

Supplement of

Urban aerosol chemistry at a land–water transition site during summer – Part 2: Aerosol pH and liquid water content

Michael A. Battaglia Jr. et al.

Correspondence to: Christopher J. Hennigan (hennigan@umbc.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1: Site map of met stations used in the analysis with Baltimore City, MD as a local urban reference. The instruments in the current study were deployed at the Hart-Miller Island site, while previous studies have utilized data available from the CASTNET and AMoN monitoring networks at the HU-Beltsville and Beltsville sites. © Google Earth

Figure S2: Scatterplots of measured ε_{NH3} vs. ISORROPIA-predicted ε_{NH3} during the OWLETS-2 study colored by ISORROPIA-predicted aerosol pH (top) and measured RH (bottom).

Figure S3: Diurnal profiles of ISORROPIA-predicted aerosol pH and NH₃ partitioning-predicted aerosol pH.

Figure S4: ISORROPIA-predicted aerosol pH (molarity basis) vs. Total NH_3 (= NH_3 (g) + NH_4^+).

Figure S5: ε_{NH3} vs. ALWC colored by ambient T, and ε_{NH3} vs. ambient T colored by ALWC.

Figure S6: ISORROPIA-predicted ε_{NH3} vs. observed ε_{NH3} during chloride depletion event observed during OWLETS-2.