainties (MU) and from the atmospheric variability (AV). All uncertainties were calculated via Gaussian error propagation. For CYPHEX, AV1 relates to the point-by-point calculation and AV2 relates to preaveraging and subsequent diurnal calculations. All values are in %. For the atmospheric variability, the number in brackets refers to the all-day average and the number without brackets refers to the daytime average. α_1 is $\alpha_{CH_3O_2}$ and α_2 is α_{CH_3CHO} .

Uncertainty Calculations: We exemplarily present the calculation of the uncertainties of P_{CH_4+OH} in Equations (S1)-(S4) and of $P(HCHO)_{basic}$ in Equations (S5)-(S7) according to gaussian error propagation. All other calculations are accordingly.

10 Example 1:

$$P_{CH_4+OH} = k_{CH_4+OH} \times [CH_4] \times [OH] \times \alpha_{CH_3O_2}$$
(S2)

$$\Delta P_{CH_4+OH}^2 = \left(\frac{dP(CH_4+OH)}{d[CH_4]}\right)^2 \times \Delta [CH_4]^2 + \left(\frac{dP(CH_4+OH)}{d[OH]}\right)^2 \times \Delta [OH]^2 \\ = k_{CH_4+OH}^2 \times [CH_4]^2 \times \alpha_{CH_3O_2}^2 \times \Delta [OH]^2 + k_{CH_4+OH}^2 \times [OH]^2 \times \alpha_{CH_3O_2}^2 \times \Delta [CH_4]^2$$
(S3)

$$\frac{\Delta P_{CH_4+OH}^2}{P_{CH_4+OH}^2} = \frac{k_{CH_4+OH}^2 \times [CH_4]^2 \times \alpha_{CH_3O_2}^2 \times \Delta [OH]^2 + k_{CH_4+OH}^2 \times [OH]^2 \times \alpha_{CH_3O_2}^2 \times \Delta [CH_4]^2}{k_{CH_4+OH}^2 \times [CH_4]^2 \times [OH]^2 \times \alpha_{CH_3O_2}^2} = \frac{[CH_4]^2 \times \Delta [OH]^2 + [OH]^2 \times \Delta [CH_4]^2}{[CH_4]^2 \times [OH]^2} \tag{S4}$$

$$\frac{\Delta P_{CH_4+OH}}{P_{CH_4+OH}} = \sqrt{\frac{\Delta [OH]^2}{[OH]^2} + \frac{\Delta [CH_4]^2}{[CH_4]^2}}$$
(S5)

15 Example 2:

$$P(HCHO)_{basic} = P_{CH_4+OH} + P_{CH_3CHO+OH} + P_{CH_3OH+OH} + P_{C_5H_8+OH}$$

$$= [OH] \times ([CH_4] \times k_{CH_4+OH} \times \alpha_{CH_3O_2} + [CH_3CHO] \times k_{CH_3CHO+OH} \times \alpha_{CH_3O_2} \times \alpha_{CH_3CHO}$$

$$+ [CH_3OH] \times k_{CH_3OH+OH} + [C_5H_8] \times k_{C_5H_8+OH} \times \alpha_{Isoprene})$$
(S6)

$$\begin{split} \Delta P(HCHO)_{basic}^2 &= \left(\frac{dP(HCHO)_{basic}}{d[OH]}\right)^2 \times \Delta [OH]^2 + \left(\frac{dP(HCHO)_{basic}}{d[CH_4]}\right)^2 \times \Delta [CH_4]^2 \\ &+ \left(\frac{dP(HCHO)_{basic}}{d[CH_3CHO]}\right)^2 \times \Delta [CH_3CHO]^2 + \left(\frac{dP(HCHO)_{basic}}{d[CH_3OH]}\right)^2 \times \Delta [CH_3OH]^2 \\ &+ \left(\frac{dP(HCHO)_{basic}}{d[C_5H_8]}\right)^2 \times \Delta [C_5H_8]^2 \\ &= ([CH_4] \times k_{CH_4+OH} \times \alpha_{CH_3O_2} + [CH_3CHO] \times k_{CH_3CHO+OH} \times \alpha_{CH_3O_2} \times \alpha_{CH_3CHO} \\ &+ [CH_3OH] \times k_{CH_3OH+OH} + [C_5H_8] \times k_{C_5H_8+OH} \times \alpha_{Isoprene})^2 \times \Delta [OH]^2 \\ &+ k_{CH_4+OH}^2 \times \alpha_{CH_3O_2}^2 \times [OH]^2 \times \Delta [CH_4]^2 + k_{CH_3CHO+OH}^2 \times \alpha_{CH_3O_2}^2 \times \alpha_{CH_3CHO}^2 \\ &\times [OH]^2 \times \Delta [CH_3CHO]^2 + k_{CH_3OH+OH}^2 \times [OH]^2 \times \Delta [CH_3OH]^2 \\ &+ k_{C_5H_8+OH}^2 \times \alpha_{Isoprene} \times [OH]^2 \times \Delta [C_5H_8]^2 \end{split}$$
(S7)

$$\frac{\Delta P(HCHO)_{basic}}{P(HCHO)_{basic}} = \sqrt{\frac{\Delta P(HCHO)_{basic}^{2}}{P(HCHO)_{basic}^{2}}} = \sqrt{\frac{([CH_{4}] \times k_{CH_{4}+OH} \times \alpha_{CH_{3}O_{2}} + [CH_{3}CHO] \times k_{CH_{3}CHO+OH} \times \alpha_{CH_{3}O_{2}} \times \alpha_{CH_{3}CHO}}{+[CH_{3}OH] \times k_{CH_{3}OH+OH} + [C_{5}H_{8}] \times k_{C_{5}H_{8}+OH} \times \alpha_{Isoprene})^{2} \times \Delta[OH]^{2}} + \frac{k_{CH_{4}+OH}^{2} \times \alpha_{CH_{3}O_{2}}^{2} \times [OH]^{2} \times \Delta[CH_{4}]^{2} + k_{CH_{3}CHO+OH}^{2} \times \alpha_{CH_{3}O_{2}}^{2} \times \alpha_{CH_{3}CHO}^{2} \times [OH]^{2}}{\times \Delta[CH_{3}CHO]^{2} + k_{CH_{3}OH+OH}^{2} \times [OH]^{2} \times \Delta[CH_{3}OH]^{2} + k_{C_{5}H_{8}+OH}^{2} \times \alpha_{Isoprene} \times [OH]^{2})} \times \Delta[C_{5}H_{8}]^{2} \times \frac{1}{(P_{CH_{4}+OH} + P_{CH_{3}CHO+OH} + P_{CH_{3}OH+OH} + P_{C_{5}H_{8}+OH})^{2}}$$
(S8)

Figure S6. Temporal development of the O3 concentration in the scope of each research campaign.

Figure S7. Diurnal average of O_3 concentrations including the rate of change dO_3/dt .

(b) net O₃ production

Figure S8. Temporal development of O_3 production and loss terms from July 22 to July 31, 2014 during the research campaign CYPHEX in Cyprus.

Figure S9. (a) Diurnal O_3 production and loss during CYPHEX, including all data points. (b) Diurnal NO_2 concentrations with and without afternoon peak caused by a singular high concentration event on July 24 (13:15 - 16.15 UTC).

Figure S10. Chemical production terms of HCHO during (a) HOPE and (b) HUMPPA.

Figure S11. Diurnal HCHO production and loss during HUMPPA (a) considering only data which were impacted by biomass burning (BB) and (b) excluding data with BB impact.