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Abstract. In this study, we present the assimilation of data
from the Orbiting Carbon Observatory-2 (OCO-2) (land
nadir and glint data, version 9) to estimate the Australian car-
bon surface fluxes for the year 2015. To perform this estima-
tion, we used both a regional-scale atmospheric transport–
dispersion model and a four-dimensional variational assimi-
lation scheme. Our results suggest that Australia was a car-
bon sink of −0.41± 0.08 PgC yr−1 compared to the prior
estimate 0.09± 0.20 PgC yr−1 (excluding fossil fuel emis-
sions). Most of the carbon uptake occurred in northern Aus-
tralia over the savanna ecotype and in the western region over
areas with sparse vegetation. Analysis of the enhanced veg-
etation index (EVI) suggests that the majority of the carbon
uptake over the savanna ecosystem was due to an increase
of vegetation productivity (positive EVI anomalies) ampli-
fied by an anomalous increase of rainfall in summer. Further
from this, a slight increase of carbon uptake in Western Aus-
tralia over areas with sparse vegetation (the largest ecosystem
in Australia) was noted due to increased land productivity in
the area caused by positive rainfall anomalies. The stronger
carbon uptake estimate in this ecosystem was partially due
to the land surface model (CABLE-BIOS3) underestimating
the gross primary productivity of the ecosystem. To evalu-
ate the accuracy of our carbon flux estimates from OCO-

2 retrievals, we compare our posterior concentration fields
against the column-averaged carbon retrievals from the Total
Carbon Column Observing Network (TCCON) and ground-
based in situ monitoring sites located around our domain.
The validation analysis against TCCON shows that our sys-
tem is able to reduce bias mainly in the summer season. Com-
parison with surface in situ observations was less successful,
particularly over oceanic monitoring sites that are strongly
affected by oceanic fluxes and subject to less freedom by the
inversion. For stations located far from the coast, the com-
parison with in situ data was more variable, suggesting dif-
ficulties matching the column-integrated and surface data by
the inversion, most likely linked to model vertical transport.
Comparison of our fluxes against the OCO-2 model inter-
comparison (MIP) was encouraging. The annual carbon up-
take estimated by our inversion falls within the ensemble of
the OCO-2 MIP global inversions and presents a similar sea-
sonal pattern.
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1 Introduction

Australia’s carbon budget has been investigated by several
large scale global ecosystem models (Sitch et al., 2015, Car-
bon cycle model intercomparison project (TRENDY)) and
by the REgional Carbon Cycle Assessment and Processes
project (RECCAP) (Haverd et al., 2013a). However, although
they have contributed to a more refined knowledge of the
Australian carbon cycle, the estimated fluxes still diverge sig-
nificantly. In the latest RECCAP report (Haverd et al., 2015),
the net biome production (NBP) estimate for the country
was a net carbon source of 59± 35 TgC yr−1 between 1990–
2011. A large component of the uncertainty in this carbon
budget was attributed to the estimate of net primary produc-
tivity (NPP) over grassland (Haverd et al., 2013b), with a
large contribution to the land cover type they used to force
their simulations (e.g. the Advanced Very High Resolution
Radiometer (AVHRR) (1990–2006); Donohue et al., 2009)
and the Moderate Resolution Imaging Spectroradiometer
(MODIS) (2000–2011). Given this uncertainty, it is essen-
tial to bring any other observations we have to bear on the
Australian carbon balance.

Data assimilation (also called atmospheric transport inver-
sion), along with an increase of remotely sensed concentra-
tions of carbon dioxide CO2 data, has been revolutionary for
quantifying land–ocean–atmosphere CO2 flux exchange in
the last decade. Satellite data from the Greenhouse Gases Ob-
serving Satellite (GOSAT) (Yokota et al., 2009), launched in
2009, and the Orbiting Carbon Observatory-2 (OCO-2) (El-
dering et al., 2017), launched in 2014, have been used by sev-
eral studies (Basu et al., 2013; Chevallier et al., 2014; Deng
et al., 2014; Maksyutov et al., 2013; Crowell et al., 2019)
to infer carbon CO2 sources and sinks at continental scales.
Few regional studies have been performed and “none in Aus-
tralia”, while the global inversions show large differences for
this region. For example, a study based on six satellite-based
inversions using GOSAT (Chevallier et al., 2014, Fig. 1)
shows that Australia was a carbon sink (−0.7 PgC yr−1) for
2010. For the same year, Basu et al. (2013) inferred it to be a
net carbon source (0.4 PgC yr−1)1.

The accuracy of flux inversions using global atmospheric
transport models has been the subject of discussion due to
errors related to modelled transport (Chevallier et al., 2014;
Basu et al., 2018). Transport model error in global inversions
often emerges because inversions are run at horizontal reso-
lutions of 1–5◦. Increasing the model resolution (Law et al.,
2004) potentially reduces the representation errors found in
global-scale models. Regional-scale inversions arose about a
decade ago. They rely on mesoscale transport models (run
at 1◦ down to 10 km resolution); for example, Broquet et al.

1In this paper, we adopt the atmospheric convention where a
negative flux indicates removal from the atmosphere (a sink, here-
after quoted with a negative sign), and a positive value indicates an
addition to the atmosphere (source).

(2011) performed a regional-scale variational inversion of the
European biogenic CO2 fluxes at 50 km resolution. Another
example of regional-scale inverse modelling is found in Vil-
lalobos et al. (2020), who performed an inversion at 81 km
resolution over Australia. Finer-resolution models have the
potential to be more successful, since they can offer a better
representation of surface CO2 fluxes and variability, as well
as a better simulation of the processes driving high-frequency
variability of transport (Schuh et al., 2010).

Australia has recently been subject to attention from the
global carbon cycle community due to a large terrestrial car-
bon sink anomaly recorded in 2011 (Poulter et al., 2014).
Poulter et al. (2014) found that Australia’s flux anomaly was
−0.66 for 2011 (relative to the 2003–2012 mean). Trudinger
et al. (2016) also found a similar carbon sink anomaly for this
period (ranging between −0.40 to −0.61 PgC yr−1). These
studies suggest that Australia’s ecosystems might act as
strong sinks of CO2 in the future during extreme wet peri-
ods. However, the efficiency and the spatial distribution of
these carbon sinks remain largely uncertain (Ma et al., 2016).
Some studies, i.e. Ma et al. (2016), found that the anoma-
lous carbon uptake recorded in Australia in 2011 rapidly di-
minished in the following year (∼ 0.08 PgC yr−1), suggest-
ing that semi-arid ecosystem can act as carbon sink in the
short term but not over longer periods compared to tropical
forest ecotypes. An important unanswered question in carbon
cycle research remains regarding the carbon sink strength of
semi-arid ecosystems in non-wet years.

In this study, we present a regional inversion to infer CO2
fluxes over Australia for 2015 based on the Community Mul-
tiscale Air Quality (CMAQ) model and OCO-2 satellite re-
trievals. In 2015, Australia was affected by the El Niño–
Southern Oscillation (ENSO), and although some parts of
the continent were impacted by rainfall deficiency, in other
regions such as northern and southeastern Australia rain-
fall was above average (Annual climate statement, Bureau
of Meteorology, 2015).

This paper is structured into five sections. Section 2 de-
scribes the flux inversions system and the datasets used. Sec-
tion 3 presents the main results of the Australian carbon bud-
get, as well as an analysis of the enhanced vegetation index
(EVI) and rainfall anomalies, and a comparison between our
posterior CO2 concentration and the Total Carbon Column
Observing Network (TCCON) and in situ measurements. In
Sect. 4, we present a discussion of our results, as well as
a comparison of our optimized fluxes against the ensemble
mean of nine different global inversions that participate in the
OCO-2 model intercomparison (MIP). In Sect. 5, we summa-
rize our findings.

2 Methodology and data

To estimate the Australian CO2 surface fluxes for 2015, we
followed the same four-dimensional variational assimilation

Atmos. Chem. Phys., 21, 17453–17494, 2021 https://doi.org/10.5194/acp-21-17453-2021



Y. Villalobos et al.: Australian carbon fluxes derived by the assimilation of OCO-2 satellite data 17455

scheme described in Villalobos et al. (2020). In this section,
we will present a brief description of the system and an up-
date of all changes we made to the data used for our inver-
sion.

2.1 Bayesian inverse system

Finding the optimal value (xa) of the CO2 flux estimates in-
volves identification of the best fits between both observa-
tions (y) and a prior (or background) estimate (xb) of these
fluxes (Ciais et al., 2010; Rayner et al., 2019). Using Bayes’
theorem and under the hypothesis of unbiased Gaussian-
distributed errors of xb and y, the best estimate of xa (likeli-
hood maximum a posteriori) is equivalent to finding the min-
imum of the cost function J (x) shown in Eq. (1). Notation in
this study follows Rayner et al. (2019).

J (x)=
1
2

[
(x− xb)TB−1(x− xb)

]
+

1
2

[
(H(x)− y)TR−1(H(x)− y)

]
(1)

In Eq. (1), H, represents the application of the forward
model and the “observation operator”, which allows us to
map the model variables (e.g. fluxes) to observations. R rep-
resents the error covariance matrix of the observations y, in-
cluding the transport model error. R is defined as a diagonal
matrix (details Sect. 2.5). x represents the control vector of
unknowns. x includes not only CO2 surface fluxes but also
initial and boundary conditions (details Sect. 2.2). B is the as-
sociated error covariance matrix of xb, boundary and initial
concentrations, and includes off-diagonal terms. In these off-
diagonal values, we only include spatial and non-temporal
correlations of the prior fluxes (details of the structure of the
prior error covariance matrix can be found in Sect. 2.4 in Vil-
lalobos et al., 2020).

We calculate the minimum of J (x) by an iterative process
and not by an analytical expression. This numerical problem
requires the value of the cost function gradient ∇xJ (x).

∇xJ = B−1
(
x− xb

)
+HT

(
R−1 [H(x)− (y)]) (2)

We compute HT using the adjoint of the CMAQ model
(version 4.5.1; Hakami et al., 2007). We can see in Eq. (2)
that HT is applied to the vector R−1 (H(x)− y), which is
often called the “adjoint forcing”, and represents the error-
weighted differences between the forward model and the
observed concentrations. Applying the adjoint model to the
adjoint forcing, running backward in time from ti−1 to t0,
allows us to construct the gradient of the cost function,
∇xJ (x). The algorithm that our inverse system uses to op-
timize the J (x) is the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS-B), implemented in the SciPy
Python module (Byrd et al., 1995). Figure 1 shows a simpli-
fied version of how our inversion system works to find the
optimal values of CO2 surface fluxes.

The error statistics of xa are embodied in the posterior er-
ror covariance matrix (A). In this study, A was computed by a
series of observing system simulation experiments (OSSEs)
carried out by Villalobos et al. (2020, Sect. 2.4). However,
here we adjusted the prior and observation uncertainties as-
sumed in Villalobos et al. (2020) by a factor of 1.2. We
made this adjustment to satisfy the theoretical assumption in
the variational optimization, which indicates the value of the
cost function in its minimum has to be approximately equal
to half of the number of observations (for more details, see
Sect. 3.1). In general, errors assumed in the inversion are not
Gaussian and independent but rather have errors correlated
in time and space (including flat biases) that render the sta-
tistical assumptions made in deriving the estimation method
invalid and lead to a higher cost function than expected. A
description of how the prior and observation uncertainties
were assumed in our study is found in Sect. 2.3 and 2.5. Ap-
pendix D (Figs. D1 and D2) shows the spatial distribution of
the prior and posterior that we reference in this study.

2.2 Defining the control vector

In our data assimilation system, we solve for monthly aver-
age surface fluxes at 81 km grid-cell-scale resolution as the
multipliers of the principal eigenvectors of the prior error co-
variance matrix B, computed as WTw−1/2(x−xb), where W
was defined as the matrix of eigenvectors and w as a diagonal
matrix of corresponding eigenvalues (Villalobos et al., 2020,
Sect. 2.2). In order to avoid the impact of the initial con-
ditions (ICs) and boundary conditions (BCs) on our assim-
ilated fluxes, we also solved them within the control vector
x. We did not optimize them in the same way as the fluxes
in order to not increase the control vector size, so we treat
the unknowns related to the BCs and ICs as scaling factors
of the emissions added to the CMAQ model. Lateral BCs
were solved as eight boundary regions divided by the upper
and lower boundary areas within the CMAQ domain (south,
east, north and west). In Fig. 2, we provide a representation
of these boundaries. In this figure, we can see that our study
domain not only covers the Australian continent (AUS) but
additionally other countries such as Indonesia (IND), Papua
New Guinea (PNG) and New Zealand (NZ). The extension of
this domain was created as an extra precaution to minimize
the influence of the boundaries over Australia.

Lower boundary layers were defined to cover from σ = 1
to σ = 0.96, which correspond (on average) to a pressure of
972.5 hPa, while the upper boundary layer was defined to
cover from 972.5 up to 50 hPa. As mentioned before, our
inversion system solves for these lateral boundary compo-
nents, while surface fluxes are also being optimized. Bound-
ary conditions are provided to the CMAQ model as daily av-
erages, but we optimize them as monthly averages. BC and
IC datasets were taken from the CAMS global CO2 atmo-
spheric inversion product (version v19r1) (Frédéric Cheval-
lier, personal communication, 2019). Uncertainties for the
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Figure 1. A simplified diagram of the four-dimensional variational data assimilation we used to estimate CO2 surface fluxes over Australia.

Figure 2. Representation of the horizontal Weather Research and
Forecast model (WRF) domain (black rectangle) and CMAQ model
domain (dark blue rectangle). Boundary components (south, east,
north and west) are represented as between the outer domain of
CMAQ domain and the dotted dark blue lines. Land biosphere emis-
sions incorporated over Australia are represented by the small dot-
ted blue lines (CABLE model in BIOS-3 setup). Outside this area,
land biosphere emissions come from the CABLE global product.

initial condition were set at 1 % (approximately 4 ppm), and
the uncertainties in the lateral boundary conditions were as-
sumed as the standard deviation (1σ uncertainty) of CAMS
concentration data in the perimeter of the boundary.

2.3 Prior information and its uncertainties

We updated the prior CO2 fluxes described in Villalobos
et al. (2020, Sect. 2.4). Biosphere carbon fluxes were derived
using a modified version of the Community Atmosphere-
Biosphere Land Exchange model (CABLE) (Haverd et al.,
2018), which was forced by Australian regional drivers
and observations (BIOS3 setup). CABLE consists of a bio-
physical core: the Carnegie–Ames–Stanford approach, car-
bon, nitrogen, phosphorus (CASA-CNP) biogeochemical
model (Wang et al., 2010), the POP module for woody de-
mography and disturbance-mediated landscape heterogene-
ity (Haverd et al., 2013d), and a module for land use and
land management (POPLUC; Haverd et al., 2018). For our
case, Vanessa Elizabeth Haverd (personal communication,
2020) ran the CABLE model in the BIOS3 setup (hereafter
CABLE-BIOS3) at a resolution of 0.25◦. We calculated 3-
hourly biosphere CO2 fluxes by combining two datasets:
daily net ecosystem exchange (NEE) fluxes with 3-hourly
gross primary production (GPP). Given that the BIOS3 prod-
uct did not cover our whole CMAQ model domain, we also
incorporated monthly biosphere fluxes from CABLE-POP
global simulations as shown in Fig. 2. These CABLE-POP
simulations were used in the carbon cycle model intercom-
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parison project (TRENDY version 8) for the 2019 global car-
bon budget (Friedlingstein et al., 2019). Biosphere flux un-
certainties in our system were assumed to be equal to the
NPP simulated by CABLE, with a ceiling of 3 gC m−2 d−1

following Chevallier et al. (2010).
Anthropogenic fluxes were created by the combination of

two different inventory datasets: the Open-source Data In-
ventory for Anthropogenic CO2 (ODIAC) (Oda et al., 2018)
and the Emissions Database for Global Atmospheric Re-
search (EDGAR) version 5 (Crippa et al., 2020). The com-
bination of these two anthropogenic inventories (each used
to cover different source sectors) was necessary because
the version of the ODIAC selected did not contain emis-
sions from aviation. The EDGAR emissions combined with
ODIAC were aviation climbing and descent, aviation cruise,
and aviation landing and take-off datasets. Aviation emis-
sions were also distributed across the vertical layers of the
CMAQ domain. EDGAR is a gridded product with spatial
resolution of 0.1◦× 0.1◦ with monthly temporal resolution.
ODIAC (version 2019) is also a gridded product, which has
a spatial resolution of 1×1 km. Monthly ODIAC fluxes were
modified by incorporating a diurnal-scale factor estimated
by Nassar et al. (2013). The ODIAC data product selected
did not include bunker emissions. Fossil fuel carbon emis-
sion uncertainties were created by multiplying the emissions
dataset by a factor of 0.44. This factor was calculated by a
linear regression between the mean fluxes and the spread of
an ensemble of 25 realizations of posterior emissions esti-
mated by the Fossil Fuel Data Assimilation System (FFDAS)
(Asefi-Najafabady et al., 2014).

Prior ocean fluxes were taken from the CAMS greenhouse
gas flux inversion (version v19r1) (Frédéric Chevallier, per-
sonal communication, 2019). The prior fluxes that CAMS
uses in its inversion also includes EDGAR emissions over
the ocean; thus, we did not include this anthropogenic flux
over the ocean to avoid double counting. We assumed that
the ocean uncertainties were uniform and set up a value of
0.2 gC m−2 d−1 over ocean, as in Chevallier et al. (2010).
We also used monthly fire emissions from the Global Fire
Emission Database (GFED) v4.1 (van der Werf et al., 2017),
which includes small fire emissions. Fire emission uncer-
tainties were assumed as 20 % of the biomass burning car-
bon emissions. All datasets mentioned above (terrestrial bio-
sphere exchange, fossil fuel, fires and ocean fluxes) were in-
terpolated to the spatial resolution of the CMAQ model.

As described in Villalobos et al. (2020, Sect. 2.4), we in-
cluded spatial correlations into our prior error covariance ma-
trix B following Basu et al. (2013, Sect. 3.1.1). The correla-
tion length between grid points over land was assumed to be
500 km and over ocean 1000 km. We assume that fossil fuel
uncertainties were not correlated, so we only use the diag-
onal values of the matrix. In our eigen-decomposition of B,
the eigen-spectrum (eigenvectors of the covariance matrix)
retains 99 % of the explained variance (eigenvalues).

2.4 Atmospheric transport model

The inversion was based around the CMAQ modelling sys-
tem (version 5.3) and its adjoint (version 4.5.1; Hakami et al.,
2007). The CMAQ modelling system is an Eulerian (grid-
ded) mesoscale chemical transport model (CTM). We added
CO2 into the CMAQ model as an inert chemical species,
whose concentration is determined by atmospheric trans-
port, fluxes, initial and boundary concentrations. The CMAQ
model was driven by meteorological fields from the Weather
Research and Forecast model (WRF) Advance Research Dy-
namical Core WRF-ARW (henceforth WRF) version 4.1.1
(Skamarock et al., 2008), the data of which were processed
by the Meteorology-Chemistry Interface Processor (MCIP)
version 4.2 (Otte and Pleim, 2010). WRF configuration de-
tails are shown in Table 1. Our WRF model was set up at
a spatial resolution of 81 km with 32 vertical layers from
the surface up to 50 hPa. The numerical simulation was car-
ried out on a single domain (i.e. non-nested). WRF initial
conditions were taken from the ERA-Interim global atmo-
spheric reanalysis (Dee et al., 2011), which has a resolution
of approximately 80 km on 60 vertical levels from the surface
up to 0.1 hPa. Sea surface temperatures were obtained from
the National Centers for Environmental Prediction/Marine
Modeling and Analysis Branch (NCEP/MMAB). The WRF
model was run with a spin-up period of 12 h.

2.5 OCO-2 satellite information and its uncertainties

We assimilated satellite data from OCO-2 level 2 (lite file
version 9) for 2015, which is distributed by the National
Aeronautics and Space Administration (NASA) (OCO-2
Science Team/Michael Gunson, Annmarie Eldering, 2018).
OCO-2 was launched in 2014 and since then has provided
nearly global coverage of column-averaged dry air mole frac-
tion of CO2 that has been used by several carbon cycle re-
searchers to estimate surface carbon fluxes at global and re-
gional scales. OCO-2 provides data in three modes: nadir,
glint and target mode. In nadir mode, OCO-2 instrument
points straight down at the surface of the Earth (surface so-
lar zenith angle is less than 85◦); in glint mode, OCO-2 in-
strument points to the bright glint spot on Earth where so-
lar radiation is directly reflected off the Earth’s surface (lo-
cal solar zenith angle is less than 75◦); and target mode, the
instrument is configured to scan about a particular point on
the ground as it passes overhead. In this study, we used the
combination of both land nadir and land glint observations
(LNLG), because there are no systematic offsets between
the two datasets (O’Dell et al., 2018). We also performed
an inversion using the combination of land (nadir and glint)
and ocean glint observations (LNLGOG). However, this in-
version was treated as an independent experiment (see Ap-
pendix F, Table F1), and the assimilated fluxes estimated
by using LNLGOG were not included in our main results.
We decided to not incorporate them because ocean glint re-
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Table 1. Physics parameterizations used in WRF model setup.

Category Selected schemes

Microphysics Morrison double-moment scheme(Morrison et al., 2009)
Short-wave radiation Rapid Radiative Transfer Model (RRTMG) scheme (Iacono et al., 2008)
Long-wave radiation Rapid Radiative Transfer Model (RRTMG) scheme (Iacono et al., 2008)
Surface layer Monin–Obukhov (Monin and Obukhov, 1954)
Land–water surface The Noah land surface model and the urban canopy model (Tewari et al., 2007)
Planetary boundary layer (PBL) Mellor–Yamada–Janjic scheme (Janjić, 1994)
Cumulus The Grell–Devenyi ensemble scheme (Grell and Dévényi, 2002)

trievals still have undetermined biases (O’Dell et al., 2018)
that may complicate or confound the Australia flux estima-
tion. We discussed the impact of assimilation LNLGOG in
the validation of our inversion with independent data (see
Sect. 3.5 for more details). We only used OCO-2 retrievals
with quality flag 0 and only soundings that were bias cor-
rected, as described by Kiel et al. (2019). The spatial distribu-
tions of OCO-2 soundings (LNLG and LNLGOG) across the
CMAQ domain for 2015 are shown in Appendix C, Figs. C1
and C2, respectively.

Given that multiple OCO-2 soundings cross one grid cell
over the CMAQ domain, we had to average them before
doing any comparison with the CMAQ model simulations.
This averaging process was carried out in two steps. First,
we averaged all OCO-2 soundings that fall within 1 s inter-
vals, and then these 1 s averages were averaged again within
the CMAQ vertical columns (approximately 11 s average)
across 81 km× 81 km grid-cells. The 1 s weighted averag-
ing process is described in detail in Villalobos et al. (2020,
Sect. 2.3). In summary, to obtain the uncertainties of these 1 s
averaging processes, we considered three different forms of
uncertainty calculation, similar to Crowell et al. (2019). First,
we averaged OCO-2 uncertainties assuming that these were
correlated in a 1 s span (uncertainties defined as σs). Second,
given that the average of OCO-2 uncertainties is sometimes
low because they neglect systematic errors, we also used the
spread of the OCO-2 retrievals in the 1 s average (uncertain-
ties defined as σr). Third, we also defined baseline uncertain-
ties (defined as σb) for cases where the number of soundings
was not enough to compute a realistic spread. The values for
our baseline uncertainties were assumed to be 0.8 ppm over
land and 0.5 ppm over ocean. Finally, we selected the maxi-
mum value between these three uncertainties (σs, σr and σb).
We also added (in quadrature) to this term 0.5 ppm as the
contribution of the model uncertainty (defined as σm).

Solving the cost function shown in Eq. (1) requires con-
volving the vertical levels of the CMAQ model with the re-
trieval profile from OCO-2. For this, we used Eq. (3) derived
by Connor et al. (2008) as follows:

xmCO2
= xaCO2

−

∑
j

hjaCO2,jxa +
∑
j

hjaCO2,jx
m
j , (3)

where xa is the OCO-2 a priori, h is a vector of pressure
weight, hj is the mass of dry air in layer j divided by the
mass of dry air in the total column, aCO2 is the averaging
kernel of OCO-2, xa is the OCO-2 a priori profile, and xm

is the simulated profile from the CMAQ model. In our in-
version system, the OCO-2 averaging kernel is defined on 20
pressure levels and we interpolate these to the CMAQ verti-
cal levels.

2.5.1 TCCON measurements

To validate our posterior CO2 CMAQ concentrations, we
used ground-based remote-sensing data from the Total Car-
bon Column Observing Network (TCCON) (Wunch et al.,
2011). There are three TCCON stations in our domain
(see Table 2 for references and Fig. 3 for coordinate loca-
tions). A TCCON instrument is a Fourier transform spec-
trometer (FTS) developed to record direct solar spectra in
the near-infrared spectral region. TCCON provides accu-
rate and precise column-averaged concentrations of CO2 and
other greenhouse gases. This instrument represents the “gold
standard” for surface-based remote-sensing estimates of the
total-column concentration of these gases. Data from TC-
CON are widely used by carbon cycle researchers, in par-
ticular for global flux inversion (Byrne et al., 2020) and
validation of satellite data products (such as from OCO-2).
To perform a quantitative comparison against CMAQ sim-
ulations, we averaged all the TCCON retrievals to create
hourly average XCO2 values, which were consistent with
the CMAQ hourly simulations. After calculating the aver-
age of these retrievals, we interpolated the TCCON column
averaging kernels and TCCON a priori CO2 profile to the
CMAQ vertical levels. After the interpolation, we followed
Eq. (3) to compute the TCCON column-mixing ratios sim-
ulated by CMAQ. The statistical analysis of CMAQ model–
TCCON differences was based on monthly mean concentra-
tion, which were calculated by taking local time averages
(10:00–14:00 LT, Australian local time, locally referred to
the monitoring site location), where the solar radiation in-
tensity is most stable (Kawasaki et al., 2012).
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Table 2. Reference of the TCCON stations used in this work for
evaluation of our inverse model system.

TCCON station Reference

Darwin, Australia Griffith et al. (2014a)
Wollongong, Australia Griffith et al. (2014b)
Lauder, New Zealand Sherlock et al. (2014)

2.5.2 Ground-based in situ measurements

Additional datasets used to validate our posterior concen-
trations were taken from four ground-based in situ moni-
toring sites forming part of the Global Atmosphere Watch
(GAW) Programme of the World Meteorological Organisa-
tion (WMO): Cape Grim, Gunn Point, Burncluith and Iron-
bark. Coordinates of these locations are shown in Fig. 3.
All these datasets were supplied by Zoë M. Loh (personal
communication, 2019) at hourly temporal resolution. For the
comparison with our model simulation, we used hourly data
from these monitoring sites, but the monthly mean averaged
data shown in Sect. 3.5.2 were calculated using local time av-
erages between midday and 17:00 LT (Australian local time,
locally referred to the monitoring site location).

Measurements of atmospheric CO2 concentration at the
Gunn Point, Ironbark and Burncluith sites were made con-
tinuously at high frequency (∼ 0.3 Hz) using CSIRO Picarro
cavity ring-down spectrometers (model G2301 at Gunn Point
and Ironbark, and G2401 at Burncluith) all with inlets placed
at the height of 10 m. Details of the Ironbark and Burn-
cluith installation are given by Etheridge et al. (2016) and
are broadly similar to the installations elsewhere, including
Gunn Point. Cape Grim also operates a Picarro G2301 anal-
yser, with the inlet positioned at a height of 70 m.

The instrumental precision for these analysers is better
than± 0.1 ppm for CO2 (Etheridge et al., 2014), and all mea-
surements are calibrated to the WMO X2007 CO2 mole frac-
tion scale (Zhao and Tans, 2006), ensuring comparability be-
tween all measurements used.

Cape Grim is a significant monitoring station in the GAW
programme because it samples air with some of the least
recent anthropogenic and terrestrial influence in the world,
representing hemispheric background concentrations. These
air masses, known as “baseline”, have blown straight off the
Southern Ocean and have often been used in modelling stud-
ies. However, in this study, we used all Cape Grim data be-
cause our inversion assimilates only data that were collected
over land and carry terrestrial signals.

2.6 Auxiliary data

In this study, we also use auxiliary data such as the EVI,
rainfall and GPP from the CABLE-BIOS3 model to under-
stand the difference between the prior and posterior fluxes
over Australia in 2015.

Figure 3. TCCON and in situ location sites. Red dots indicate TC-
CON locations. TCCON Darwin and Wollongong are located over
Australia, while TCCON Lauder is located in New Zealand. Blue
dots represent in situ location around Australia (Gunn Point, Burn-
cluith, Ironbark and Cape Grim).

2.6.1 The EVI

To understand if there was higher than expected growth
of vegetation across Australia in 2015, we evaluated the
monthly EVI anomalies relative to the long-term mean from
2000–2014. We used the EVI from the MODIS MOD13C1
version 6 data product from the NASA satellite Terra (Didan,
2014). This gridded EVI MODIS product has a temporal res-
olution of 16 d composite and 0.05◦ spatial resolution. We
constructed the EVI anomalies by subtracting the long-term
mean (2000–2014) for each month of 2015. The spatial dis-
tribution of the EVI anomalies is shown in Fig. S1 in the Sup-
plement. EVI measures the greenness of vegetation and can
be used as a proxy for monitoring the density or productivity
of the vegetation biomass. EVI indices range from−0.2 to 1,
where values less than 0 indicate a lack of green vegetation
or arid areas. These monthly EVI MODIS products were re-
gridded to the CMAQ grid to calculate the spatial correlation
between prior and posterior flux differences (see Sect. 3.3).

2.6.2 Australian Water Availability Project (AWAP)

Monthly rainfall data were taken from the Australian Wa-
ter Availability Project (AWAP), Bureau of Meteorology
(Jones et al., 2009). We used data for the period 2000–2015.
AWAP data are obtained from a spline interpolation tech-
nique, which interpolates all available in situ rainfall obser-
vations onto grid-cells of 0.05◦ (more details can be found
in Jones et al., 2009). AWAP rainfall anomalies were calcu-
lated in the same way as EVI anomalies, by subtracting their
long-term mean from 2000 to 2014 (see Fig. S2 in the Sup-
plement).
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Table 3. Summary of the configuration of the OCO-2 MIP (version 9) design.

Acronym Contact Grid spacing Transport Meteorological Prior fluxes
(institutions) degree model fields

AMES Matthew Johnson 4◦× 5◦ GEOS-Chem MERRA-2 CASA-GFED4.1s
(NASA Ames Research Center)

Baker David Baker 6.7◦× 6.7◦ PCTM MERRA-2 CASA-GFED3
(Colorado State University)

CAMS Frederic Chevallier 1.9◦× 3.75◦ LMDz ERA-Interim ORCHIDEE
(LSCE France)

CMS-Flux Junjie Liu 4◦× 5◦ GEOS-Chem GEOS-FP CARDAMOM
(NASA JPL)

CSU Andrew Schuh 1◦× 1 GEOS-Chem MERRA-2 SIB4/
(Colorado State University) MERRA-2

CT Andy Jacobson 3◦× 2◦ TM5 ERA-Interim CT2019
(University of Colorado and NOAA GML) 1◦× 1◦ CASA GFED4.1s

OU Sean Crowell 4◦× 6◦ TM5 ERA-Interim CASA-GFED3
(Colorado State University)

TM5-4DVAR Sourish Basu 2◦× 3◦ TM5 ERA-Interim SIB-CASA
(University of Maryland and NASA GMAO)

UT Feng Deng 4◦× 5◦ GEOS-Chem GEOS-FP BEPS
University of Toronto

2.6.3 MODIS GPP

We compared the MODIS Terra GPP MOD17A2H version
6 product for 2015 (Running et al., 2015) against CABLE-
BIOS3 model GPP predictions (see Appendix E, Fig. E1).
The MODIS GPP product has a spatial resolution of 500 m
and a temporal resolution of eight days. The 8 d composite
was averaged to monthly resolution and aggregated to the
CMAQ grid for comparison with the CABLE-BIOS3 model
GPP.

2.6.4 MIP in situ and OCO-2 satellite-derived fluxes

For validation, we compared our posterior Australian bio-
sphere CO2 flux estimates (excluding fossil fuel) against
the ensemble monthly mean of nine OCO-2 satellite-based
and in situ global inversions (see Sect. 4 for details). In situ
and OCO-2 satellite-derived fluxes were consolidated by the
OCO-2 MIP (Crowell et al., 2019), which used the OCO-2
satellite version 7 product. In this study, we used the latest
update of the OCO-2 MIP product (Peiro et al., 2021), which
uses OCO-2 data lite file version 9, with an improved bias
correction approach (Kiel et al., 2019) compared to the ver-
sion 7 product (Crowell et al., 2019). Within the MIP design,
in situ carbon flux estimates are derived by utilizing five col-
lections in ObsPack observations (Masarie et al., 2014). A
description of these data can be found in Peiro et al. (2021,
Sect. 2.3).

Table 3 shows a summary of these global inversions. This
table shows that MIP global inversions were performed us-
ing different prior flux estimates, and the transport models
were run at different spatial scales. Within MIP, prior esti-
mates also include fossil fuel data, which was fixed and de-
rived from ODIAC. With regard to fires estimates, they use
different versions of the GFED dataset. Some of them used
version 4, while other modellers use version 3. The main dif-
ference between these two datasets is that GFED version 3
does not include small fire-burned areas.

3 Results

3.1 Inversion evaluation: analysis of the residual
between CMAQ simulation and OCO-2

As described in Eq. (1), the main purpose of the inversion
is to optimize fluxes by minimizing the mismatch between
the model simulation and observations. In order to evaluate
the performance of the inversion, we compared the CO2 con-
centrations obtained when forcing the CMAQ model with
the prior and posterior fluxes (for convenience, we will call
these the prior and posterior CO2 concentrations, respec-
tively). Figure 4 shows the bias and root mean square er-
ror (RMSE) between the prior and posterior CMAQ simu-
lations against the OCO-2 observations for 2015. This figure
shows that the biases and RMSE in the posterior concentra-
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Figure 4. Bias and root mean square error (RMSE) between OCO-2 and the prior and posterior concentrations simulated by CMAQ model.
Orange and purple circles represent prior and posterior concentration biases, and orange and blue bars represent the RMSE (Units: ppm). The
top edge of the box represents the 75th percentile and the bottom edge represents the 25th percentile. The top and bottom whiskers represent
the 95th and 5th percentiles.

tion were reduced by the inversion and indicate the inversion
system leads to an overall improvement of the representation
of OCO-2 observations. Our findings indicate that the prior
concentrations overestimate OCO-2 from March to April and
from July to September. Prior biases in these months were
reduced by more than 90 %. In March, for example, the
monthly mean bias was reduced from 0.56 to 0.05 ppm, with
a decrease in the RMSE from 1.11 to 0.84 ppm. In April,
we see similar results to those for March; the prior bias was
reduced from 0.40 (RMSE= 1.05) to 0.03 (RMSE= 0.88).
On the other hand, in January, February, May and December,
prior biases were negligible, showing a good agreement with
OCO-2. In a consistent system, we know that the theoretical
value of the cost function at its minimum should be close to
half the number of assimilated observations, assuming all er-
ror statistics are correctly specified (Tarantola, 1987, p. 211).
In our inversion, after iteration 27, we obtained a cost func-
tion of 4392.15, which was close to half of the total number
of OCO-2 assimilated observations for 2015 (N = 9556). In
general, we also see a modest reduction in the prior RMSE
each month during 2015, and its variability is proportional to
the number of assimilated observations. Thus, a slight prior
RMSE decrease corresponds to a month with a reduced num-
ber of OCO-2 data available.

3.2 Australian carbon flux estimate

In this section, we will only discuss the results of carbon
fluxes that were assimilated by the combination of LNLG
OCO-2 retrievals, not the carbon fluxes estimated using

LNLGOG observations. We decided not to discuss the results
based on LNLGOG because ocean glint observations (ver-
sion 9) still have undetermined biases (O’Dell et al., 2018)
that might contaminate the Australian carbon flux estimate.
However, we include these findings in the Appendix F, Ta-
ble F1. Adding ocean OCO-2 glint observations to our inver-
sion system does not significantly alter the terrestrial annual
mean flux estimate for Australia (−0.36 PgC yr−1) compared
to estimates made by only using OCO-2 LNLG observations
(−0.41 PgC yr−1). Results based on LNLGOG will be fur-
ther discussed in Sect. 4.

Figure 5a represents the terrestrial prior and posterior an-
nual mean flux for 2015 (excluding fossil fuel). As men-
tioned previously, our assimilated carbon fluxes using LNLG
indicate that the Australian annual terrestrial flux for 2015
was a slight carbon sink of −0.41± 0.08 PgC yr−1 (1σ
uncertainty) compared to the prior terrestrial estimate of
0.09± 0.17 PgC yr−1. Our prior fossil fuel estimate from
ODIAC and EDGAR, which is about 0.06± 0.01 PgC yr−1

(mostly constant for each month in 2015) over Australia rep-
resents only 25 % of the annual posterior flux. We decided to
exclude these emissions from our analysis because variations
in land uptake cause most of the variation in our posterior
fluxes.

Figure 5b shows the seasonal cycle of the prior and pos-
terior fluxes along with its uncertainties. As mentioned in
Sect. 2.3, the prior and posterior uncertainties included in
Fig. 5a and b were calculated from an ensemble of five dif-
ferent OSSEs adjusted by a factor of 1.2 in this study. We
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also plotted the spatial distribution of the prior and posterior
fluxes (Figs. 6 and 7), and the difference between them (Ap-
pendix A, Fig. A1).

Figure 5b shows that the posterior flux estimates gen-
erally refine the prior with the exception of March and
the period July to September. In January and February,
the posterior fluxes were not modified much by the in-
version. In January, for example, the terrestrial posterior
flux was −0.84± 0.18 PgC yr−1 compared to the prior
−0.89± 0.75 PgC yr−1. The agreement follows from the
small residual between prior simulated concentration and ob-
servation (Fig. 4). From April to May, we also see the poste-
rior is shifted from the prior, although not significantly con-
sidering the prior uncertainty. In April, for instance, the prior
flux (0.24± 0.69 PgC yr−1) was slightly shifted to a poste-
rior carbon sink (−0.28± 0.25 PgC yr−1). However, these
two estimates do not disagree because they fall within 1σ
uncertainties.

As mentioned in the previous paragraph, March, July,
August and September were the exceptions to this gen-
eral agreement. In March, we see a prior flux of
0.12± 0.74 PgC yr−1 compared to the posterior carbon sink
of −0.82± 0.17 PgC yr−1. The difference between the pos-
terior (Fig. 7b) and the prior flux (Fig. 6b) at grid-cell scale
(see Appendix A, Fig. A1c) suggests that most of the pos-
terior sink comes from the north and southeast corner of
Australia. July represents the month where the posterior is
most shifted from the prior. In this month, we see a pos-
terior flux of −1.75± 0.34 PgC yr−1 compared to the prior
flux of 0.09± 0.62 PgC yr−1. The spatial distribution of the
posterior and prior flux difference at grid-cell scale for July
(Fig. A1g) indicates that the shift largely comes from north-
ern and southeastern Australia. The stronger posterior sink
seen in July decreased in August (−0.93± 0.27 PgC yr−1)
and September (−0.78± 0.20 PgC yr−1), and changed sign
in October and November. In November, the posterior flux
was 1.75± 0.31 PgC yr−1 compared to the prior, which was
0.53± 0.58 PgC yr−1. The largest difference in this month
is found in the north and on the southeast coast of Australia
(Appendix A, Fig. A1k). The carbon release from land in
northern Australia is likely attributed to a combination of
fire anomalies (Fig. S3k in the Supplement) and the lack
of rainfall seen in Australia in 2015 (Fig. S2k in the Sup-
plement). In December, we see that the posterior source
seen in November changed to a posterior carbon neutral
(0.003± 0.15 PgC yr−1). A further analysis which explains
the reasons for this shift is given in the following section.

3.3 Spatial patterns of the EVI and rainfall anomalies
in Australia

To investigate why our inversion led to a higher carbon up-
take (relative to the prior flux) in some months in 2015, we
studied the spatial pattern of monthly EVI anomalies and
rainfall anomalies. EVI anomalies were calculated relative

to 2000–2014 over Australia from the MOD13C1 version 6
data product and rainfall anomalies from AWAP data relative
to 2000–2014 (Figs. S1–S2 in the Supplement). We indicated
in Sect. 3.2 that the posterior sink recorded in January and
February agrees with the prior estimates but disagrees with
the prior flux estimates from March to September, where the
most considerable difference is seen in March and from July
to September. From the inversion viewpoint, the significant
shift between prior and posterior fluxes occurs because the
prior column average simulated by the CMAQ model over-
estimates the column-average retrieval by OCO-2 in these
periods (see Fig. 4).

As indicated in Sect. 3.2, most of the posterior carbon up-
take seen in March comes from the northern part of Aus-
tralia (except coastal regions) and the southeastern area (Ap-
pendix A; Fig. A1c). We found that the higher posterior up-
take relative to the prior in the northern part of the continent
was not attributed to an increase of greenness in vegetation
(negative EVI anomalies). These results suggest that most
of the posterior carbon uptake observed in March is likely
associated with positive EVI anomalies seen in January and
February affected by the positive rainfall anomalies recorded
in January. High anomalous rainfall in January is not unex-
pected because it is the wet season in the northern region of
Australia (tropical monsoonal climate).

The spatial pattern of the difference between the poste-
rior and prior flux estimate recorded in July indicates that
the majority of the posterior carbon uptake estimated by
the inversion comes from the southeastern and northern re-
gion of Australia (Appendix A; Fig. A1g). We found that
the posterior sink estimated in southeastern Australia was
likely driven by a higher-than-expected greenness of veg-
etation (Fig. S1g in the Supplement), probably induced by
anomalously positive rainfall in that period (Fig. S2g in the
Supplement). We cannot conclude the same results in the
northern region that we found in the south. We see in Ap-
pendix A; Fig. A1g that positive EVI anomalies were slight
compared to the one found in southeastern Australia. In the
following section, we will show that the underestimation of
the GPP by the CABLE-BIOS3 model might be the likely
reason for the difference between prior and posterior in this
region.

An increase in carbon uptake estimated by our inversion
in August comes from the northern and southern regions of
Australia (with the exception of coastal areas in the south-
eastern corner of Australia), which mainly shows a release
of carbon (Appendix A; Fig. A1h). The release of carbon by
the land in this coastal region is likely attributed to a decrease
in land productivity (Fig. S1h in the Supplement). The sub-
tle decrease of photosynthesis activity in the coastal area is
likely associated with a decrease of rainfall seen in June and
July (Fig. S2f and g in the Supplement).

In September, the posterior carbon uptake primarily comes
from the southeast corner of Australia (with a slight excep-
tion seen in the southeast and east coast of Australia), which
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Figure 5. Time series of monthly mean prior (orange dots) and posterior (blue dots) CO2 fluxes and their uncertainties in PgC yr−1 over
Australia for 2015. The dashed orange and blue line represents a smooth line for the prior and posterior fluxes, respectively.

shows a release of carbon into the atmosphere (Appendix A;
Fig. A1i). The carbon uptake seen in the southeast of Aus-
tralia aligns with a higher-than-usual increase in land pro-
ductivity, as reflected by the positive EVI anomalies in that
region (Fig. S1h in the Supplement), likely benefited by the
positive rainfall anomalies seen in August in that area. In
September, we also see that positive EVI anomalies were not
as strong as in July and August. These findings are probably
associated with the fact that rainfall in September decreased
considerably for most parts of the country, where rainfall was
lower than average (negative rainfall anomalies) (Fig. S2i in
the Supplement).

Anomalies in EVI in Australia are closely related to fluctu-
ations in rainfall, which is one of the most important drivers
of ecosystem dynamics and productivity. This is the case in
(e.g. semi-arid) regions where rainfall is the limiting factor
for plant growth, which is indeed the case in much of Aus-
tralia. These results are consistent with findings of previous
studies (e.g. Weltzin et al., 2003) that Australia’s semi-arid
ecosystems are water resilient and can respond to favourable
rainfall conditions by capturing large amounts of carbon.

3.4 Australian carbon flux estimate classified by
bioclimatic zones

To understand which Australian ecosystem contributed most
to our posterior carbon sink estimate, we divided the con-
tinent into six bioclimatic classes: tropical, savanna, warm
temperate, cool temperate, Mediterranean and sparsely veg-
etated (Fig. 8). We used the same six bioclimatic regions at
a 0.05◦ spatial resolution as in Haverd et al. (2013a). The six
bioclimatic classes used in this study correspond to an aggre-

gation of the 18 agroclimatic zones generated by Hutchin-
son et al. (2005). The climatic classification in Hutchinson
et al. (2005) was adapted from an existing global agrocli-
mate classification (Hutchinson, 1992), which was refined
and closely aligned with natural vegetation formations and
common land uses across Australia using 182 weather cli-
mate stations and the Interim Biogeographic Regionalisa-
tion for Australia (IBRA). In Fig. 8, we can see that Aus-
tralian tropical land only covers the northern coastal part of
Australia. Savanna extends across the northern tropics to the
southeastern subtropical zone. Warm temperate land covers
the southeast Australian coast, while cool temperate land
covers the southeastern corner of Australia. The Mediter-
ranean region is confined to the southwestern corner of Aus-
tralia and the gulf region of South Australia. The sparsely
vegetated ecosystem represents the biggest ecosystem over
Australia, which extends from the northern subtropical zone
to southern Australia.

Figure 8 also includes the prior and posterior annual flux
aggregated into these bioclimatic regions. It is evident that
savanna and sparsely vegetated ecosystems were the re-
gions across Australia that most contribute to posterior car-
bon sink estimated for 2015. The annual posterior carbon
flux for savanna was −0.17± 0.03 PgC yr−1 compared to
the prior annual flux (0.09± 0.11 PgC yr−1), and the an-
nual posterior carbon sink over sparsely vegetated was even
higher (−0.25± 0.07 PgC yr−1) compared to prior annual
flux (−0.01± 0.11 PgC yr−1). These results are not unex-
pected because the sparsely vegetated ecosystem represents
the largest bioclimatic region in Australia, and a slight shift
of carbon fluxes across this area causes a significant impact
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Figure 6. Prior fluxes derived by the CABLE model in the BIOS3 setup in combination with fires emissions selected by GFED for 2015
(fossil fuel emissions are excluded).

on the total annual flux for this ecoregion and for total annual
flux estimated for Australia.

Figure 9 shows the monthly time series of the prior and
posterior terrestrial flux aggregated into these bioclimatic re-
gions. Over the savanna ecosystem (Fig. 9b), our inversion
indicates that from January to June, this ecosystem acted
as carbon sink. In February, in this ecosystem, we see that

the prior sink (−0.48± 0.40 PgC yr−1) strengthens to a pos-
terior of −1.07± 0.10 PgC yr−1. The stronger carbon sink
(relative to the prior) from January to March coincides with
an increase of greenness in vegetation (positive EVI anoma-
lies) in this ecosystem (see Fig. S1a and b in the Supple-
ment), benefited by anomalous rainy conditions in January
(see Fig. S2a in the Supplement). Thus, it seems that the
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Figure 7. Posterior fluxes assimilated using LNLG OCO-2 satellite observations for 2015 (fossil fuel emissions are excluded).

anomalous increase of rainfall in northern Australia in Jan-
uary benefits the increase in vegetation growth and carbon
uptake recorded in February. However, it is difficult to draw
conclusions about the posterior carbon uptake seen in months
subsequent to March because of unfavourable raining condi-
tions and negative EVI anomalies in these periods.

Another noticeable difference between prior and poste-
rior flux estimates over the savanna is seen in July and Au-
gust. In July, we cannot conclude if the prior was a sink or
source of carbon (0.19± 0.28 PgC yr−1). However, our in-
version indicates that savanna was acting as a carbon sink of
−0.35± 0.11 PgC yr−1. In August, the prior source (0.25±
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Figure 8. Annual prior and posterior flux estimates aggregated into six bioclimatic classes (tropics, savanna, warm temperate, cool temperate,
Mediterranean and sparsely vegetated) over the Australian region. Fossil fuel emissions are excluded.

0.20 PgC yr−1) becomes a posterior carbon sink of −0.22±
0.08 PgC yr−1. To understand the difference between the
prior and posterior estimate in this period, we calculated the
GPP estimated by the CABLE-BIOS3 model and the GPP
generated by MODIS (see Appendix E; Fig. E1b). The tem-
poral correlation between CABLE-BIOS3 and MODIS GPP
was moderate (R= 0.69). According to MODIS estimates,
the CABLE-BIOS3 GPP is overestimated from January to
March and underestimated from May to October. The un-
derestimation of the GPP flux by the CABLE-BIOS3 model
might explain why we find a stronger posterior sink esti-
mated by our inversion in this category.

Over the warm temperate region, from February to
April, our posterior estimate suggests a carbon source
(Fig. 9c). For this period, we cannot determine if the
prior flux estimate was a carbon sink or source due to
its uncertainty range. In February, the prior flux (−0.05±
0.08 PgC yr−1) becomes a posterior carbon source of
0.17± 0.06 PgC yr−1. In March, the prior estimate was
nearly neutral (0.04± 0.05 PgC yr−1) compared to the pos-
terior carbon source estimate (0.17± 0.05 PgC yr−1). The re-
duced carbon uptake estimated by the inversion in this period
does not agree with the positive EVI anomalies seen in this
region; however, it is likely that this extra carbon release to
the atmosphere is related to an increase of leaf respiration in
response to high temperatures recorded in 2015 for the ma-
jority of Australia (Annual climate statement, Bureau of Me-
teorology, 2015). Another possible reason for the relatively
small shift from the prior in this period was most likely be-

cause the CABLE-BIOS3 GPP overestimates MODIS GPP
(Appendix E1, Fig. E1c). For the warm temperate category,
the correlation of CABLE-BIOS3 and MODIS GPP flux is
high (R=0.86).

We also see a subtle disagreement between prior and pos-
terior estimates over the cool temperate ecosystem in April
and May (Fig. 9d). In this period, our posterior estimate
indicates that this category was a stronger carbon source
than the prior flux estimate. In April, the inversion strength-
ened the prior source (0.12± 0.1 PgC yr−1) to a posterior of
0.47± 0.05 PgC yr−1. In May, we cannot define if the prior
was a sink or a source (0.06± 0.09 PgC yr−1); however, our
assimilated fluxes indicate this category was acting as a pos-
terior carbon source (0.36± 0.04 PgC yr−1). The most likely
reason for a larger carbon release in this period is related to
negative EVI anomalies seen across this ecosystem. While
it is true that April and May see positive EVI anomalies
(Fig. S1d and e in the Supplement), in April, we notice pre-
dominantly negative EVI anomalies in the southern corner
of the Australian (mainland) and Tasmania. The analysis of
GPP between the CABLE-BIOS3 model and MODIS also
shows some discrepancies (see Appendix E; Fig. E1d). For
this category, in general, the CABLE-BIOS3 GPP is overes-
timating the productivity of the land for the whole year. For
example, the absolute difference between both GPP datasets
in April and June is about 0.2 PgC yr−1. For the cool tem-
perate category, the correlation between CABLE-BIOS3 and
MODIS GPP is moderate (R=0.73).
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Another disagreement between the prior and posterior
terrestrial flux estimate is seen over the Mediterranean
ecoregion in August (Fig. 9e). Our posterior estimate is
a flux of −0.35± 0.08 PgC yr−1 compared to the prior of
−0.12± 0.12 PgC yr−1. An increase in vegetation productiv-
ity may also be the reason for the increase in carbon uptake
by this category (positive EVI anomalies; Fig. S1h in the
Supplement). This larger carbon uptake was likely a conse-
quence of an increase of rainfall in this category (greater than
60 % on average (relative to the mean for 2000–2014) for
some areas of this ecosystem; Fig. S3h in the Supplement).
We also found that CABLE-BIOS3 underestimates MODIS
GPP by 0.2 PgC yr−1.

We found a noteworthy discrepancy between the prior and
posterior flux estimate over sparsely vegetated ecosystem
from March to September (Fig. 9f). In this period, in gen-
eral, the absolute difference between the prior and posterior
mean was around 0.4 PgC yr−1. The largest difference found
in July and September was about 0.6 PgC yr−1. This highly
unexpected and counterintuitive difference is not because we
see a significant increase of positive EVI anomalies across
this ecoregion (Fig. S1 in the Supplement). On the contrary, it
is because a “small shift” in the carbon fluxes over this large
ecosystem causes an important impact on the total carbon net
flux calculated for the whole country. We clearly demonstrate
this fact in Appendix B, Fig. B1. This figure in the Appendix
shows the fluxes divided by area. In the western region of this
category, we see evident positive EVI anomalies which start
from April and last all the way through to September, which
again line up with positive rainfall anomalies in that period.

Analysis of the GPP also shows the stronger posterior sink
estimated by our inversion might be associated with a under-
estimation of the GPP by CABLE-BIOS3 in this category.
The absolute difference between the CABLE-BIOS3 GPP
and MODIS GPP was almost the same between May and
September, with a range of 0.8–1.1 PgC yr−1. This underes-
timation in GPP also suggests an underestimation of the land
productivity. In this same category the posterior sink esti-
mated in September disappears in October. For this period,
our posterior source estimate (0.14± 0.08 PgC yr−1) did
not change much from the prior (0.18± 0.13 PgC yr−1). In
November and December, our posterior source was strength-
ened by the inversion. In November, we estimated a carbon
source of 0.21± 0.08 PgC yr−1 in comparison with the prior,
which was 0.12± 0.13 PgC yr−1. The extra carbon release
estimated by the inversion in November might likely be asso-
ciated with the combination of fires (Fig. S4k in the Supple-
ment) located in the west and central northwestern region of
Australia (Fig. S4k in the Supplement) and due to high tem-
peratures recorded across Australia in summer (Annual cli-
mate statement, Bureau of Meteorology, 2015). These con-
ditions certainly intensified the wildfires seen in that period.

In summary, our results showed that OCO-2 produced a
shift in the carbon flux (relative to the prior) over the sa-
vanna and sparsely vegetated region. We found strong nega-

tive correlations (R > 0.8) at grid-cell scale between the EVI
anomalies and the posterior and prior difference in northern
Australia (savanna ecosystem) and in the western region of
the sparsely vegetated ecosystem, which align with the spa-
tial pattern of rainfall in that area. These results suggest that
our OCO-2 inversion might likely be better at capturing the
anomalies in comparison with the biosphere land model.

3.5 Evaluation of the inversion with independent data

In this section, we evaluate the accuracy of our posterior
fluxes by comparing the residual between the prior and pos-
terior concentrations simulated by CMAQ against TCCON
and in situ observations. In this comparison, we simulate the
posterior concentration with fluxes that were not only as-
similated by nadir and glint satellite observations (LNLG)
but also by the combination of both land nadir and land and
ocean glint observations (LNLGOG). We decided to examine
whether biases in our posterior concentration could improve
when incorporating glint ocean observations into the inver-
sion.

3.5.1 Comparison with TCCON observations

As mentioned in Sect. 2.5.1, we selected TCCON observa-
tions from three different sites (Darwin, Wollongong and
Lauder; see Fig. 3). The comparison between the monthly
mean column average from TCCON sites and the prior
and posterior column-averaged concentration simulated by
CMAQ, including both bias and RMSE are shown in Figs. 10
and 11, respectively.

In Fig. 10a, we see that in late spring, summer and
early autumn in Australia (November to March) the poste-
rior column-average simulated by CMAQ model (LNLG)
is in better agreement with TCCON Darwin estimates than
the prior. In this period, prior mean biases were reduced
by approximately 30 %–80 %. For example, in November
and December, the prior concentration biases were reduced
from −0.25 (RMSE= 0.51) to 0.11 (RMSE= 0.42) and
from −0.34 (RMSE= 0.48) to −0.02 (RMSE= 0.31), re-
spectively. Large seasonal differences (approximately 1 ppm)
are seen between the TCCON observation, the prior and pos-
terior column-average concentrations (LNLG) from June to
September. Despite the fact that we see an improvement
of the prior biases in this period, assimilating OCO-2 data
does not significantly reduce them. The remaining posterior
concentration biases of about +1 ppm might be explained
by spurious OCO-2 soundings affected by biomass burn-
ing aerosols seen in that period. In northern Australia, win-
ter occurs in dry season, and it is highly impacted by wild-
fires (see Fig. S4 in the Supplement). OCO-2 spectrometers
measure reflected sunlight from the Earth’s surface, and re-
gions heavily affected by fires can lead to a modification of
the light path length because the instrument struggles to dis-
tinguish between photons reflected by intermediate scatter-
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Figure 9. Monthly time series of the Australian land biosphere prior and posterior CO2 flux and their uncertainties in PgC yr−1 aggregated
over six bioclimatic regions. The prior and posterior estimates do not include fossil fuel emissions.

ers and photons reflected from the Earth’s surface (O’Dell
et al., 2018). In terms of the posterior bias improvement when
fluxes have been assimilated by OCO-2 LNLGOG data, we
can see that the improvements are negligible, and in some pe-
riods such as January or May, the posterior biases get worse.
This result suggests that the uncharacterized OCO-2 glint
ocean bias degrades the performance of the inversion. We
also found that our posterior column-average concentrations
were better correlated with TCCON in comparison with the
prior concentration (Appendix G, Table G1).

At Wollongong site, in general, we see a consistent over-
estimation of the prior and the posterior column average
(LNLG) simulated by CMAQ (Fig. 10b). We observe a rela-

tively slight reduction of the prior biases in February, March
and November (spring, summer and early autumn in Aus-
tralia, Fig. 11b). In November, for example, prior negative
biases of about −0.74 ppm (RMSE= 1.22) were reduced to
−0.40 ppm (RMSE= 1.13). The small reduction of the bi-
ases in this period is likely associated with strong winds com-
ing from the ocean to the TCCON station (Fig. S7 in the Sup-
plement). Wollongong TCCON site is strongly affected by
ocean fluxes, which are less restricted by our inversion when
we only use LNLG observations. In late autumn and win-
ter at Wollongong, we see high significant positive posterior
biases (range between 1.1 and 1.61 ppm). Biases in winter
season are likely related to OCO-2 than TCCON biases. It
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has been found that passive satellite instruments have diffi-
culties measuring at high and middle latitudes in winter be-
cause the Sun stays low in the sky (Wunch et al., 2017). A
low solar altitude angle corresponds to a high solar zenith
angle and high air mass, which means it takes longer for
the sunlight to reach the satellite instrument. Biases related
to high air masses (“long path length”) can be obtained be-
cause the absorption spectra tend to saturate at the line cen-
tre, causing the column line shape of the absorption line to be
more sensitive (Jacobs et al., 2020). TCCON retrievals con-
tain an air-mass-dependent bias, which is corrected using the
method described by Wunch et al. (2011) and Deutscher et al.
(2010). To evaluate whether any residual air-mass-dependent
bias is present in the TCCON retrievals, which would cause
the seasonal posterior biases seen here, we filtered the TC-
CON dataset to contain only selected solar zenith angles≥ 40
and≤ 50 (see Appendix G, Table G3). We found only a slight
improvement of the posterior biases, which means TCCON
retrieval bias is not likely the reason for the biases seen in
winter. Similar to the Darwin site, we did not find an im-
provement of the prior biases by adding ocean glint data to
the inversion. Besides, ocean glint data (as they are shown in
Appendix C, Fig. C2d–h) are quite sparse around the Wollon-
gong site, providing little constraint on carbon fluxes around
this location.

Similar to the Darwin and Wollongong sites, we also found
a systematic overestimation of our posterior column-average
(LNLG) concentration at the TCCON Lauder site (Fig. 10c).
Prior biases are lower than 0.8 ppm. A slight improvement
was seen in June, July, September and November (Fig. 11c).
In June and July (winter season) the reduction of the biases
was only about 7 %. Improvement of the biases in Novem-
ber and September was better (10 % and 18 %), and we did
not find improvement in the correlation for these months (see
Appendix G, Table G4). The small or negligible improve-
ment of the prior biases at this site is likely due to a combi-
nation of New Zealand’s size and shape, the prevailing wind
direction, and the fact that we do not allow much freedom for
ocean fluxes by specifying a small prior uncertainty. Adding
ocean glint observation to the inversion did not improve the
accuracy of the biases at this site. The sparseness of OCO-2
soundings over the ocean around New Zealand in the period
from May to September might explain the lack of improve-
ment in this bias. Higher-resolution models and smaller cor-
relation lengths (allowing more flexibility in spatial fluxes)
would be required for good performance over New Zealand.

3.5.2 Comparison with in situ measurements

Figures 12 and 13 show the comparison between ground-
based in situ measurements (Gunn Point, Burncluith, Iron-
bark and Cape Grim) and our prior and posterior concentra-
tions simulated by CMAQ at the surface.

As illustrated in Fig. 12a, the inversion using only LNLG
OCO-2 observations does not match Gunn Point observed

concentrations well except in September. Most biases are
negative, indicating that the posterior simulation at the sur-
face of the CMAQ model underestimates the observations.
The prior concentration indicates a better agreement, but bi-
ases are still significant. One possible explanation for the
large negative posterior biases in January, February, March
and December might be related to strong westerly winds
that blow from the ocean to this site location (see Fig. S9
in the Supplement). Using only LNLG observations restricts
the ability of our inversion system to optimize ocean fluxes,
primarily because the ocean uncertainties set up in the in-
version were relatively low compared to the uncertainties as-
signed over land. However, our results suggest that adding
glint observations to the system improves the posterior bi-
ases at this site. These results are not unexpected because
Gunn Point is a coastal site largely affected by ocean car-
bon fluxes. In February, and when the wind comes from the
ocean, the posterior bias using LNLGOG shows a significant
improvement compared to prior bias concentration. Here, we
see a reduction of the bias from 1.93 (RMSE= 4.21) to 0.65
(RMSE= 3.79).

In winter (June to August), we see that the posterior biases
using either OCO-2 LNLG or LNLGOG show no improve-
ment, and the prior biases are in better agreement with the
observations. One possible explanation might be related to
the fact the column-integrated CO2 measurements are less
sensitive to near-surface dynamics compared to in situ mea-
surements (Lauvaux and Davis, 2014), or to remaining bias
in the OCO-2 data. Despite the fact that version 9 has an
improvement in the bias correction, in the recent study per-
formed by OCO-2 MIP (Peiro et al., 2021) shows that LNLG
data still have large negative latitudinal biases in the Southern
Hemisphere. Another potential explanation could be associ-
ated with an inaccurate representation of vertical transport
within the planetary boundary layer in winter by the CMAQ
model. Incorrect vertical transport might lead to erroneous
horizontal distributions of air masses (Lauvaux and Davis,
2014). Therefore, correcting the prior column-average sim-
ulated by CMAQ to match OCO-2 might not improve near-
surface simulations.

Improvements of the bias using LNLG observations at
Ironbark are only seen in January, February, May, Septem-
ber and November (Fig. 12b). We found high negative pos-
terior biases in June and July. The negative posterior bias in
June, −2.79 ppm (RMSE= 3.53), might be associated with
the small number of OCO-2 soundings located around Iron-
bark (see Appendix C, Fig. C1f) and the wind direction in
that region. We can see in Fig. S7 (see the Supplement) that
prevailing winds blow from the southeast, an area with no
OCO-2 soundings to constrain fluxes. In July, posterior bi-
ases are larger than prior ones (−0.35 to−2.33 ppm). Again,
biases in winter might be associated with error in the trans-
port model or remaining biases in LNLG OCO-2 observa-
tions. At this site, we did not see an improvement of the pos-
terior bias when we added glint ocean data to the inversion.

https://doi.org/10.5194/acp-21-17453-2021 Atmos. Chem. Phys., 21, 17453–17494, 2021



17470 Y. Villalobos et al.: Australian carbon fluxes derived by the assimilation of OCO-2 satellite data

Figure 10. Box plot diagrams show the monthly mean average of CO2 concentration at the Darwin (a), Lauder (b) and Wollongong (c)
TCCON sites for 2015. The top edge of the box represents the 75th percentile and the bottom edge represents the 25th percentile. The top
and bottom whiskers represent the 95th and 5th percentiles. The horizontal black line shows the median and the circle indicates the mean.
Mean values are indicated by blue circles and median values by the black line.

Results for the Burncluith station (Fig. 3c) are similar to
those for Ironbark. This is not surprising given the stations’
proximity. The posterior simulation performs better in July,
October and December at Burncluith than Ironbark.

The posterior LNLG simulation at Cape Grim, shown in
Fig. 12d, is in better agreement with the observations than the
prior concentrations for the austral autumn and early winter
of 2015. By contrast, high posterior negative biases are seen

from September to December (> 2 ppm). This seasonality of
bias is likely related to the seasonality of wind direction. The
predominantly northerly flow in winter brings air from main-
land Australia where fluxes have been constrained by OCO-
2 observations. The southerly flow later in the year brings
air from the Southern Ocean, unconstrained by observations.
Similar to the Gunn Point site, we found that adding ocean
glint observations to the inversion improved the prior mean
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Figure 11. CMAQ prior and posterior concentration bias and root mean square error at the (a) Darwin, (b) Wollongong and (c) Lauder
TCCON sites for 2015. Yellow-green and green boxes represent prior posterior concentration biases, and coral and purple bars represent the
RMSE. Box plots represent the 75th percentile and the bottom edge represents the 25th percentile. The top and bottom whiskers represent
the 95th and 5th percentiles. The horizontal black line shows the median and the circle indicates the mean. Mean values are indicated by
black circles and median values by the black line.

concentration bias considerably. In January, for example, we
see a reduction of the bias from −2.31 (RMSE= 3.38) to
−0.54 (RMSE= 2.46) ppm using LNLGOG in the inversion.
Again, these findings are not unexpected because Cape Grim

is an oceanic station strongly influenced by oceanic carbon
fluxes.
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Figure 12. Box plot diagrams show the monthly mean average of CO2 concentration at (a) Gunn Point, (b) Ironbark, (c) Burncluith and
(d) Cape Grim for 2015. For details of what the different components of the box plot represent, see the caption of Fig. 10.
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Figure 13. CMAQ prior and posterior concentration bias and root mean square error at (a) Gunn Point, (b) Ironbark, (c) Burncluith
and (d) Cape Grim for 2015. For details of what the different components of the box plot represent, see the caption of Fig. 11. Note
that bias and RMSE in Gunn Point in July exclude the highest concentration value for that period, which was 558.408 ppm; we did this to
better represent the figure. Prior and posterior concentration biases for this period were −4.9 (RMSE= 16.8) and −5.1 ppm (RMSE= 17.1),
respectively.
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4 Discussion

We saw that semi-arid ecosystems in Australia, such as sa-
vanna and areas with sparse vegetation, are responsible to
some extent for the stronger carbon sink (relative to the prior
flux) recorded in 2015. We associated this carbon uptake with
an increase in vegetation productivity (positive EVI anoma-
lies) and an underestimation of the GPP flux by the CABLE
land surface model. We speculate that the leaf area index
(LAI) estimated by the land surface model CABLE-BIOS3
fails to capture the abrupt response of the terrestrial bio-
sphere to rainfall over areas with sparse vegetation. This hy-
pothesis could be tested by comparing CABLE-BIOS3 LAI
with satellite LAI. However, this is beyond the scope of this
study and will be taken up in a forthcoming article.

We compared our findings against the ensemble mean
of nine in situ and OCO-2 (LNLG) MIP global inver-
sions (AMES, PCTM, CAMS, CMS-Flux, CSU, CT, OU,
TM5−4DVAR, UT) for 2015 (Fig. 14). We can see in
Fig. 14a that the OCO-2 MIP and our posterior inver-
sion suggest that Australia was a carbon sink for 2015.
Our flux annual mean carbon flux estimate for Australia
(−0.41± 0.08 PgC yr−1) falls within the annual ensemble
mean estimate of the OCO-2 MIP (LNLG) flux inversion
(−0.23± 0.12 PgC yr−1). Contrary to these findings, the en-
semble mean of the in situ MIP inversions suggest that Aus-
tralia was a carbon source of 0.20± 0.22 PgC yr−1 for 2015.
However, this fact cannot be concluded with high confidence
because of the spread ensemble mean of in situ MIP global
inversions.

In terms of seasonality, we can see in Fig. 14b that our
inversion produces a similar seasonal pattern to the ensem-
ble monthly mean of OCO-2 MIP (LNLG) (except for July)
and produces an almost identical flux estimate for several
months in 2015 (Fig. 14b). For example, in February and
March, the monthly ensemble OCO-2 MIP (LNLG) estimate
was −0.77± 0.48 and −0.96± 0.21 PgC yr−1 compared to
our posterior flux estimate, which was −0.77± 0.14 and
−0.82± 0.17 PgC yr−1, respectively. These findings give
confidence that the posterior carbon fluxes estimated in this
study are reliable.

As we saw in Sect. 3.5, the validation of our inver-
sion against Ironbark and Burncluith sites suggests that the
anomalous sink seen in July might likely be related to
errors in the transport model. If we interpolate July be-
tween June and August, we reproduce a monthly mean
(−0.62± 0.34 PgC yr−1), which is closer to the ensemble
mean of the OCO-2 MIP (−0.47± 0.58 PgC yr−1), consid-
ering the range of the spread the model and the uncertainties
of our posterior fluxes (see Fig. 15b). By doing this inter-
polation, we shift our posterior annual flux from −0.41 to
−0.32 PgC yr−1, which is also closer to the annual ensemble
mean of OCO-2 MIP (−0.23 PgC yr−1).

The individual analysis of seasonal variations for the nine
global carbon flux estimates, either derived by in situ or

OCO-2 (LNLG) observations, show a large disagreement be-
tween them (Appendix I; Figs. I1 and I2). However, the vari-
ation of the seasonal cycle between in situ global flux in-
versions is more evident. We can see in Fig. I1 that the sea-
sonal cycle derived by in situ global inversions over Aus-
tralia is highly uncertain. One reason for the large disagree-
ment between the in situ global inversions in Australia is the
sparsity of observations. There around six existing Australian
monitoring stations, and not all are operational (Ziehn et al.,
2016). Besides, these global in situ inversions rely on mea-
surements that come from monitoring stations such as Cape
Grim, a station designed to sample background maritime air
masses much of the time, thus providing minimal constraint
on Australian fluxes (Haverd et al., 2013c). The OCO-2 MIP
disagreement is likely driven by the choice of the prior flux,
transport and data assimilation methodology used in the in-
version (Crowell et al., 2019). For example, prior flux es-
timates used in global inversions rely on biosphere models
such as CASA (van der Werf et al., 2017) or ORCHIDEE
(Krinner et al., 2005). These models do not simulate well the
NPP for grasslands (Wang et al., 2016) and hence underesti-
mate the seasonality of the net ecosystem exchange for im-
portant ecosystems such as savanna and sparsely vegetated.
This last point is critical for flux estimates over Australia be-
cause most of the land ecosystem is grassland and shrubs.

The analysis of the peak-to-peak seasonal variability of
the nine OCO-2 global inversions individually shown in Ta-
ble 4 indicates that, in general, November was the month
in Australia with the highest carbon release to the atmo-
sphere, similar to our posterior estimates. However, there is
no unanimous agreement between them about the month with
the largest carbon uptake. Analysing the ensemble mean of
OCO-2 MIP, we can see in Fig. 14b that February and March
were the months with the largest carbon uptake (−0.77 and
−0.96 PgC yr−1, respectively), a close estimate to our poste-
rior fluxes, whose values were −0.77, −0.82 PgC yr−1.

To further analyse our results, we also assess agreement
between our posterior monthly spatial maps and these 10
global inversions individually. We plotted monthly maps for
each global inversion (see Sect. 7 in the Supplement). We
found that our posterior flux distribution across Australia
agree well with at least four global inversions (TM5, CAMS,
PCTM, AMES; Figs. S14, S15, S16 and S18 in the Supple-
ment). We believe that this intercomparison is valuable for
Australia because it shows that our results are reliable with a
better spatial resolution than global inversion.

The comparison with OCO-2 MIP strengthens our confi-
dence that our inversion is capturing fluxes across Australia.
It supports the surprising result that Australia was a carbon
sink in 2015 despite the significant El Niño (ECMWF, 2020).
El Niño is only one of several large-scale drivers of the Aus-
tralian climate, and we have already noted positive rainfall
anomalies associated with some strong sinks.

Evaluating the carbon fluxes assimilated in this study
through the validation of our assimilated posterior field is
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Figure 14. Panel (a) shows the ensemble annual mean of carbon fluxes derived by the in situ (green dot) and OCO-2 (LNLG) MIP (grey
dot) global inversions, and the annual mean of the posterior fluxes estimated in this study (blue dot). The green and grey error bar represents
the annual ensemble spread of the global models. In contrast, the blue error bar represents the uncertainties in the posterior flux calculated
by different OSSEs estimated by Villalobos et al. (2020). Panel (b) shows the ensemble mean seasonal cycle of MIP in situ (green dots) and
OCO-2 (LNLG) (grey dots) and the seasonal cycle of the posterior fluxes estimated in this study (blue dots) (all fluxes in this comparison are
without fossil fuel emissions).

Figure 15. As in Fig. 14, but in this case, the monthly mean posterior flux (blue dot) for July has been interpolated between June and August.

difficult. We saw in Sect. 3.5.1 that most of the improvement
of the prior concentration biases was seen in TCCON site
(mainly the Darwin site in northern Australia) in the sum-
mer season compared to in situ observations. It is difficult to
validate our posterior concentration field against monitoring
stations located in coastal areas, such as Gunn Point or Cape
Grim. These sites are strongly affected by oceanic fluxes,
which are less restricted by the inversion when they are
assimilated by only using LNLG observations. We demon-

strated that adding OCO-2 glint observations to the inversion
improves the biases considerably at these sites but not for
TCCON sites or sites located far away from the ocean such
as Burncluith and Ironbark.

We also found that adding OCO-2 ocean glint data to the
inversion does not significantly alter the annual carbon sink
estimated for the continent (0.36 PgC yr−1) compared to the
estimate made by only using LNLG OCO-2 observations
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Table 4. Summary of the peak-to-peak amplitude of our posterior terrestrial fluxes, prior fluxes and terrestrial fluxes from nine different in
situ and OCO-2 (LNLG) MIP global inversions. Units are PgC yr−1

Biosphere terrestrial fluxes Acronym Amplitude Maximum month Minimum month

MIP in situ1

AMES 2.59 December February
PCTM 4.04 November March
CAMS 2.48 July February
CMS-Flux 2.83 November February
CSU 2.68 November January
CT 0.65 June September
OU 1.81 December September
TM5-4DVAR 2.59 November August
UT 0.98 November March
Ensemble 1.75 November February

OCO-2 MIP (LNLG)2

AMES 2.27 October March
PCTM 1.96 October February
CAMS 2.19 November March
CMS-Flux 2.87 November March
CSU 2.85 November July
CT 0.81 July August
OU 1.90 December September
TM5-4DVAR 0.89 November August
UT 3.71 November March
Ensemble 1.90 November March

Posterior 3.07 November July

CMAQ OCO-2 (LNLG)
Posterior

2.13 November March
(July interpolated)

CABLE-BIOS3 Prior 1.43 November January

1 Figure I1, Appendix I, shows the seasonal cycle of the Australian carbon fluxes derived by the models contributing to in situ MIP
inversions. 2 Figure I2, Appendix I, shows the seasonal cycle of the Australian carbon fluxes derived by the models contributing to the
OCO-2 (LNLG) MIP global inversions.

(0.41 PgC yr−1), suggesting that adding ocean glint observa-
tions does not strongly drive the continental carbon budget.

To assess the impact of biases in the lateral boundaries
of the CMAQ domain, we performed two sensitivity exper-
iments. In both experiments, we add a constant offset of
0.25 ppm to each grid cell of the BCs. In the first experi-
ment we solve for the BCs and use LNLG. This induces a
bias in our posterior annual flux of −0.8 PgC yr−1. Solving
for the BCs and using LNLGOG observations reduces the
bias further to −0.4 PgC yr−1. Adding 0.25 ppm everywhere
is an extreme test since the global assimilation fields we use
are unlikely to have such systematic errors against data they
assimilate. The results do highlight the importance of solving
for the BCs in a regional inverse system and also the impor-
tance of large domains with enough observations in a buffer
region around our area of interest. These results are also re-
inforced by the good agreement that our assimilated fluxes
have with OCO-2 MIP.

There are still several methodological choices that are
somewhat arbitrary in this study. The most important is the
implied spatial resolution. This is determined by the correla-
tion length used in the prior uncertainty as much as the reso-

lution of CMAQ. Villalobos et al. (2020) showed the impact
of this correlation length on posterior uncertainty, and our
choice makes a compromise between the information avail-
able from observations and avoidance of aggregation errors
(Kaminski et al., 2001). A more important limitation is the
restriction to 1 year. This will be addressed in a forthcoming
study extending over the OCO-2 dataset.

Higher-resolution flux inversions assimilating satellite re-
trievals of greenhouse gas concentrations, as illustrated by
this study, will be increasingly important in a world seek-
ing climate solutions and a better understanding of the global
carbon cycle. They will likely play a role in not just address-
ing questions of scientific interest but also in ongoing mon-
itoring and assessment of emission targets. Australia, as a
large and geographically isolated land mass, with a terrestrial
biosphere highly responsive to climate drivers, offers an ideal
testing ground for such flux inversions. The overall success
of this study suggests great promise, especially in regions
with sparse in situ networks.
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5 Conclusions

We performed a four-dimensional variational data assimila-
tion inversion to estimate Australian CO2 fluxes for 2015.
The inversion was based around the Community Multiscale
Air Quality (CMAQ) transport–dispersion model and satel-
lite data from the Orbiting Carbon Observatory-2 (OCO-
2) (land nadir and glint data, version 9). Our regional
inversion suggests that Australia was a carbon sink of
−0.41± 0.03 PgC yr−1 compared to the prior estimate of
0.09± 0.20 PgC yr−1. We found a higher-than-average in-
crease of land productivity (relative to 2000–2014) over
the savanna ecosystem (northern Australia) during summer,
leading to most of the carbon uptake in this ecosystem. The
sparsely vegetated ecosystem is the most extensive ecosys-
tem over Australia and also showed a slight increase of land
productivity in the autumn and winter seasons in the western
region of Australia, which was also driven by an increase
of vegetation productivity in response to positive rainfall
anomalies in this period. We also found that the higher car-
bon uptake by our inversion (relative to the prior) was due to
an underestimation of GPP simulated by the CABLE-BIOS3
model.

Evaluation with the TCCON Darwin site shows that our
inversion is able to reduce biases mainly in the summer pe-
riod compared to the winter season. Reduction of the biases
at TCCON Lauder and Wollongong showed a very slight
systematic decrease, mostly because both sites are strongly
affected by ocean winds and there is a reduced number of
OCO-2 soundings passing over these sites in some periods
in 2015. Posterior column-integrated simulations at coastal
monitoring sites are challenging to validate because they are
strongly influenced by ocean fluxes, which were assigned
small uncertainties in our inversion. Comparison with in
situ data was also a challenge mainly over oceanic mon-
itoring stations such as Cape Grim and Gunn Point sites,
which are also strongly impacted by ocean fluxes. Compari-
son with monitoring stations over land such as Ironbark and
Burncluith also shows difficulties in simultaneously match-
ing column-integrated and surface data, most likely linked
to model vertical transport. The scarcity of in situ observa-
tions across the Australian continent, mainly over the sa-
vanna and sparsely vegetated ecosystem, restricts our abil-
ity to conclude with confidence whether the stronger carbon
sink (relative to the prior) found in those ecosystems is real or
not. However, the comparison with the annual and monthly
ensemble means of the OCO-2 MIP is encouraging and sup-
ports our results.
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Appendix A: Spatial pattern of the differences between
posterior and prior fluxes

Figure A1. Spatial pattern of the differences between posterior and prior fluxes for 2015.
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Appendix B: Monthly time series of the Australian land
biosphere prior and posterior CO2 flux over six
bioclimatic regions

Figure B1. Monthly time series of the Australian land biosphere prior and posterior CO2 flux and their uncertainties in gC m−2 yr−1 over
six bioclimatic regions. The prior and posterior estimates do not include fossil fuel emissions.
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Appendix C: Spatial distribution of OCO-2 data across
Australia

Figure C1. Spatial distribution of OCO-2 soundings (LNLG) over the CMAQ domain for 2015.
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Figure C2. Spatial distribution of OCO-2 soundings (LNLGOG) over the CMAQ domain for 2015.
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Appendix D: Spatial distribution of the prior and
posterior uncertainties across Australia

Figure D1. Prior uncertainties accounting for the major terms in the CO2 budget (anthropogenic fluxes, fires, land and ocean exchange).
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Figure D2. Posterior uncertainties calculated by OSSEs in Villalobos et al. (2020).
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Appendix E: Time series of BIOS GPP and MODIS
GPP

Figure E1. Time series of monthly mean of CABLE-BIOS3 GPP and MODIS GPP.
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Appendix F: Posterior fluxes assimilated by using
LNLGOG satellite observations

Table F1. Australia terrestrial carbon fluxes estimated using LNLG and LNLGOG for 2015 (units: PgC yr−1).

Months Prior Prior Posterior Posterior

yyyy-mm uncertainties LNLG LNLGOG uncertainties

2015-01 −0.89 0.75 −0.84 −0.51 0.18
2015-02 −0.56 0.75 −0.77 −1.13 0.14
2015-03 0.12 0.74 −0.82 −0.59 0.17
2015-04 0.24 0.69 −0.28 −0.23 0.25
2015-05 0.15 0.64 −0.47 −0.23 0.33
2015-06 0.15 0.59 −0.31 −0.54 0.41
2015-07 0.09 0.62 −1.75 −1.96 0.34
2015-08 0.13 0.64 −0.93 −0.97 0.27
2015-09 0.16 0.66 −0.78 −0.24 0.20
2015-10 0.53 0.69 0.67 0.20 0.34
2015-11 0.54 0.73 1.31 1.56 0.27
2015-12 0.422 0.76 0.00 0.40 0.15

Appendix G: TCCON comparison

Table G1. Analysis of the residual between CMAQ prior and posterior simulations and the TCCON Darwin site for 2015: averaged bias,
RMSE and Pearson’s coefficient (R).

Darwin

Months Prior Posterior Posterior

LNLG LNLGOG

yyyy-mm Bias RMSE R Bias RMSE R Bias RMSE R

2015-01 0.12 0.51 0.81 −0.04 0.82 0.75 0.08 0.58 0.61
2015-02 0.69 0.85 0.78 0.38 0.63 0.78 0.43 0.69 0.70
2015-03 0.93 1.10 0.14 0.18 0.59 0.29 0.64 0.88 0.26
2015-04 0.85 0.94 0.38 0.60 0.74 0.42 0.62 0.74 0.42
2015-05 0.97 1.05 0.37 0.90 0.99 0.52 0.90 0.96 0.58
2015-06 0.90 0.97 0.21 1.24 1.27 0.23 1.12 1.16 0.12
2015-07 1.51 1.55 −0.18 1.07 1.10 0.22 0.92 0.96 0.17
2015-08 1.44 1.46 0.34 1.06 1.10 0.35 1.07 1.11 0.33
2015-09 1.12 1.16 0.02 0.81 0.86 0.10 0.77 0.82 0.21
2015-10 0.55 0.63 0.53 0.63 0.69 0.62 0.54 0.60 0.64
2015-11 −0.25 0.51 0.66 0.11 0.42 0.75 −0.24 0.53 0.64
2015-12 −0.34 0.48 0.18 −0.02 0.31 0.26 −0.30 0.45 0.28
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Table G2. Analysis of the residual between CMAQ prior and posterior simulations and the TCCON Wollongong site for 2015: averaged
bias, RMSE and Pearson’s coefficient (R).

Wollongong

Months Prior Posterior Posterior

LNLG LNLGOG

yyyy-mm Bias RMSE R Bias RMSE R Bias RMSE R

2015-01 −0.04 0.72 0.21 0.07 0.75 0.23 0.17 0.89 −0.04
2015-02 −0.21 0.56 0.48 0.16 0.63 0.51 0.20 0.64 0.44
2015-03 0.66 0.94 0.19 0.51 0.88 0.16 0.67 0.98 0.15
2015-04 0.72 0.96 0.07 0.82 1.06 0.15 0.71 1.00 0.05
2015-05 1.26 1.40 0.07 1.54 1.72 0.02 1.67 1.86 0.05
2015-06 1.41 1.53 0.68 1.61 1.72 0.68 1.59 1.71 0.66
2015-07 1.37 1.56 0.32 1.14 1.38 0.28 1.10 1.35 0.28
2015-08 1.42 1.57 0.25 1.61 1.76 0.28 1.76 1.94 0.35
2015-09 1.19 1.44 0.16 1.11 1.42 0.19 1.37 1.68 0.22
2015-10 0.07 0.72 0.03 0.29 0.83 0.00 0.41 0.96 −0.06
2015-11 −0.74 1.22 −0.08 −0.40 1.13 −0.05 −0.28 1.19 −0.07
2015-12 −0.45 0.69 0.14 −0.60 0.85 −0.03 −0.46 0.76 0.04

Table G3. Analysis of the residual between CMAQ prior and posterior simulations and the TCCON Wollongong∗ site for 2015: averaged
bias, RMSE and Pearson’s coefficient (R).

Wollongong

Months Prior Posterior Posterior

LNLG LNLGOG

yyyy-mm Bias RMSE R Bias RMSE R Bias RMSE R

2015-01 0.01 0.75 0.14 0.10 0.79 0.15 0.21 0.94 −0.11
2015-02 −0.21 0.56 0.48 0.16 0.63 0.51 0.20 0.64 0.44
2015-03 0.65 0.93 0.19 0.50 0.87 0.17 0.67 0.97 0.16
2015-04 0.69 0.92 0.12 0.79 1.02 0.20 0.68 0.96 0.10
2015-05 1.12 1.26 0.24 1.39 1.54 0.19 1.50 1.66 0.18
2015-06 1.18 1.28 0.78 1.36 1.46 0.78 1.33 1.43 0.77
2015-07 1.17 1.35 0.45 0.94 1.18 0.40 0.91 1.16 0.39
2015-08 1.30 1.44 0.31 1.51 1.66 0.32 1.68 1.87 0.37
2015-09 1.18 1.43 0.16 1.10 1.41 0.20 1.36 1.67 0.22
2015-10 0.07 0.72 0.03 0.29 0.83 0.00 0.41 0.96 −0.06
2015-11 −0.74 1.17 0.02 −0.41 1.05 0.07 −0.31 1.10 0.04
2015-12 −0.44 0.71 0.16 −0.59 0.88 0.01 −0.46 0.78 0.09

∗ Wollongong TCCON data are filtered by solar zenith angles ≤ 40 and ≥ 50◦.
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Table G4. Analysis of the residual between CMAQ prior and posterior simulations and the TCCON Lauder site for 2015: averaged bias,
RMSE and Pearson’s coefficient (R).

Lauder

Months Prior Posterior Posterior

LNLG LNLGOG

yyyy-mm Bias RMSE R Bias RMSE R Bias RMSE R

2015-01 0.48 0.58 0.31 0.71 0.85 0.06 0.66 0.78 0.23
2015-02 0.61 0.74 0.22 1.03 1.17 0.34 1.19 1.33 0.41
2015-03 0.54 0.62 0.51 0.73 0.84 0.53 0.84 0.93 0.57
2015-04 0.50 0.59 0.77 0.51 0.60 0.79 0.66 0.74 0.82
2015-05 0.82 0.89 0.30 0.83 0.90 0.23 0.89 0.96 0.23
2015-06 0.65 0.86 0.60 0.61 0.82 0.56 0.64 0.84 0.55
2015-07 0.69 0.82 0.79 0.64 0.79 0.76 0.68 0.83 0.76
2015-08 0.57 0.64 0.64 0.57 0.64 0.66 0.69 0.75 0.62
2015-09 0.71 0.73 0.83 0.63 0.67 0.83 0.95 1.01 0.72
2015-10 0.75 0.82 0.65 0.74 0.82 0.59 0.89 0.95 0.61
2015-11 0.52 0.72 0.36 0.43 0.65 0.37 0.44 0.63 0.34
2015-12 0.71 0.76 0.79 0.77 0.81 0.81 0.71 0.75 0.79

Appendix H: In situ comparison

Table H1. Analysis of the residual between CMAQ prior and posterior simulations and the Gunn Point site for 2015: averaged bias, RMSE
and Pearson’s coefficient (R).

Gunn Point

Months Prior Posterior Posterior

LNLG LNLGOG

yyyy-mm Bias RMSE R Bias RMSE R Bias RMSE R

2015-01 −1.16 4.83 0.37 −2.11 4.96 0.26 −1.68 4.59 0.06
2015-02 −2.88 4.73 0.41 −3.55 5.14 0.47 −2.68 4.18 0.49
2015-03 −1.93 4.21 −0.06 −3.36 5.17 −0.06 0.65 3.79 0.04
2015-04 −1.07 2.92 0.33 −2.74 3.96 0.28 −2.05 3.49 0.36
2015-05 −1.76 2.78 0.35 −3.65 4.24 0.53 −2.43 3.34 0.54
2015-06 −0.96 1.68 0.29 1.90 2.62 0.31 0.77 1.96 0.34
2015-07 −1.34 8.84 0.00 −7.71 17.93 0.06 −8.40 18.20 0.08
2015-08 1.70 2.43 0.41 −2.88 3.29 0.25 −1.52 2.39 0.25
2015-09 1.81 2.13 0.28 −0.32 1.35 0.04 0.28 1.58 -0.04
2015-10 2.19 2.44 0.15 3.24 3.57 −0.03 2.05 2.40 −0.02
2015-11 −0.52 2.30 −0.67 0.66 2.33 −0.63 −0.85 2.61 −0.75
2015-12 −2.69 3.34 0.38 −4.03 4.50 0.36 −4.02 4.51 0.34
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Table H2. Analysis of the residual between CMAQ prior and posterior simulations and the Ironbark site for 2015: averaged bias, RMSE and
Pearson’s coefficient (R).

Ironbark

Months Prior Posterior Posterior

LNLG LNLGOG

yyyy-mm Bias RMSE R Bias RMSE R Bias RMSE R

2015-01 −1.61 2.28 0.32 0.43 2.33 −0.12 1.00 3.03 −0.42
2015-02 −1.07 1.30 0.44 0.71 1.14 0.32 1.07 1.31 0.50
2015-03 −0.34 2.85 0.35 −1.32 3.61 −0.08 −0.87 3.64 −0.04
2015-04 −1.11 2.13 0.50 −1.48 2.52 0.39 −1.32 2.22 0.54
2015-05 −2.15 2.77 0.37 −1.56 2.45 0.29 −1.18 2.29 0.33
2015-06 −2.12 2.63 0.46 −2.29 3.26 0.02 −1.06 2.78 −0.01
2015-07 −0.35 1.66 0.49 −2.33 2.77 0.54 −2.80 3.24 0.61
2015-08 1.44 2.55 0.26 0.92 2.84 0.01 0.95 2.80 0.21
2015-09 1.27 1.83 0.55 1.58 2.40 0.49 1.63 2.65 0.46
2015-10 −0.81 2.04 0.28 −0.90 2.04 0.29 −1.34 2.35 0.16
2015-11 −2.28 2.86 0.53 0.05 1.93 0.48 0.80 2.27 0.36
2015-12 −1.50 2.77 0.50 −3.33 4.34 0.28 −4.10 5.00 0.21

Table H3. Analysis of the residual between CMAQ prior and posterior simulations and the Burncluith site for 2015: averaged bias, RMSE
and Pearson’s coefficient (R).

Burncluith

Months Prior Posterior Posterior

LNLG LNLGOG

yyyy-mm Bias RMSE R Bias RMSE R Bias RMSE R

2015-01 – – – – – – – – –
2015-02 – – – – – – – – –
2015-03 – – – – – – – – –
2015-04 – – – – – – – – –
2015-05 – – – – – – – – –
2015-06 – – – – – – – – –
2015-07 0.86 2.13 0.41 −1.04 2.34 0.29 −1.15 2.71 0.28
2015-08 2.20 3.05 0.39 1.56 3.10 0.10 1.77 3.26 0.19
2015-09 2.05 2.71 0.43 2.10 3.18 0.27 2.22 3.52 0.22
2015-10 0.21 1.85 0.26 0.01 1.88 0.20 −0.31 2.07 0.02
2015-11 −1.24 2.23 0.73 1.22 2.30 0.69 1.92 3.00 0.54
2015-12 0.37 2.54 0.45 −1.28 3.24 0.21 −2.20 3.77 0.11
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Table H4. Analysis of the residual between CMAQ prior and posterior simulations and the Cape Grim site for 2015: averaged bias, RMSE
and Pearson’s coefficient (R).

Cape Grim

Months Prior Posterior Posterior

LNLG LNLGOG

yyyy-mm Bias RMSE R Bias RMSE R Bias RMSE R

2015-01 −2.31 3.38 0.28 −2.33 3.22 0.28 −0.54 2.46 0.27
2015-02 −2.61 3.68 0.57 −2.59 3.91 0.53 −1.44 3.83 0.40
2015-03 −1.25 2.02 0.53 −2.70 3.07 0.29 −0.97 1.72 0.32
2015-04 −2.33 3.22 0.41 −2.16 3.54 0.19 −2.69 3.78 0.17
2015-05 −1.85 3.27 0.36 −0.60 2.82 0.46 −0.22 2.64 0.54
2015-06 −1.80 2.84 0.14 −0.88 2.28 0.20 −0.76 2.22 0.22
2015-07 −0.96 2.05 0.10 −2.18 3.20 −0.03 −1.85 3.19 −0.01
2015-08 −1.91 2.93 −0.05 −2.12 3.22 0.02 −1.82 3.06 0.12
2015-09 −2.22 3.60 −0.02 −4.18 4.94 0.16 −1.69 3.93 0.02
2015-10 −2.37 3.47 0.08 −2.52 3.75 0.00 −2.42 3.84 −0.07
2015-11 −2.35 3.32 0.34 −3.07 4.28 −0.06 −1.88 3.65 −0.28
2015-12 −1.88 2.54 0.58 −2.34 2.89 0.49 −1.32 2.36 0.49

Appendix I: Australian fluxes derived by MIP in situ
and OCO-2 (LNLG) global inversions for 2015

Figure I1. Time series of monthly mean carbon fluxes derived by MIP in situ (IS) global inversion for 2015.
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Figure I2. Time series of monthly mean carbon fluxes derived by OCO-2 MIP (LNLG) global inversion for 2015.
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