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Abstract. Volatile chemical products (VCPs) are commonly used consumer and industrial items that are an
important source of anthropogenic emissions. Organic compounds from VCPs evaporate on atmospherically
relevant timescales and include many species that are secondary organic aerosol (SOA) precursors. However,
the chemistry leading to SOA, particularly that of intermediate-volatility organic compounds (IVOCs), has not
been fully represented in regional-scale models such as the Community Multiscale Air Quality (CMAQ) model,
which tend to underpredict SOA concentrations in urban areas. Here we develop a model to represent SOA for-
mation from VCP emissions. The model incorporates a new VCP emissions inventory and employs three new
classes of emissions: siloxanes, oxygenated IVOCs, and nonoxygenated IVOCs. VCPs are estimated to produce
1.67 µg m−3 of noontime SOA, doubling the current model predictions and reducing the SOA mass concentra-
tion bias from −75 % to −58 % when compared to observations in Los Angeles in 2010. While oxygenated and
nonoxygenated intermediate-volatility VCP species are emitted in similar quantities, SOA formation is domi-
nated by the nonoxygenated IVOCs. Formaldehyde and SOA show similar relationships to temperature and bias
signatures, indicating common sources and/or chemistry. This work suggests that VCPs contribute up to half of
anthropogenic SOA in Los Angeles and models must better represent SOA precursors from VCPs to predict the
urban enhancement of SOA.

1 Introduction

Organic aerosol (OA) is a major component of fine partic-
ulate matter (PM2.5) in urban areas throughout the world
(Zhang et al., 2007). PM2.5 influences human health (Lim
et al., 2012), climate (Intergovernmental Panel on Climate
Change, 2014), and visibility (Hyslop, 2009), so understand-
ing OA composition is an important step in mitigating the ad-
verse effects of PM2.5. Secondary organic aerosol (SOA) is

often the dominant component of OA (Jimenez et al., 2009)
and is formed when gas-phase volatile organic compounds
(VOCs) react with atmospheric oxidants to form products
that condense into the aerosol phase, where they can undergo
further reaction. SOA is formed via thousands of atmospheric
reactions (Goldstein and Galbally, 2007), so understanding
its sources remains a challenge.

Volatile chemical products (VCPs) are an important source
of organic emissions that lead to SOA formation (McDonald
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et al., 2018; Qin et al., 2021). As vehicle exhaust becomes
cleaner and mobile source emissions decline, the relative im-
portance of VCP emissions increases (Khare and Gentner,
2018). Previous work suggests that during the 2010 Califor-
nia Research at the Nexus of Air Quality and Climate Change
(CalNex) campaign in southern California (Ryerson et al.,
2013), VCPs contributed approximately 1.1 µg m−3, or 41 %,
of observed SOA above background levels in the Los Ange-
les Basin (Qin et al., 2021).

Modeling the formation of SOA in three-dimensional (3D)
chemical transport models (CTMs) is challenging due to the
complexity of VOC chemistry and computational constraints
of regional-scale modeling. Models have tended to under-
predict SOA mass in urban locations for a variety of rea-
sons. For one, the SOA formation potential of intermediate-
volatility organic compounds (IVOCs) and semivolatile or-
ganic compounds (SVOCs) – or S/IVOCs – is not well con-
strained. Observations made during the CalNex campaign
demonstrate that S/IVOCs are important sources of SOA,
making up 10 % of total gas-phase organic compound con-
centrations (Zhao et al., 2014) while contributing up to 80 %
of above-background SOA mass (Hayes et al., 2015). Al-
though it is often impossible to identify all individual species
contributing to ambient S/IVOCs, these compounds may be
classified based on their properties (e.g., volatility). Volatility
basis set (VBS) models (Donahue et al., 2011) are often used
to represent S/IVOC chemistry and partitioning and have im-
proved model estimates of SOA (Woody et al., 2016; Hayes
et al., 2015; Robinson et al., 2007). Murphy et al. (2017) in-
tegrated a VBS model into the Community Multiscale Air
Quality (CMAQ) model version 5.2 to represent the multi-
generational aging of semivolatile primary organic aerosol
(POA) leading to the production of SOA. Other studies have
parameterized VBS models to represent S/IVOCs from mo-
bile emissions (Lu et al., 2020; Jathar et al., 2017), but none
have parameterized SOA formation from VCP S/IVOC emis-
sions. Additionally, the emissions of S/IVOCs are not well
constrained and are often not included in detailed emissions
inventories (Zhao et al., 2015). However even when S/IVOCs
are included in emissions inventories, they are often assigned
to nonreactive or nonvolatile model surrogates that do not
participate in model chemistry (Shah et al., 2020b). Improv-
ing the representation of SOA chemistry in CMAQ will allow
for more accurate exposure estimates in health studies and
source apportionment for air quality management decisions.

Another source of error in CTMs is the lack of represen-
tation of oxygenated SOA precursors. Historically, mecha-
nism development has focused on the oxidation chemistry of
species emitted primarily from vehicles (e.g., BTEX – ben-
zene, toluene, ethylbenzene, and xylene) or biogenic sources
(e.g., isoprene, monoterpenes). While VCPs do emit some of
these species, they also emit many oxygenated compounds
(Seltzer et al., 2021; McDonald et al., 2018). The implica-
tions of a few important oxygenated precursors for air qual-
ity have recently been quantified (e.g., Janechek et al., 2017;

Charan et al., 2020; Li and Cocker, 2018; Li et al., 2018),
but many oxygenated precursors have not been studied in a
laboratory setting. For the few oxygenated VCPs that have
been studied in laboratory chambers, SOA yields were re-
ported under unrealistic atmospheric conditions, e.g., high
OH and aerosol seed concentrations (Charan et al., 2021). So,
the SOA yields of these compounds have primarily been esti-
mated using models such as the Statistical Oxidation Model
(SOM; Cappa and Wilson, 2012) or VBS (McDonald et al.,
2018; Shah et al., 2020a). These oxygenated species are not
included as SOA precursors in most models, and their chem-
istry is needed to improve predictions of SOA mass.

In this work, we introduce a chemical mechanism to rep-
resent SOA formation from VCPs. Specifically, the poten-
tial of both oxygenated and nonoxygenated IVOCs to form
SOA is developed and evaluated. We utilize a new VCP
emissions inventory known as VCPy (Seltzer et al., 2021)
to represent organic emissions from VCPs and to parame-
terize model species behavior in the chemical mechanism.
The chemistry and emissions inventory are implemented in
the CMAQ model version 5.3.2 to simulate air quality dur-
ing the CalNex campaign in California in 2010. The model
predictions are compared to measurements made in Pasadena
during CalNex, and the speciation of predicted SOA is exam-
ined.

2 Methods

2.1 VCPy emissions inventory implementation

VCPy is a modeling framework that estimates reactive or-
ganic carbon emissions from VCPs (Seltzer et al., 2021).
Within this framework, the complete VCP sector is disaggre-
gated into several product use categories (PUCs; e.g., clean-
ing products, personal care products, adhesives and sealants,
paints and coatings). US nationwide usage of each PUC is
estimated, and survey data are then used to quantify the mass
fraction of organic, inorganic, and water proportions, as well
as to speciate the organic fraction. Physiochemical proper-
ties of each organic component are used to estimate the char-
acteristic evaporation timescale, which is then compared to
an assigned use timescale to determine whether a compound
is retained or evaporated from each PUC. In the initial im-
plementation of VCPy (version 1.0), which is representative
of 2016 conditions, the predicted nationwide and Los Ange-
les County VCP emission rates were 9.5 and 8.2 kg per per-
son per year, respectively. These emission rates are consistent
with the low end of values seen in a previous study that used
a top-down approach to estimate VCP emissions (Qin et al.,
2021). In our work, product use is based on data from 2010
with composition specified using data from the early 2000s
to overlap with the CalNex campaign.

Since the speciation of organic emissions from VCPy is
explicit, the underlying chemical and physical properties of
emissions are output from the framework. These properties,
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many of which are relevant to atmospheric oxidation and
subsequent SOA formation, include the oxidation rate with
the hydroxyl radical (kOH), molecular weight (MW), effec-
tive saturation concentration (C∗), and oxygen-to-carbon ra-
tio (O : C). SOA mass yields, which are defined as the mass
of SOA formed per mass of VOC precursor reacted, were as-
signed based on compound-specific structure and volatility
(Seltzer et al., 2021).

A key step in implementing this inventory into CMAQ
is ensuring that all compounds predicted to be emitted
by VCPy are mapped to either an existing or a new
model surrogate. Emissions of low-volatility organic vapors
(C∗<106.5 µg m−3) from all sources are prime SOA precur-
sors but traditionally discarded from the gas-phase chem-
ical mechanism used in many CTMs (e.g., represented as
nonvolatile (NVOL), nonreactive (NROG), or unspecified
IVOC species that are not used in the chemical mechanism
of CMAQ). As a result, these species do not participate in at-
mospheric chemistry and thus do not impact radical concen-
trations or SOA mass. In addition, oxygenated compounds
are not currently included as SOA precursors in many mech-
anisms because of the historic focus on SOA formation from
nonoxygenated vehicle exhaust and traditional VOCs like
single-ring aromatics and biogenic hydrocarbons. The work
of Qin et al. (2021) specifically identifies this loss of emit-
ted reactive carbon mass as a reason for underestimated SOA
from the personal care sector in the CMAQ model. To ac-
count for the SOA potential of this previously neglected
organic mass, all compounds currently mapped to NROG,
NVOL, and IVOC are reviewed, with most of this mass
routed to one of three newly added categories of model sur-
rogates: siloxanes (SILOX), oxygenated IVOCs (SOAOXY),
or nonoxygenated IVOCs (IVOCP3, IVOCP4, IVOCP5,
IVOCP6, IVOCP5ARO, and IVOCP6ARO). The updated
mechanism (with SOA pathways described in Sect. 2.2) with
the newly implemented speciation mapping is henceforth de-
scribed as SAPRC07TIC_AE7I_VCP, and the complete list
of assignment rules is provided in the Methods section of
the Supplement.

County-level VCPy emissions (Seltzer et al., 2021) were
gridded at a 4 km scale to fit the CalNex domain (Baker et al.,
2015) using a variety of spatial surrogates. The spatial surro-
gates used depend on the category of VCP emissions being
described: agricultural land is used as a proxy for all agricul-
tural pesticide emissions, the density of oil and gas wells for
the oil and gas solvent emissions, and population for all re-
maining VCP sources. While some categories of VCP emis-
sions could feature more refined spatial surrogate proxies, the
uncertainty associated with spatial allocation of sources may
be lower than uncertainty in individual source strength. More
specifically, if an entire VCP category could be matched to a
single surrogate, allocation methods would still assume there
is no variation in the strength of individuals within the popu-
lation of that surrogate (Li et al., 2021).

All VCP emissions feature a sinusoidal diurnal profile
with a peak at noon, with no application of day-of-week or
seasonal profiles. Since the simulation period used in this
study is a single month, no seasonal changes would be ob-
servable over this time frame, and previous work suggests
little seasonal variability in VCP emissions (Gkatzelis et al.,
2021). Other emission sectors (e.g., mobile sources, agricul-
ture) are adjusted for seasonal impacts based on meteorolog-
ical conditions and known activity data.

2.2 Parameterizing SOA formation from VCPs

To better represent the atmospheric chemistry of VCPs, SOA
formation is added for the three new categories of emis-
sions (siloxanes, oxygenated IVOCs, and nonoxygenated
IVOCs) in the SAPRC07TIC_AE7I_VCP chemical mecha-
nism within CMAQ (Table 1).

Cyclic volatile methylsiloxanes (cVMSs), or siloxanes for
short, are present in many personal care products, adhesives,
and sealants. Collectively, siloxanes represent a large frac-
tion of VCP emissions (Seltzer et al., 2021). Decamethylcy-
clopentasiloxane (D5 siloxane) is the most prevalent silox-
ane in urban atmospheres (Wang et al., 2013), and laboratory
studies have found D5-siloxane SOA yields ranging from 0 %
(Charan et al., 2021) to 50 % (Janechek et al., 2019). The ex-
plicit oxidation mechanism is unknown, and the SOA yields
of other siloxanes are not well understood (Coggon et al.,
2018). Here, siloxanes are treated separately from other oxy-
genated VCP species due to their anomalously low OH oxi-
dation rate (Table 1). The mechanism of SOA formation used
here utilizes an existing two-product model from Janechek et
al. (2019) that was parameterized using oxidation flow re-
actor (OFR) experiments and photooxidation chamber data
from Wu and Johnston (2017). In this implementation, the
OH oxidation rate constant for D5 siloxane matches the rate
reported in Janechek et al. (2017), and the hydroxyl radical
is replenished after reaction.

Few laboratory chamber studies have investigated the ox-
idation processes of other oxygenated gas-phase species
(e.g., Charan et al., 2020; Li and Cocker, 2018), so few exper-
imental data exist about the SOA yields or oxidation products
of oxygenated SOA precursors. Additionally, many models
that predict the products of oxidation reactions (e.g., SOM
and VBS) have not been parameterized or evaluated using
oxygenated precursors. Without these models and laboratory
studies, little is known about the oxidation products of these
precursors, which limits our ability to develop a detailed
model of their SOA formation. Therefore, all non-siloxane
oxygenated IVOC emissions are represented by a single sur-
rogate (SOAOXY) that undergoes a one-step gas-phase reac-
tion with the hydroxyl radical to form a nonvolatile aerosol
surrogate (AOIVOC). This simple mechanism reduces the re-
liance on many parameters that are not well constrained. The
MW, kOH, C∗, and SOA yield of this surrogate are calculated
as a mass-weighted average of the oxygenated IVOC emis-
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Table 1. Properties of the VCP surrogates added to CMAQ version 5.3.2.

MW kOH× 1011 αi C∗ SOA mass yield Hvap κorg H OM/OC
(g mol−1) (cm3 molec.−1 s−1) (µg m−3) (at 10 µg m−3) (kJ mol−1) (M atm−1)

SILOX 368.66a 0.155b – – – – – 3.87× 102 f –
SVSILOX1, ASILOX1J 416.66a – 0.14c 0.95c 0.13 131d 0.09e 2.97× 106 f 3.49e

SVSILOX2, ASILOX2J 384.66a – 0.82c 484c 0.017 101d 0.05e 7.99× 104 f 3.22e

SOAOXYg 170.95 2.54 – – – – – 2.85× 103 f –
AOIVOCJg 186.95 – – – 0.0628 – 0.09e – 1.73e

IVOCP3h 296.6 2.65 h 103 0.43 52 – 2× 108 –
IVOCP4h 254.9 2.25 h 104 0.43 41 – 2× 108 –
IVOCP5h 219.4 1.89 h 105 0.35 30 – 2× 108 –
IVOCP6h 184.4 1.55 h 106 0.15 19 – 2× 108 –
IVOCP5AROh 197.3 7.56 h 105 0.36 30 – 2× 108 –
IVOCP6AROh 162.3 3.05 h 106 0.25 19 – 2× 108 –

a The gas-phase siloxane (SILOX) MW is the average of the MW of all VCPy siloxane and silane species weighted by Los Angeles County emission rates. The MW of the higher-volatility siloxane
products (SVSILOX2, ASILOX2J) is approximated as the sum of the MW of SILOX and one oxygen. The MW of the lower-volatility products (SVSILOX1, ASILOX1J) has an additional two oxygens
to represent its significant decrease in volatility. b The gas-phase siloxane (SILOX) kOH is given in Janechek et al. (2017). c The stoichiometric product yields (αi ) and C∗ of the siloxanes are given in
Janechek et al. (2019). d Enthalpy of vaporization (Hvap) values for the siloxanes are estimated according to the method in Epstein et al. (2010). e All OM/OC ratios and hygroscopicity parameters
(κorg) are estimated using Eqs. (5) and (12), respectively, in Pye et al. (2017). f Henry’s law constants (H ) at 298.15 K are estimated using the surrogate-based method in Hodzic et al. (2014). g The
MW, kOH, C∗, and SOA yield of SOAOXY (gas) and AOIVOCJ (aerosol) are calculated as a mass-weighted average of the oxygenated IVOC emissions from VCPs in Los Angeles County. Because
AOIVOC is formed via a single reaction with a constant SOA yield, it is treated as nonvolatile and therefore is not assigned a C∗ or Hvap value. h All nonoxygenated IVOC surrogate properties –
including four stoichiometric product yields (αi ) for each surrogate used in the multigenerational scheme – are described in Lu et al. (2020).

sions from VCPs in Los Angeles County, which are generally
consistent with what would be calculated using nationwide
information.

Nonoxygenated IVOC emissions are represented using the
model described by Lu et al. (2020), which uses a VBS
model and multigenerational aging scheme to represent the
SOA from gasoline, diesel, and aircraft sources. Six surro-
gates are differentiated by structure (alkane vs. aromatic)
and effective saturation concentration, and each is assigned a
four-product yield distribution, generating SVOCs after one
oxidation step. Many of the nonoxygenated IVOC species
from mobile and VCP emission sources have similar struc-
tures (i.e., long and branched alkanes and aromatics), volatil-
ities, and SOA yields (see Fig. S1 in the Supplement), mak-
ing the Lu et al. (2020) model a good representation of oxida-
tion and SOA formation from nonoxygenated VCP IVOCs.

2.3 CMAQ model implementation

2.3.1 CalNex model configuration

The updated chemical mechanism and VCPy-derived emis-
sions were implemented in CMAQ version 5.3.2 (U.S. EPA,
2020). CMAQ version 5.3 and the subsequent minor releases
are documented in Appel et al. (2021). The model was used
to simulate air quality during the CalNex campaign from
15 May to 15 June 2010, with an additional 14 d spin-up
period. Outside the VCP updates, the model configuration
matches the implementation used in Qin et al. (2021) and Lu
et al. (2020). The model domain has 4 km × 4 km horizon-
tal resolution (325× 225 grid cells) covering California and
Nevada with 36 vertical levels reaching 50 mbar. Meteoro-
logical inputs are derived from the Weather Research and
Forecasting (WRF) Advanced Research WRF core model
version 3.8.1 (Skamarock et al., 2008). Gas-phase chemistry

is represented using SAPRC07TIC (Pye et al., 2013; Xie et
al., 2013) with the addition of the VCP chemical mechanism
summarized in Table 1. Aerosol-phase chemistry is simu-
lated using an extended version of the AERO7 mechanism,
depicted in Fig. 1, which includes all AERO7 reactions plus
those of the new VCP mechanism (boxed in red) and mo-
bile IVOCs (boxed in red in the lower left) that participate
in the multigenerational aging shown in the orange boxes
(Lu et al., 2020). This diagram also includes a representa-
tion of the aqueous-phase cloud chemistry and removal used
in the Asymmetric Convection Model (ACM) version 2 mod-
ule (Binkowski and Roselle, 2003), which has been updated
to include wet deposition properties for the new aerosol sur-
rogates (Table 1).

All non-VCP anthropogenic emissions are based on the
2011 National Emissions Inventory (NEI) version 2 (U.S.
EPA, 2015). VCP emissions in the NEI are removed and
replaced with VCPy-predicted emissions using the Detailed
Emissions Scaling, Isolation, and Diagnostic (DESID) mod-
ule (Murphy et al., 2021). Mobile NOx emissions were re-
duced by 25 % in all simulations to better match observa-
tional data from the CalNex campaign (Qin et al., 2021). Mo-
bile IVOC emissions and the semivolatile treatment of mo-
bile POA were treated according to the methods described in
Lu et al. (2020). The IVOCs are assigned to the appropriate
IVOCP3, IVOCP4, IVOCP5, IVOCP6, IVOCP5ARO, and
IVOCP6ARO surrogates that are also used to treat nonoxy-
genated IVOCs from VCPs. Wind-blown dust emissions are
neglected in this study. Biogenic emissions are calculated on-
line using the Biogenic Emission Inventory System (BEIS)
version 3.6.1 (Bash et al., 2016) as are sea spray aerosol
emissions.
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Figure 1. Treatment of OA chemistry in the CMAQv5.3.2+VCP model. The thick black box surrounds all aerosol-phase species. All
smaller black boxes depict species undergoing gas-phase oxidation from VOCs to semivolatile or nonvolatile SOA species. Orange font
depicts the VBS model for S/IVOCs. Red font depicts particle-phase accretion reactions, and purple font depicts particle-phase hydrolysis
reactions. Green font represents heterogeneous processes. Blue font shows cloud-processed aerosol, and yellow font shows aerosol water
associated with the organic phase. Gray boxes are nonvolatile primary organic aerosol (POA) species. Double-headed arrows represent
reversible processes, and single-headed arrows represent irreversible processes. Dashed lines represent processes that are dependent on
relative humidity. The diagram includes the AERO7 mechanism plus the three VCP-forming pathways specific to this work (thick boxes in
red). See U.S. EPA (2016) for species descriptions.

2.3.2 Simulation cases

Three simulations were evaluated against the observations
collected during the CalNex campaign. A “zero VCP” case
removes all VCP emissions. The “CMAQv5.3.2” case is a
standard CMAQ simulation with base emissions (i.e., VCP
emissions from the NEI) and base chemistry (i.e., no
new VCP chemistry). Finally, the “CMAQv5.3.2+VCP”
case both adds the VCP chemistry described above
(i.e., SAPRC07TIC_AE7I_VCP) and replaces all NEI VCP
emissions with VCPy-derived VCP emissions. Comparisons
between the zero VCP case and the CMAQv5.3.2+VCP
case illustrate the complete impact of VCPy emissions
on modeled SOA. In contrast, comparisons between the
CMAQv5.3.2 case and the CMAQv5.3.2+VCP case illus-
trate the impact of the new representation of VCP emissions
and chemistry against the current status of VCPs in CMAQ.
Results from the CMAQv5.3.2 case are presented primarily
in the Supplement.

2.3.3 Comparison with observations

Observational data are provided by a suite of instruments de-
ployed during the 2010 CalNex campaign in Pasadena. There
were two data collection sites in the CalNex campaign –
Pasadena and Bakersfield – and model predictions are com-
pared to measurements made at the Pasadena site, which
is located in the Los Angeles Basin approximately 18 km
downwind of the urban core (Ryerson et al., 2013). PM1 (fine
particulate matter with diameter <1 µm) OA data were ob-
tained with an aerosol mass spectrometer (AMS) and have
been analyzed via positive matrix factorization (PMF) to de-
termine their composition (Hayes et al., 2013). Formalde-
hyde (HCHO) data are provided in Warneke et al. (2011)
and carbon monoxide (CO) data are available from Santoni et
al. (2014). Ozone data throughout California were obtained
from the EPA AQS monitoring network for 178 sites oper-
ating during the simulation period (U.S. EPA, 2013). Hourly
ozone concentrations were used to calculate daily maximum
8 h average (MDA8) ozone concentrations.
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Figure 2. Percentage of the VCP emissions assigned to each cat-
egory of CMAQ surrogates using the SAPRC07TIC_AE7I_VCP
speciation profiles. The total rate of VCP emissions in Los Angeles
County is 8.3× 107 kg yr−1. The outer ring depicts the percentage
of total VCPy-derived emissions assigned to each of the three new
VCP categories (siloxanes in red, oxygenated IVOCs in blue, and
nonoxygenated IVOCs in orange), the traditional SOA precursors
described by existing model surrogates (purple), and existing surro-
gates that do not form SOA (green). The inner ring gives an indica-
tion of the original assignments of each of the outer ring categories.
Hatching indicates emissions originally assigned to model surro-
gates that do not participate in model chemistry: IVOC, NVOL, and
NROG. Solid colors represent other surrogate assignments.

3 Results and discussion

3.1 VCP emissions and implications for SOA

VCP emissions were split almost equally be-
tween species that do and do not form SOA. The
SAPRC07TIC_AE7I_VCP speciation mapping (Fig. 2)
indicates 56.4 % (4.8× 107 kg yr−1) of Los Angeles County
VCP emitted mass does not form SOA. This mass includes
small species commonly used as solvents, such as ethanol,
acetone, and small alkanes. The remaining 43.6 % (3.7 ×
107 kg yr−1) of Los Angeles County emissions are assigned
to model surrogates that form SOA. Of the total emissions,
3.5 % are assigned to siloxanes; 7.8 % to oxygenated IVOCs;
11.8 % to nonoxygenated IVOCs; and 20.4 % to traditional
SOA precursors, such as VOC alkanes, toluene, and other
aromatics. The volatility and SOA yields of species in each
category are summarized in Fig. S1.

Figure 2 indicates that in traditional model processing,
precursors to SOA are systematically discarded from chem-
istry calculations. As described in Sect. 2.1, low-volatility
emissions (i.e., NROG, NVOL, and IVOC) do not par-
ticipate in SOA or radical chemistry in the traditional
SAPRC07TIC_AE7I mechanism, which is a key issue in rep-
resenting SOA mass. The inner ring of Fig. 2 depicts the
fraction of each category that was originally assigned to in-
active species (NROG, NVOL, and IVOC; hatched) versus
other existing surrogates (solid). Of the total VCP emissions,
2.6× 107 kg yr−1 (30.7 %) was originally assigned to these
surrogates and did not participate in any atmospheric chem-

istry processes. Using the new speciation and mechanism,
1.8× 107 kg yr−1 (21.2 % of total VCP emissions) was reas-
signed to surrogates that form SOA in the model (hatched
inner ring – red, blue, orange, and purple). The remaining
8.0× 106 kg yr−1 (9.4 % of total VCP emissions, inner ring
hatched green) is comprised of species with SOA yields of
zero and was not reassigned to SOA-forming surrogates.

Averaged over the duration of the CalNex campaign,
VCPs are predicted to be a larger source of IVOCs than mo-
bile sources, as shown by the increase in gas-phase IVOC
mass in the CMAQv5.3.2+VCP case compared to the zero
VCP case (Fig. S2). Across mobile and VCP sources during
CalNex, CMAQ predicts 6.4 µg m−3 of the gas-phase IVOC
mass is nonoxygenated and 2.6 µg m−3 of the IVOC mass
is oxygenated (Fig. S2). The observed campaign-average
total IVOC concentration was 10.5 µg m−3 (Zhao et al.,
2014), with 6.3 µg m−3 attributed to hydrocarbon-like IVOCs
and 4.2 µg m−3 attributed to oxygenated IVOCs. However,
this observed estimate of oxygenated IVOCs is conservative
(lower bound) based on the experimental method employed
by Zhao et al. (2014). Thus, the predicted nonoxygenated
IVOC mass, which includes contributions from both mobile
and VCP sources, reproduces observations with high fidelity.
CMAQ, which only considers IVOCs from VCP and mo-
bile sectors, underpredicts the mass of oxygenated IVOCs by
38 %, suggesting additional missing products of oxidation or
emissions.

The new SOA systems combined with traditional SOA
precursors in CMAQ resulted in an effective SOA yield for
the VCP sector – defined as the emission-weighted average
of the individual species’ mass-based SOA yields – of 5.6 %
for Los Angeles County. This Los Angeles County yield is
in good agreement with the work of Qin et al. (2021), which
found that a 5 % yield led to SOA predictions that were con-
sistent with ambient observational constraints. The US effec-
tive VCP SOA yield (5.3 %) is only slightly lower than the
yield expected for Los Angeles, due to differences stemming
from the variability in the composition of VCP emissions na-
tionwide versus in Los Angeles.

3.2 CMAQ results – SOA, ozone, and formaldehyde

Modeled PM1 SOA increased considerably in response to
the newly implemented VCP emissions and chemistry, bring-
ing model predictions into closer agreement with observa-
tions. Daily maximum PM1 SOA concentrations increased
from 1.4 µg m−3 (−79 % mean bias) in the zero VCP case
to 2.8 µg m−3 (−58 % mean bias) in the CMAQv5.3.2+VCP
case, compared to the observed peak value of 6.6 µg m−3

(Fig. 3a). The diurnal distributions resulted from photo-
chemistry and the sinusoidal distribution of VCP emis-
sions that peak at 12:00 LT. Modeled PM1 SOA concentra-
tions improved for all mass loadings and all hours of the
day, with the slope of modeled-versus-observed concentra-
tions increasing from 0.23 in the zero VCP case to 0.43
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in the CMAQv5.3.2+VCP case (Fig. 4a). Results for the
CMAQv5.3.2 case are given in Figs. S3 and S4. Modeled
PM2.5 SOA displayed similar behavior to PM1 SOA; i.e., the
organic fraction and secondary organic fraction of PM2.5
were only marginally smaller than the corresponding frac-
tions of PM1 and followed the same diurnal pattern.

The difference between hourly averaged total (i.e., not
size-resolved) SOA concentrations in the zero VCP and
CMAQv5.3.2+VCP cases is shown in Fig. 3b, and the con-
tributions to that difference from categories of SOA surro-
gates are shown in Fig. 3c. Of the three new categories of
VCP emissions, nonoxygenated IVOC precursors formed the
most SOA in CMAQ. The increased SOA from the nonoxy-
genated IVOC VCP precursors reached a peak concentration
of 1.14 µg m−3, equal to 69 % of the total noontime differ-
ence. This can be explained by the high SOA yields of the
individual species (Fig. S1) and the model surrogates.

SOA from oxygenated IVOC VCP precursors reached a
peak concentration of 0.11 µg m−3 (6.7 % of the SOA dif-
ference). While oxygenated IVOC emissions were similar
in abundance to nonoxygenated IVOC emissions (Fig. 2),
these species lead to less SOA formation due to their lower
SOA yields (Fig. S1); higher degrees of oxygenation tend to
promote fragmentation upon reaction with OH (Jimenez et
al., 2009), producing smaller molecules with higher volatil-
ities and lower potential to form SOA. It is possible that the
net yield of modeled SOA from oxygenated IVOC precur-
sors will increase as the results from more laboratory studies
become available or if a more detailed model is used. For
example, particle-phase oligomerization reactions from oxy-
genated IVOC precursors would produce nonvolatile aerosol
products, but this chemistry has not yet been investigated in
an atmospheric chamber.

Siloxanes formed very little SOA, reaching a maximum of
21 ng m−3 (1.3 % of the SOA difference) at noon. Despite
having nonnegligible SOA yields (Fig. S1) and emission
rates (Fig. 2), siloxanes react with OH on long timescales
(Table 1). As such, this results in low localized SOA mass,
which is consistent with other modeling and laboratory stud-
ies that have predicted siloxanes to form SOA on the order
of ng m−3 or less (Charan et al., 2021; Milani et al., 2021;
Janechek et al., 2017). The low resultant SOA mass demon-
strates that while gas-phase siloxanes serve as a useful tracer
for personal care product and adhesive emissions from VCPs
(Gkatzelis et al., 2021), particle-phase products from silox-
ane oxidation may not form quickly enough to serve as a
reliable tracer for these emissions.

While traditional species accounted for the greatest frac-
tion of VCP SOA precursor emissions that lead to SOA for-
mation (Fig. 2), they contributed only 23 % (0.39 µg m−3)
of the increased noontime SOA in the CMAQv5.3.2+VCP
case. These traditional SOA precursors form SOA less effi-
ciently than the IVOC surrogates (Fig. S1), so they result in
less SOA formation than IVOCs despite higher emissions.

While this work indicates oxygenated IVOCs form much
less SOA than nonoxygenated IVOCs, more work is needed
to determine if this result is robust across all emission sec-
tors and in future conditions. Oxygenated IVOCs represent a
class of emissions that has traditionally been discarded from
regional models but has become an important research fo-
cus with the rising importance of VCP emissions (Khare and
Gentner, 2018). The contribution of oxygenated IVOCs and
siloxanes to ambient conditions may be spatially variable and
continue to evolve as product formulations shift towards ex-
empt VOCs that tend to be oxygenated. Oxygenated IVOCs
from other emission sources, such as meat cooking or wood
burning, could be abundant but were not considered here.
Additionally, we do not know if SOA from these precur-
sors has a health impact higher or lower than that of aver-
age PM2.5.

The SOA from VCP IVOCs reached a daily maximum of
1.25 µg m−3 on average at noon (Fig. 3c). IVOCs from mo-
bile sources contributed an additional 1.1 µg m−3 at noon (Lu
et al., 2020). Therefore this updated CMAQ model predicted
a total IVOC-derived SOA concentration of 2.35 µg m−3,
equivalent to 35 % of the total observed above-background
PM1 SOA concentration (6.6 µg m−3). Previous work stated
that 40 %–85 % of above-background SOA concentrations in
Pasadena are attributable to S/IVOCs (Hayes et al., 2015),
suggesting that additional processes are still needed in the
model. This will be discussed further in Sect. 3.3.

Formaldehyde is one of the most abundant VOCs in the
atmosphere, and observations of this compound can serve
many purposes. Biomass burning, vehicles, and other urban
sources emit formaldehyde, and because of its short lifetime
(∼ hours), it can serve as a proxy for local organic emissions.
It is also formed in the atmosphere when VOCs undergo radi-
cal reactions, oxidize, and fragment, so it serves as an indica-
tor for SOA chemistry since it is formed by many of the same
reactions that also lead to SOA formation (Seinfeld and Pan-
dis, 2016). In addition, it is depleted by photolysis and is an
important source of radical initiation reactions (Griffith et al.,
2016). Formaldehyde can be retrieved directly by satellites
(Levelt et al., 2018), which can be used to validate ground
data, evaluate model predictions, and predict OA concentra-
tions remotely (Liao et al., 2019). For all of these reasons,
formaldehyde is a useful indicator of VOC chemistry in a
model.

Predicted formaldehyde concentrations improved in re-
sponse to the new VCP emissions and chemistry, indicating
that model updates improve the representation of VOC chem-
istry beyond SOA in the model. Similarly to predicted SOA,
formaldehyde concentrations increased at all times, with the
ratio of modeled-to-observed values increasing from 0.58 in
the zero VCP case to 0.75 in the CMAQv5.3.2+VCP case
(Fig. 4b). The diurnal profile of hourly averaged formalde-
hyde concentrations is given in Fig. S3. This work focused
primarily on improving the representation of SOA from
VCPs, so radical chemistry for the new SOA precursors
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Figure 3. (a) Average hourly concentrations of background-corrected PM1 SOA observed and simulated by the zero VCP and
CMAQv5.3.2+VCP modeling cases 15 May–15 June. Boxes and whiskers show all hourly concentrations observed by the AMS at the
CalNex site. A constant background value was removed from all observed concentrations according to the method in Hayes et al. (2015).
The background value of each simulation was determined by averaging the lower 50 % of hourly concentrations from 00:00 to 04:00 LT and
subtracting that from each curve. (b) Average hourly concentration of total (not size-resolved) SOA for the two simulation cases and their
difference (CMAQv5.3.2+VCP – zero VCP). (c) Difference in hourly concentrations of total SOA by category.

Figure 4. Modeled concentrations predicted by CMAQ zero VCP case (green) and CMAQv5.3.2+VCP case (blue) vs. observations from the
CalNex Pasadena ground site. The line with a slope of 1 is indicated with a dashed gray line. (a) Hourly PM1 SOA. (b) Hourly formaldehyde
(HCHO). (c) MDA8 O3. Background values were not removed from any panels.

was treated using existing alkane-like behavior (surrogates
ALK1, ALK2, ALK3, ALK4, ALK5). With a more detailed
representation of VCP radical chemistry, predicted formalde-
hyde concentrations may improve further.

The bias in predicted ozone concentrations was also re-
duced by including VCP chemistry. The ratio of modeled-to-
observed concentrations increased from 0.72 in the zero VCP
case to 0.95 in the CMAQv5.3.2+VCP case (Fig. 4c). Im-
proved ozone is also seen for all operational AQS sites in the
California modeling domain, with the modeled-to-observed
ratio increasing from 0.63 in the zero VCP case to 0.70 in
the CMAQv5.3.2+VCP case (Fig. S5). The diurnal profile
of hourly averaged ozone concentrations is given in Fig. S3.
This study focused on VCP behavior in relation to SOA for-
mation and used existing model species to capture ozone
formation. Future work focusing on the ozone chemistry of
VCPs could change the magnitude and diurnal profile of pre-
dicted ozone.

SOA can be facilitated by increases in oxidant abundance
and chemical pathways from precursors to semivolatile
or low-volatility products. Average noontime total SOA

mass increased from 1.96 µg m−3 in the zero VCP case
to 3.62 µg m−3 in the CMAQv5.3.2+VCP case (Fig. 3b),
an increase of 84.7 %. Ozone concentration can be used
as an indicator of oxidant burdens and oxidation rates al-
though OH concentrations may not scale linearly (Qin et
al., 2021). The average noontime ozone concentration in-
creased from 43.0 ppb in the zero VCP case to 49.2 ppb in the
CMAQv5.3.2+VCP case (Fig. S3c), an increase of 14.4 %.
Assuming ozone can serve as a proxy for oxidation rates,
the improved ozone concentration suggests that ∼ 14.4 % of
increased model SOA concentrations are due to an increase
in the oxidant burden and oxidation rates. The SOA mass in-
creased by a larger percentage (84.7 %), indicating emissions
and chemistry updates combined were approximately 5 times
[(84.7%−14.4%)/14.4%] more effective than enhanced ox-
idant levels alone in increasing SOA. This is consistent with
the work of Qin et al. (2021), which found that the lack of
key emitted precursors in models – rather than their associ-
ated radical chemistry – had the largest impact on PM2.5 for-
mation. Additionally, we note that the default CMAQ model
(CMAQv5.3.2) with baseline chemistry and VCP emissions
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predicted about the same amount of SOA as the zero VCP
case (Fig. S3a). In contrast, ozone increased in the default
CMAQv5.3.2 model with VCPs (Fig. S3c). Since the oxidant
burden increased noticeably in the CMAQv5.3.2 case but did
not equate to a large increase in PM1 SOA, results suggest
the oxidant level alone does not have a large influence on en-
hancing SOA if the relevant precursor pathways are not also
implemented.

The response of formaldehyde can similarly be compared
to the change in oxidant burden due to VCPs. At noontime,
average formaldehyde increased from 2.41 ppb in the zero
VCP case to 2.80 ppb in the CMAQv5.3.2+VCP case, an
increase of 16.2 %. As above, we attribute ∼ 14.4 % of the
increase in pollutant concentration to the increase in oxida-
tion rates. While formaldehyde does contribute to the oxidant
burden via photolysis and radical initiation, the contribution
of formaldehyde to the ROx radical budget is likely small and
on the order of 10 % (e.g., Griffith et al., 2016; Kaiser et al.,
2015; Luecken et al., 2018). Thus, the increase in formalde-
hyde concentrations between simulation cases is likely due
primarily to the increase in the oxidation rate. The increase
in formaldehyde between simulation cases, therefore, cannot
be largely attributed to the addition of S/IVOC emissions and
their ability to form formaldehyde as a byproduct of oxida-
tion. This is consistent with the work of Coggon et al. (2021),
which showed that vehicle VOCs perturb formaldehyde to
a larger degree than VCP VOCs do, suggesting that VCP
emissions and fragmentation chemistry may not be directly
responsible for formaldehyde but rather modulate formalde-
hyde formation via changes in oxidant abundance.

3.3 Features of remaining model bias

The residual PM1 SOA bias in Pasadena is well corre-
lated with ambient temperature (Fig. 5a). PM1 SOA bias
is defined as modeled hourly concentrations minus ob-
served hourly concentrations. At cooler temperatures in the
overnight hours, bias is low and fluctuates around zero. How-
ever, as temperature increases towards midday and SOA con-
centrations increase, the bias becomes more negative, indi-
cating greater model underprediction.

SOA concentrations can be a function of temperature
based on precursor emissions and chemistry throughout the
day. Previous work has demonstrated that observed OA in
Los Angeles is positively correlated with temperature, and
declining OA concentrations have been due largely to re-
ductions in temperature-independent OA. Because this corre-
sponds to a decline in anthropogenic emissions, Nussbaumer
and Cohen (2021) suggest that anthropogenically derived
OA is largely temperature-independent while biogenically
derived OA is largely temperature-dependent. Modeled OA
is positively correlated with temperature, consistent with the
observed Los Angeles OA, and is driven by the larger, sec-
ondary portion of OA, rather than POA (Fig. S7). However,
the improvement to predicted SOA between simulation cases

Figure 5. Bias (modeled− observed) of hourly concentrations
vs. modeled temperature for the zero VCP case (green) and
CMAQv5.3.2+VCP case (blue). Hourly concentrations are binned
into five temperature ranges of 5 ◦C each, and the data in each bin
are represented by a box-and-whisker plot. The horizontal midline
depicts the median of the data; the edges of the box extend from the
lower to upper quartile of the data, and the whiskers extend from the
minimum to the maximum of the data. (a) PM1 SOA bias (µg m−3).
(b) PM1 POA bias (µg m−3). (c) Formaldehyde (HCHO) bias (ppb).
(d) CO bias (ppb).

was seen unequally at different temperatures, as indicated by
the larger reduction in absolute model bias at higher tem-
peratures (Fig. 5a). This suggests that the SOA derived from
VCP species has a temperature-dependent response, in ad-
dition to the biogenic emissions cited in Nussbaumer and
Cohen (2021). In particular, because nonoxygenated IVOCs
were the dominant source of increased SOA predicted by
the CMAQv5.3.2+VCP simulation, this work suggests that
S/IVOCs are an important source of temperature-dependent
SOA in Los Angeles.

Because S/IVOCs have been shown to be a major con-
stituent of modeled SOA and contribute to the correlation
between SOA bias and temperature, other sources of S/IVOC
emissions may account for some of the remaining residual
SOA bias in the model. For example, asphalt emissions are
proposed to contribute 8 %–30 % of total S/IVOC emissions
in the South Coast Air Basin in southern California and have
SOA mass yields exceeding 10 % (Khare et al., 2020). Their
potential to form SOA is very large, and because asphalt
emissions are highly temperature-dependent, the SOA in-
crease would be seen largely around midday, resulting in an
improvement in high-temperature SOA bias. In addition, the
underprediction of oxygenated gas-phase IVOCs (Sect. 3.1)
suggests that additional sources of oxygenated IVOC pre-
cursors may be missing from the complete inventory. One
possible explanation of the temperature dependence of the
SOA bias is that modeled SOA volatility is too high. But oxy-
genated SOA is nonvolatile and nonoxygenated IVOC SOA
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is continually processed to lower volatility through gas-phase
OH oxidation.

Formaldehyde, CO, and POA are often used to understand
the atmospheric evolution of SOA because they are prod-
ucts of the same anthropogenic activity and/or VOC oxida-
tion chemistry that forms SOA. As such, they can be used
to better understand the remaining sources of error in the
model. POA is formed via combustion from vehicles, indus-
trial processes, cooking, and biomass burning (Jathar et al.,
2014; Huffman et al., 2009). CO and formaldehyde are emit-
ted from many processes and formed as products of atmo-
spheric VOC oxidation (Seinfeld and Pandis, 2016). These
species are often used to understand the effect of dilution
on SOA (Hayes et al., 2013). Dilution is caused by both
atmospheric transport away from emission sources and the
change in planetary boundary layer (PBL) height over the di-
urnal cycle. VCPs do not emit POA, CO, or formaldehyde, so
any changes observed in their simulated concentrations were
caused by chemical and physical processing in the existing
model.

The POA bias did not express the same temperature de-
pendence as SOA, and thus POA is not affected in the same
way in the model by the processes causing the temperature
dependence of SOA bias. Since VCPs do not emit POA and
all other emission sources were consistent between simula-
tion cases, the slight increase in POA concentrations between
the zero VCP and CMAQv5.3.2+VCP cases (Figs. 5 and S7)
is due to increased partitioning of semivolatile POA into the
particle-phase resulting from higher total OA mass loadings
(the treatment of semivolatile POA in CMAQ is described
in Murphy et al., 2017). The POA bias can be exclusively
attributed to errors in combustion source emissions invento-
ries and meteorological effects. The combustion source in-
ventories also include emissions of gaseous SOA precursors,
which may be incorrectly modeled even if the POA emis-
sions are accurate, especially for cooking and biomass burn-
ing sources. While the POA bias does decrease with increas-
ing temperature, it is positive at all temperatures and does not
have larger underpredictions at higher temperatures (Fig. 5b).
Due to the inconsistency between POA and SOA behavior,
errors influencing the emission and transport of POA can
likely not be used to describe the temperature dependence of
SOA bias. The POA bias also does not provide information
about the error in vapor emissions from combustion sources
– including S/IVOCs – and their temperature dependence,
and improving combustion emissions inventories may help
to close the model–observation gap for SOA.

CO is often used to account for the effects
of dilution by scaling SOA to CO enhancement
(1CO=CO−CObackground). Negligible changes in the
CO concentration were found between simulation cases
considered here (Fig. S3), and the model CO bias is un-
correlated with temperature (Fig. 5d). The consistency of
predicted CO concentration between cases implies that CO
is not affected by the emissions changes to the VCP sector

and thus cannot separate SOA formation efficiency from a
lack of emitted precursors. CO enhancement serves as an
effective indicator and correction factor for mobile source
emissions in urban areas (e.g., Hayes et al., 2013; Ensberg
et al., 2014; Woody et al., 2016), but this work indicates
that CO is not an effective tracer for distinguishing VCPs
from other sources. The lack of correlation between CO and
temperature also implies that errors in the modeled PBL
height at different times of day (and potential impact on the
dilution of pollutant concentrations) are not an important
driver of the SOA bias temperature dependence.

In contrast to POA and CO, the formaldehyde bias demon-
strated the same trend with temperature as SOA (Fig. 5c).
This suggests that formaldehyde is affected by emissions,
chemistry, and dilution changes similarly to SOA. This is
supported by the stronger correlation seen between SOA and
formaldehyde compared to the correlation between SOA and
POA or CO (Fig. S8). Therefore, formaldehyde may provide
more information about the errors in modeling VOC chem-
istry and possibly SOA formation. It is possible that remain-
ing formaldehyde bias is due to missing formaldehyde emis-
sions. The VCP inventory includes near-zero emissions of
formaldehyde, but formaldehyde is emitted from wooden fur-
niture and emission rates increase with temperature (Wang
et al., 2021). This may account for some of the tempera-
ture dependence of formaldehyde bias but likely not the en-
tirety since the VCP emissions inventory has been evalu-
ated with select ambient VOC measurements with low error
(Seltzer et al., 2021). One possible explanation of the tem-
perature dependence of both the SOA and the formaldehyde
biases is missing sources of emissions and resulting chem-
istry. Previous work has shown that formaldehyde formation
is particularly sensitive to the emissions/chemistry of alkenes
(e.g., isoprene) and, to a lesser extent, alkanes and aromat-
ics (Luecken et al., 2018), so these precursors likely indi-
cate missing emissions as a source of error in our model.
While the radical chemistry of these hydrocarbon precursors
is included in the model, additional missing chemistry may
be causing some of the error. Chemical processes that have
not been included in the mechanism include autooxidation
(Crounse et al., 2013) – which forms low-volatility SOA –
and formaldehyde potentially formed from the fragmentation
of S/IVOC precursors into SOA. The inclusion of these miss-
ing emissions and/or chemistry would further impact oxidant
levels, which we have shown to be an important source of
modeled SOA and formaldehyde. As stated above, the behav-
ior of POA and CO bias suggests that errors in combustion
emissions and PBL height cannot fully describe the tempera-
ture dependence of SOA bias, and POA and CO are better
indicators of mobile and industrial sources. Formaldehyde
may instead serve as a better indicator of SOA production
in urban areas where VCPs are important atmospheric con-
stituents. While many factors may contribute to the tempera-
ture dependence of SOA and formaldehyde bias, future work
must investigate the importance of these factors, and track-
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ing the response of formaldehyde to these changes alongside
SOA could provide insight.

4 Conclusions and future work

We have shown that VCPs are a major source of SOA in
urban atmospheres by introducing updated emissions and
VCP-relevant chemistry into CMAQ that better represents
SOA precursors emitted from these sources. This includes
three new categories of emissions: siloxanes, oxygenated
IVOCs, and nonoxygenated IVOCs. VCP emissions from the
VCPy framework (Seltzer et al., 2021) were used to param-
eterize the new chemistry, and the mapping of VCP emitted
species to model surrogates was reviewed and updated based
on species structure, volatility, and estimated SOA yield.

The new model chemistry and emissions inventory dou-
bles the predicted SOA concentrations above background
levels, increasing the average daily maximum PM1 SOA con-
centration by 1.4 µg m−3, equating to a 21 % decrease in
the absolute mean bias. Most of the increased SOA mass
was formed from nonoxygenated IVOC VCP precursors, fol-
lowed by SOA formed from traditional VOC precursors and
oxygenated IVOC precursors, with little SOA formed from
siloxanes. Improvements were additionally seen in simulated
formaldehyde and ozone concentrations.

Future work should consider how VCP emissions have
evolved over time. VCPy version 1.0 requires information
about VCP product composition and usage patterns from
broad sources, including product surveys, economic statis-
tics, and population distributions. These metrics change over
time and will affect both the speciation and emission rates of
organic compounds from VCPs. Diurnal and seasonal pat-
terns of VCP emissions should also be updated to reflect
more recent observations (Gkatzelis et al., 2021).

The remaining error in VCP-derived SOA predictions may
reflect our lack of understanding about the oxidation path-
ways of low-volatility and/or oxygenated species. More in-
formation is needed about the structure, volatility, and reac-
tivity of the products of atmospheric oxidation reactions, plus
the impacts of wall loss and NOx concentrations on SOA
yields from experiments, so that models and parameteriza-
tions like the VBS can be developed. As these data become
available, models can be improved to represent SOA forma-
tion from oxygenated precursors and S/IVOCs emitted from
VCPs. In addition, the correlation between SOA concentra-
tion bias and temperature suggests residual model error is
associated with missing sources of S/IVOC emissions, in-
cluding emissions from asphalt (Khare et al., 2020), com-
bustion sources, or other S/IVOCs that have large potential
to form SOA. The formaldehyde bias demonstrates a similar
relationship to temperature to the SOA bias, implying that in-
vestigations of formaldehyde could provide insight into VOC
chemistry leading to the formation of SOA from VCPs. In-

cluding S/IVOC emissions and their atmospheric chemistry
will be important for future air quality models.
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