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Abstract. Aggregation is a key microphysical process for
the formation of precipitable ice particles. Its theoretical de-
scription involves many parameters and dependencies among
different variables that are either insufficiently understood
or difficult to accurately represent in bulk microphysics
schemes. Previous studies have demonstrated the valuable in-
formation content of multi-frequency Doppler radar observa-
tions to characterize aggregation with respect to environmen-
tal parameters such as temperature. Comparisons with model
simulations can reveal discrepancies, but the main challenge
is to identify the most critical parameters in the aggrega-
tion parameterization, which can then be improved by using
the observations as constraints. In this study, we systemati-
cally investigate the sensitivity of physical variables, such as
number and mass density, as well as the forward-simulated
multi-frequency and Doppler radar observables, to different
parameters in a two-moment microphysics scheme. Our ap-
proach includes modifying key aggregation parameters such
as the sticking efficiency or the shape of the size distribu-
tion. We also revise and test the impact of changing func-
tional relationships (e.g., the terminal velocity–size relation)
and underlying assumptions (e.g., the definition of the ag-
gregation kernel). We test the sensitivity of the various com-
ponents first in a single-column “snowshaft” model, which
allows fast and efficient identification of the parameter com-
bination optimally matching the observations. We find that
particle properties, definition of the aggregation kernel, and
size distribution width prove to be most important, while the
sticking efficiency and the cloud ice habit have less influence.
The setting which optimally matches the observations is then

implemented in a 3D model using the identical scheme setup.
Rerunning the 3D model with the new scheme setup for a
multi-week period revealed that the large overestimation of
aggregate size and terminal velocity in the model could be
substantially reduced. The method presented is expected to
be applicable to constrain other ice microphysical processes
or to evaluate and improve other schemes.

1 Introduction

Ice growth processes which lead to precipitable particles
are essential to understand because more than 60 % of the
global precipitation reaching the surface is formed in the ice
phase (Heymsfield et al., 2020). Besides depositional growth
and riming, aggregation is one of the key growth mecha-
nisms in ice clouds. Aggregation is found to be active in a
large temperature range (Hobbs et al., 1974; Kajikawa and
Heymsfield, 1989; Field, 2000). As revealed, for example, by
radar observations (e.g., Barrett et al., 2019), aggregation can
cause a rapid increase in the particle size in favorable condi-
tions, such as the dendritic growth zone close to −15 ◦C or
close to the melting layer (Lamb and Verlinde, 2011). Un-
like depositional growth, sublimation, or riming, aggrega-
tion does not directly modify the ice and snow water con-
tent. However, its strong influence on particle shape, particle
size distribution, and terminal velocity vt links aggregation
to other processes, such as depositional growth, sublimation,
and riming, that alter the mass flux considerably. Therefore,
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it is important to accurately represent aggregation in micro-
physical schemes.

A central component of the theoretical description of
aggregation (see also Sect. 3.1) is the aggregation kernel.
Therefore, many challenges in accurately simulating aggre-
gation can be discussed by considering the various compo-
nents of this kernel. The aggregation kernel is defined analo-
gously to collision–coalescence of droplets in liquid clouds.

K(Di,Dj )=
π

4
(Di +Dj )

2
|vt(Di)− vt(Dj )|

Ecoll(Di,Dj )Estick(T )Ei,j (DiDj ) (1)

The aggregation kernel is proportional to the probability
K of two particles i and j colliding (Gillespie, 1975) and
sticking together after collision. This probability increases
with increasing size D and relative vt of the particles, as
well as the collision Ecoll and sticking efficiency Estick. Ob-
viously, the size D is well-defined for spherical particles by
their diameter, but this is already much more complex for ice
and snow particles which have a nonspherical shape. How
large vt of ice and snow particles is also strongly depends on
their size, shape, and orientation (Böhm, 1992; Mitchell and
Heymsfield, 2005; Heymsfield and Westbrook, 2010). For
smaller particles, vt increases strongly, but the increase in vt
flattens with size and finally vt approaches a constant value
of 1 ms−1 for centimeter-sized aggregates (Lohmann et al.,
2016). The size ranges in which vt increases most rapidly
(i.e., has the largest slope) are highly shape-dependent (Bart-
hazy and Schefold, 2006; Hashino and Tripoli, 2011; Kar-
rer et al., 2020). Consequently, the slope of the vt–size rela-
tion is uncertain but at the same time crucial for aggregation.
Two remaining parameters, Ecoll and Estick, are also multi-
plicative in the kernel. Ecoll describes the ratio between the
actual collision cross section and the geometric cross sec-
tion. Ecoll is smaller than 1 for most particle pairs because
typically the smaller and slower particle is deflected due to
hydrodynamics as the larger particle approaches. For ice col-
lisions, Ecoll is generally poorly constrained (Wang, 2010).
This can be easily understood given the enormous variety of
particle shapes and orientation, leading to very complex flow
fields. In the temperature region most relevant for aggrega-
tion (T >−20 ◦C), the number of activated ice-nucleating
particles (INPs) and hence also the concentration of small ice
particles rapidly decrease with increasing temperature (Kanji
et al., 2017). Except for small ice particles generated by sec-
ondary ice production, the effect of small ice particles be-
ing deflected around larger particles might therefore be less
important for aggregation. In fact, many bulk microphysical
schemes (e.g., Seifert and Beheng, 2006) assume the bulk
Ecoll to be 1.
Estick is the probability of two ice particles sticking af-

ter the collision. Although laboratory (Hosler and Hallgren,
1960; Connolly et al., 2012; Phillips et al., 2015) and in situ
(Mitchell, 1988; Kajikawa and Heymsfield, 1989) estimates,
as well as multi-frequency radar retrievals (Barrett et al.,

2019) of Estick exist, the exact value of Estick and its depen-
dency on parameters such as temperature or supersaturation
are very uncertain. However, there is widespread agreement
in the literature on two main temperature ranges in which
Estick is enhanced: around −15 ◦C, the mechanical interlock
of dendrites increases Estick compared to the surrounding
temperature regions (Pruppacher et al., 1998). In addition,
sintering of ice particles due to an increasingly thick quasi-
liquid layer (Slater and Michaelides, 2019) on the ice surface
causes a general increase in Estick when temperature rises up
to 0 ◦C. In addition to the aggregation kernel, the aggrega-
tion rate is also influenced by the particle size distribution.
Simply put, the particles that have a high probability of ag-
gregation, given by the aggregation kernel, must be present
in the cloud to have efficient aggregation.

Bulk microphysics schemes cannot simulate aggregation
on an individual particle level but require the calculation of
bulk aggregation rates. Analytic solutions for the bulk aggre-
gation rates are in principle possible (Verlinde et al., 1990).
However, these solutions are computationally expensive and
require the usage of power-law relationship for vt and size,
which cannot represent the asymptotic behavior known from
observations for large sizes. Approximations of the bulk ag-
gregation rates consider characteristic velocity differences
(Wisner et al., 1972; Seifert and Beheng, 2006) and allow
the use of more complex vt–size relations, which consider
the asymptotic behavior of vt at large sizes and nonspherical
particle shapes (Seifert et al., 2014).

In general, we need to distinguish between three different
aspects of uncertainty in aggregation simulations: (1) a gen-
eral lack of understanding or quantification of parameters,
such as the absolute values of Estick; (2) formulation of func-
tional relationships, which cannot adequately represent the
whole relevant range (e.g., vt–size relationship); and (3) sim-
plifications that must be made to keep the computational cost
affordable, e.g., considering only bulk properties of the par-
ticle population. Because of these uncertainties, it is impor-
tant to constrain the model by observations of aggregation in
clouds.

In situ and remote sensing observations have provided
valuable information on the general characteristics of aggre-
gation and have allowed estimation of the relative importance
of aggregation with respect to other processes. Decades ago,
observations had already reported that the largest aggregates
are found around −15 ◦C, which is considered to be a conse-
quence of mechanical interlocking of dendrites, and at tem-
peratures a few degrees below 0 ◦C, which is related to the
quasi-liquid layer (Lamb and Verlinde, 2011).

Radar observations contain valuable information about the
aggregation process, which also is the reason we rely on them
in this study. The strong temperature dependence of aggre-
gation observed in early studies could be confirmed by radar
observations, especially in profiles of absolute and differen-
tial reflectivity (Kennedy and Rutledge, 2011; Andrić et al.,
2013; Schrom and Kumjian, 2016; Moisseev et al., 2015). By
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additionally considering the mean Doppler velocity, the rel-
ative importance of aggregation and riming can be estimated
(Mosimann, 1995; Mason et al., 2018; Kneifel et al., 2020).
Furthermore, using radars of different frequencies allows for
the estimation of mean particle size (Matrosov, 1998; Hogan
et al., 2000; Liao et al., 2005; Szyrmer and Zawadzki, 2014;
Kneifel et al., 2015) and therefore better characterization of
temperatures at which aggregation is dominant.

Ori et al. (2020, O20) evaluated ice particle growth in
simulations of the Icosahedral Nonhydrostatic Model (Zängl
et al., 2015, ICON) using the Seifert–Beheng two-moment
microphysics scheme (Seifert and Beheng, 2006, SB06) by
comparing it with measurements in observational space. To
this end, O20 used the multi-month cloud radar dataset from
Dias Neto et al. (2019, D18). This quality-controlled dataset
is particularly suitable because it contains multi-frequency
and Doppler-measured data and thus fingerprints of aggrega-
tion and sedimentation. While model–observation compar-
isons based on a single or few cases can be difficult to inter-
pret due to the specific conditions (specific water vapor field,
synoptic situation, etc.) of the case, the statistical compar-
ison of O20 could reveal model-inherent mean biases. The
comparison of models and observations in the radar space
using a radar forward operator simplifies the assessment of
uncertainties because the deviations between models and ob-
servations can be directly compared to the variability of the
observations. The alternative approach of applying a retrieval
to the observations might seem more intuitive because micro-
physical variables, such as number density, can be compared
directly. However, ensuring consistency between a model
and retrieval as well as tracing the propagation of uncertain-
ties, for example in the observables or the forward model, is
often more complicated (e.g., Reitter et al., 2011).

O20 found an overall correct temperature dependency of
aggregation but also revealed an overestimation of the snow
size and vt at temperatures above −7 ◦C. O20 suggested that
inaccurate Estick and vt–size parameterization might cause
this overestimation. However, direct attribution of the ob-
served biases (e.g., snow that is too large) to a specific com-
ponent of the aggregation process (e.g., Estick) requires si-
multaneous investigation of the influence of all parameters
relevant for the aggregation process in a suitable modeling
setup.

Microphysics schemes are usually tuned to improve the
prediction of key variables, such as precipitation, the energy
balance at the top of the atmosphere, or the near-surface tem-
perature (Schmidt et al., 2017; Morrison et al., 2020). Only a
small subset of variables (e.g., vt of cloud ice) are varied dur-
ing the tuning process, and tuning might be ad hoc rather than
evidence-based. As the models simulate complex interacting
processes, several parameter combinations can improve the
predicting skill of modeled variables such as precipitation.
Therefore, it is likely that tuning introduces compensating
errors. For example, if two parameters are not accurately im-
plemented, adjusting one of them might improve the model

performance even when the adjustment leads away from the
true value of the parameter. Detailed remote sensing obser-
vations can be used to adjust parameters and make improve-
ments on the process level rather than improving the perfor-
mance of the entire modeling system. However, because re-
mote sensing observations are sensitive to a limited number
of parameters and within a limited range of variability, there
is a risk that model parameters may be adjusted to match
observations well but still be inaccurate in regimes wherein
these observations have low sensitivity. To reduce this risk,
new methods for model improvement and development have
been proposed whose parameter selection is still based on
physical constraints, namely theory and laboratory measure-
ments, but can be optimized by Bayesian inference of ob-
servations (Morrison et al., 2020). The advantage of this ap-
proach is that uncertainty of both laboratory measurements
and remote sensing observations can be considered, and new
knowledge about parameters can be continuously incorpo-
rated. The combination of several radar observables, such as
multiple frequencies, Doppler spectra, and polarimetry, al-
lows the observed signatures to be assigned to a specific mi-
crophysical process under some conditions (Kneifel et al.,
2015; Kalesse et al., 2016; Pfitzenmaier et al., 2018; Barrett
et al., 2019). For example, Barrett et al. (2019) focused their
multi-frequency study on the dendritic growth zone, where
aggregation is known to be particularly efficient. Hence, the
rapidly changing size-dependent, multi-frequency variables
could be clearly related to aggregation and a retrieval of
Estick could be obtained.

In addition, novel cloud radar techniques, e.g., multi-
frequency Doppler observations, enable the identification of
key growth mechanisms (Kneifel et al., 2015; Kalesse et al.,
2016; Pfitzenmaier et al., 2018; Barrett et al., 2019). Barrett
et al. (2019) identified a temperature range in which aggrega-
tion rapidly increases particle size and estimated Estick from
a retrieval using multi-frequency Doppler spectra. Identify-
ing a dominant growth mechanism allows focusing on a sin-
gle process, which simplifies the inverse problem by reduc-
ing the number of parameters and observables to be consid-
ered simultaneously.

In this study, we constrain the parameters that influence
aggregation by confronting idealized and realistic simula-
tions with the multi-frequency Doppler radar observations
from D18. The methods used are described in Sect. 2. We re-
vise all main parameters and functional relationships regard-
ing the aggregation formulation in SB06 by incorporating re-
cently published parameters and revising the bulk aggrega-
tion equations. We describe these parameters and formula-
tions in Sect. 3.1 and compare them with the choices in the
default SB06 scheme. In Sect. 3.1.5 the selection of the snow
particle properties, which is a critical component of both ag-
gregation and radar simulations, is described. The sensitivity
of the aggregation and associated radar variables to individ-
ual parameters of the revised formulation is evaluated with
an ensemble of 1D model simulations (Sect. 3.2). The opti-
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mal combination of these simulations is chosen and tested in
sensitivity studies in ICON-LEM simulations (Sect. 3.3). Fi-
nally, we perform ICON-LEM simulations of several weeks,
which we evaluate against the default simulations from O20
and the observations from D18 (Sect. 3.4). This approach
allows testing many different parameters against observed
statistics of several weeks in a numerically efficient way.
Section 4 summarizes the approach and draws conclusions
regarding the following questions: how can we investigate
the sensitivity of aggregation to the components of its pa-
rameterization? How can we improve the representation of
aggregation in a two-moment microphysical scheme? Which
microphysical parameters influence the simulation of aggre-
gation the most?

2 Methods

The Icosahedral Nonhydrostatic Model (ICON; Zängl et al.,
2015) has numerous applications due to its different con-
figurations. ICON-NWP (ICON numerical weather predic-
tion) is used by the Deutscher Wetterdienst (DWD) for op-
erational weather forecast in a global and recently also in all
regional setups. ICON’s large-eddy mode is called ICON-
LEM (Dipankar et al., 2015; Heinze et al., 2017). We use
the SB06 two-moment microphysics scheme instead of the
single-moment scheme currently used in operational weather
forecasting, as do most studies that perform simulations with
ICON-LEM. Since simulations with ICON-LEM are rela-
tively computationally expensive, we also use a simple 1D
model to efficiently test different parameterizations and their
influence on the simulation.

Since we want to further investigate the causes and reduce
the discrepancies between modeled and simulated observ-
ables, we use the same simulation setup of ICON-LEM as
in O20. We only briefly describe the setup here, since an ex-
tensive description can be found in O20. The modifications
we make to the SB06 microphysics scheme are described in
detail in Sect. 3.1.

2.1 “Snowshaft” model

Simple 1D models have been used to assess the influence
of several parameters or processes on microphysical or ob-
served quantities (e.g., precipitation rates, polarimetric vari-
ables) and to test new parameterizations (Seifert, 2008;
Kumjian and Ryzhkov, 2010; Milbrandt and Morrison, 2016;
Paukert et al., 2019). These models are much simpler than
full 3D models (like ICON-LEM) and are therefore also re-
ferred to as rain-shaft models. Because we apply such a sim-
ple model to ice microphysics we use the term “snowshaft”
model. In these simple models, the atmospheric variables
(e.g., temperature gradient, relative humidity) are predefined
and feedback mechanisms from microphysics to thermody-
namic and thus dynamic variables are neglected. These sim-

plifications allow the analysis of selected processes and their
sensitivity to a range of parameters without having to con-
sider the full range of complexity. Another advantage of the
snowshaft model is the low computational effort, which al-
lows testing a large number of parameter combinations and
process formulations.

The snowshaft model has 250 layers and the temperature
spans the range from 0 to−40 ◦C, which covers the most rel-
evant range for precipitating ice clouds. The temperature pro-
file is linear with a gradient of 0.0062 K m−1. Consequently,
the top of the model is at 6450 m. The relative humidity
with reference to ice (RHi) is constant for h > 3000 m and
increases linearly until it reaches RH= 100 % (RH is the rel-
ative humidity with reference to water; Fig. B5). The ther-
modynamic variables are constant in time and there is no air
motion. These simplifications can be justified by the nearly
stationary nature of many clouds and the low vertical velocity
seen in the dataset of D18.

At the top of the model, a gamma distribution (following
the size distribution parameter as described in Table 3) is ini-
tialized for cloud ice and snow. Together with the size distri-
bution parameter, the mass densityQ and the number density
N completely define the size distribution at the model top.
Below the model top, the size distribution evolves through
the following microphysical processes: sedimentation, depo-
sitional growth, and aggregation. These processes are consid-
ered dominant below the cloud top (where nucleation is espe-
cially important) and above temperatures near the melt layer,
where riming rates increase sharply (Kneifel and Moisseev,
2020). The values of RHi ,Q, andN are chosen in Sect. 3.2.1
to match profiles of observables with substantial precipita-
tion.

2.2 ICON-LEM setup

In our simulations, we use a small domain setup of ICON-
LEM. This setup has been shown to be both computationally
efficient and to represent clouds well in various conditions
(Marke et al., 2018; Schemann and Ebell, 2020; Schemann
et al., 2020). The domain is circular with a radius of 110 km,
and the observational site Jülich Observatory for Cloud Evo-
lution Core Facility (JOYCE-CF; Löhnert et al., 2015) is in
the center. At JOYCE the TRIple-frequency and Polarimet-
ric radar Experiment for improving process observation of
winter precipitation (Tripex, D18) took place, which we use
in the model–observation comparison. The horizontal grid
spacing of the simulations is ca. 400 m, and the vertical grid
spacing ranges from 20 m at the surface to 380 m at the model
top. With a total of 150 vertical layers, the atmosphere is
simulated up to a height of 21 km. Initial and lateral bound-
ary conditions are taken from the ECMWF Integrated Fore-
casting System (IFS). Initialization is carried out each day at
00:00 UTC. IFS data are incorporated as forcing on the lat-
eral boundary every hour.
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2.3 SB06 scheme

The SB06 scheme is used in the snowshaft simulations
(Sect. 3.2) and as the microphysics scheme in the ICON-
LEM simulations (Sect. 3.3 and 3.4). The SB06 scheme is a
two-moment scheme that simulates the evolution of the num-
ber (N =M(0)) and mass density (L=M(1)) from which the
mixing ratio (Q= L · ρ−1

air ) can be easily derived. ρair is the
air density and Mn (Eq. 2) represents the moments of the
mass distribution (Eq. 5).

M(n)
=

∞∫
0

mnf (m)dm (2)

The scheme simulates six different hydrometeor classes
(cloud water, cloud ice, rain, snow, graupel, and hail). The
conversion from one class to another is in general associated
with a specific microphysical process. For example, if cloud
ice forms aggregates, Q and N of cloud ice are converted to
snow (Sect. 3.1). Therefore, it is consistent to assume proper-
ties of monomers for cloud ice and properties of aggregates
for snow. The predefined particle properties of the default
setting of the scheme are listed in Table 2 for each hydrome-
teor, along with the properties of the cloud ice and snow class
alternatives proposed in Sect. 3.1.

In the SB06 scheme, aggregation rates are the product of
collision rates and Estick because Ecoll is assumed to be 1. In
the scheme, the variance approximation (SB06), based on the
work of Wisner et al. (1972), provides a computationally fea-
sible analytical solution of bulk collision rates. The variance
approximation of Seifert and Beheng (2006) avoids the usage
of pre-calculated lookup tables (Seifert et al., 2014) and, un-
like Wisner et al. (1972), is able to estimate collision rates
of self-collection, i.e., aggregation within a particle class.
The latter is made possible by considering the square root
of the second moment of the velocity differences, which also
has the advantage over the approximation by Wisner et al.
(1972) that the collision rates between different particles are
nonzero even if their bulk velocities are equal. The default
SB06 scheme assumes power-law relations for the vt–size
relation in the calculation of the collision rates. The exten-
sion of the variance approximation of Seifert et al. (2014),
which allows using Atlas-type vt–size relations (Sect. 3.1.3),
is applied in the SB06 scheme for the first time in this study.

Details of the components of the aggregation process con-
sidered in the SB06 scheme can be found in Sect. 3.1 and
Appendix A.

2.4 Passive and Active Microwave radiative TRAnsfer
tool (PAMTRA)

The Passive and Active Microwave radiative TRAnsfer tool
(PAMTRA; Mech et al., 2020) is used to simulate synthetic
radar observations. Microphysical properties are represented
consistently in the SB06 scheme and PAMTRA (Table 2).

Throughout the study, we adopt the same scattering as-
sumptions for each of the hydrometeor classes in the SB06
default scheme (“SB cloud ice”, “SB snow”, “cloud droplet”,
“rain”, “graupel”, and “hail” in Table 2). As in O20, we ap-
ply the self-similar Rayleigh–Gans approximation (SSRGA;
Hogan and Westbrook, 2014; Hogan et al., 2017) and co-
efficients derived from 3D models of aggregates of plates
for cloud ice and aggregates of needles for snow. In O20,
the coefficients used for the snow class were slightly ad-
justed to closely match the observed triple-frequency sig-
nature. The SSRGA parameters of aggregates of plates are
also used for the new cloud ice categories (“column” and
“needle” in Table 2). For Mix2, SSRGA parameters derived
from the same 3D models used for the determination of par-
ticle properties (Karrer et al., 2020, K20) are available (Ori
et al., 2021). Since we find little influence of SSRGA param-
eters in Sect. 3.1.5, we use the adjusted SSRGA properties of
the aggregates of needles from O20 for the Mix2 aggregates
throughout the study to be consistent with 020, although us-
ing the SSRGA parameters derived from the same 3D aggre-
gate models would be most physically consistent.

2.5 Multi-frequency radar approach

Like O20, we use multi-frequency observations to derive
information about the aggregation process. Multi-frequency
observations are useful to distinguish the size of particles,
since the ratio of wavelength and particle size along with
the particle density are the main factors that determine
their scattering properties. The scattering of particles much
smaller than the wavelength can be approximated well by
the Rayleigh approximation. For larger particles, however,
the interference of waves scattered from different parts of
the particles must be considered (Kneifel et al., 2020), which
leads to differential scattering among the various frequen-
cies.

The ratio between the reflectivities of two radars with op-
erating wavelengths λ1 and λ2 (λ1 < λ2),

DWRλ1,λ2 =
Ze(λ1)

Ze(λ2)
=
λ4

1

λ4
2

∫
σb(m,λ1)f (m)dm∫
σb(m,λ2)f (m)dm

, (3)

quantifies the amount of differential scattering. DWR is
called the dual-wavelength ratio, Ze is the reflectivity, and
σb is the backscattering cross section (all variables in lin-
ear units). Although differential attenuation can also con-
tribute to DWR (Battaglia et al., 2020), we did not include
this effect in Eq. (3) because the processing of D18 already
corrects for the impact of differential attenuation on DWR.
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D18 evaluated the absolute calibration of the observed Ze
values from the Ka-band radar using disdrometer measure-
ments during rainfall. After correcting differential attenua-
tion due to gases at all three frequencies, the Ka-band radar
was then used as a reference for estimating calibration bi-
ases and differential attenuation effects due to hydrometeors
by comparing the three Ze values at cloud top. The DWRs
caused by differential scattering are usually close to 0 dB for
small ice particles present at the cloud top. Calibration bi-
ases can be identified as DWR biases which are relatively
constant over time; differential attenuation effects due to su-
percooled liquid water, rainfall, or the melting layer vary
more strongly on shorter timescales (minutes to hours). The
path-integrated differential attenuation estimated at cloud top
was then used to correct the DWRs in the entire profile.
A more in-depth discussion of various correction methods
for multi-frequency radar observations is provided in Tridon
et al. (2020). If differential scattering effects are the only
contributor to DWR, it correlates well with the mean mass
of the distribution f (m) (Sect. 3.1.1), as can be seen from
Eq. (3). For small particles, the Rayleigh approximation is
valid for all frequencies and σb scales with the mass squared.
However, for larger particles and shorter wavelengths, σb is
smaller than predicted by the Rayleigh approximation and
σb(m,λ2) is smaller than σb(m,λ1). As a result, particle pop-
ulations that contain larger particles, e.g., due to their large
mean mass, have larger DWRs than particle populations with
smaller mean masses. Mason et al. (2019) and others have
shown that not only the mean mass, but also the shape of the
distribution, the particle density, and the internal structure of
the particles (through σb) can substantially affect the DWRs.
Given the radars available in D18, we investigate the sensi-
tivity of aggregation by analyzing DWRX,Ka and DWRKa,W.
The subscripts W, Ka, and X denote the radar bands and,
more specifically, the wavelengths of 3.3, 8.6, and 31 mm.
Each combination of wavelengths is sensitive to a different
range of particle sizes. For example, DWRKa,W is most sen-
sitive to mean particle sizes of unrimed cloud ice and snow
between 0.5 and 3 mm, and DWRX,Ka is sensitive between
1.5 and 15 mm (O20). Outside this sensitivity range, DWRs
are zero (small mean size) or asymptotically approach (sat-
urate) a DWR value (large mean sizes) that depends on the
scattering properties of the particles present. More detailed
information on the approach and its sensitivities can be found
in O20.

Moreover, D18 reported that strong riming is rare in their
dataset, so aggregation is the main contributor to particle
growth and thus the increasing DWRs from cloud top to
cloud bottom.

3 Results and discussion

3.1 Ice microphysical parameters influencing
aggregation

To interpret the following sensitivity experiments, we de-
scribe which parameters need to be considered in the simula-
tion of aggregation in a bulk scheme, which parameters and
process formulations are currently used in the SB06 scheme,
and how the assumptions could be updated with recently pub-
lished parameterizations.

The stochastic collection equation (SCE) describes how
the particle distribution (PSDm) changes with time under the
action of aggregation (Khain et al., 2015).

∂f (mi)

∂t
=

mi/2∫
0

f (mj )f (mi −mj )K(mi −mj ,mj )dmj

−

∞∫
0

f (mi)f (mj )K(mi,mj )dmj (4)

Here, f (m) is the particle distribution as a function of mass
and K is the aggregation kernel described in Sect. 3.1.2. The
first term of Eq. (4) describes the gain of particles of mass
mi by aggregation of particles with masses mj and mi −mj .
The second term considers the loss of particles of massmi by
aggregation with particles of mass mj (illustrated in Fig. 1a
and b). In general, PSDs cannot be perfectly described by
simple functional relationships (e.g., gamma distribution) but
can have complex shapes (Fig. 1a). Thus, explicit prediction
of the evolution of PSDs must take into account the full SCE.

Bulk schemes, however, can only account for the evolu-
tion of the PSD in a simplified form. The tendencies of the
moments in the SB06 scheme (mass density: ∂Q/∂t , num-
ber density: ∂N/∂t) can be calculated by considering only
the loss term. The reason for this can be further explained
by Fig. 1c–h, where the collision events are separated among
the ice (monomers) and snow (aggregates) classes. In fact,
because of the mass conservation, the total mass of particles
gained (integral of the first term) has to match the total mass
of particles lost (integral of the second term). Since it is as-
sumed that within one time step a particle can participate
only in one collision event, only one snow particle results
from the collision of two ice particles (number of arrows in
Fig. 1c and d). The same applies for the ice–snow and snow–
snow collisions, but here there is no conversion of N from
one category to another but only a loss of Ni or Ns. Thus,
it is sufficient to calculate only one collision rate for each of
the three considered collision scenarios (ice–ice, ice–snow,
snow–snow) and moments (N and Q).
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Figure 1. Illustration of the SCE (Eq. 4) for an explicitly resolved PSDm (a, b) and when applied to the cloud ice and snow classes of the
SB06 scheme (c, h). The left column depicts the loss term (second term in Eq. 4) and the middle column the gain term (first term in Eq. 4).
The right column shows the sign and connection of the tendency of the bulk moments. Arrows indicate whether the number density is rising
or falling at the specified mass. Red lines indicate the ice distribution and blue the snow distribution. The arrows are red if ice particles are
collected and blue if snow particles are collected or are created as a result of the collision.

3.1.1 Size distribution

In most bulk schemes, the PSD is described by the general-
ized gamma distribution or simplifications thereof. With the
mass m as a primary variable, the generalized gamma distri-
bution can be written as

fm(m)=N0,mm
νm exp(−λmmµm). (5)

For some applications, using the mass-equivalent diameter

Deq =

(
6m
πρw

)1/3

(6)

as a primary variable and the ordinary gamma distribution is
more convenient:

f (Deq)=N0,eqD
µeq
eq exp(−λeqDeq), (7)

where Deq is the mass-equivalent diameter. One such ap-
plication is the use of the Atlas-type vt–size relationship
(Eq. 11) in the calculation of collision rates in Appendix A.
Size distributions derived from in situ observations are usu-
ally presented as a function of the maximum dimension

Dmax, which is often derived by circumscribing a sphere or
spheroid to the projected particle image.

f (Dmax)=N0,maxD
µmax
max exp(−λmaxDmax) (8)

In general, a distribution described by Eq. (5) cannot be ex-
pressed by Eq. (7) or (8). Only when µm = 1/3 can Eq. (5)
be expressed by Eq. (7). To allow conversion of Eq. (5) to
(8), µm must be set to b−1

m (exponent in the m–Dmax rela-
tion; Eq. 12). As we calculate the collision rates of particles
following an Atlas-type vt–size relation (Appendix A), we
need to set µm = 1/3. Since bm 6= 3 for cloud ice and snow,
µmax in Eq. (8) can only be approximated.

The PSD shape can vary strongly, e.g., for nonstationary
events (Seifert, 2008). Furthermore, νm, or equivalent param-
eters in distributions that use a different primary variable, is
often described as a function of other parameters (e.g., the
mean size; Heymsfield, 2003). Nevertheless, in the current
version of the SB06 scheme, we must choose a single value
of νm in each simulation. Therefore, we test two different
values of νm in the simulations and later (Sect. 3.2) select the
one with which the simulations can reproduce the observa-
tions the best. The SB06 standard configuration (νm = 0) cor-
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Figure 2. Particle distribution as a function of mass (PSDm) with
a mass density of q = 2× 10−4 kg m−3 and a number density of
qn= 104 m−3 illustrating PSDs with a different shape parameter
µm.

responds to µeq = 2.0 and µmax =−0.11. If we use νm = 2
instead of νm = 0, we obtain a narrower distribution with
much fewer particles at small masses and a peak near the
mean mass. Considering Heymsfield (2003), νm = 0 is rep-
resentative of a mean mass diameter Dmean of about 0.5 mm,
and νm=2 is representative forDmean of about 0.2 mm. Many
studies have shown that the size distribution parameters are
correlated (e.g., Field et al., 2005; Mcfarquhar et al., 2015),
further complicating the selection of νm. Moreover, PSDs
can exhibit bimodalities, e.g., due to secondary ice genera-
tion (Korolev and Leisner, 2020), which can be accounted
for by the two classes of cloud ice and snow in the SB06
scheme.

The PSD width affects the aggregation rates and the radar
variables. The narrower the distribution is, the lower the ag-
gregation rates are. This is obvious from the bulk collision
rates in Appendix A and can be explained by the small vt
difference of similarly sized particles (Sect. 3.1.2). The PSD
width also affects the radar observables. The reflectivity in
the Rayleigh regime is proportional to the second moment
of the PSD. A narrower distribution reduces the number of
large particles (above 10−7 kg in Fig. 2). Therefore, the re-
flectivity (Ze) and mean Doppler velocity (MDV) are slightly
lower for a narrower distribution compared to a broader dis-
tribution with the sameQ and N . This effect is even stronger
for DWRs, as the large particles contribute the most to the
differential scattering signal (Table 1).

3.1.2 Collision kernel

The D-kernel (Eq. 1), defined analogously to the collisional
coalescence of droplets in liquid clouds, is often used not
only for particles that can be approximated well by spheres
(e.g., cloud droplets, hail), but for all particles. However, the

collision cross section of nonspherical particles is smaller
than the one of spheres with the same Dmax because of the
presence of voids in their circumscribing sphere. This devi-
ation was previously considered, e.g., a part of Ecoll (Keith
and Saunders, 1989; Pruppacher and Klett, 2010) by using
the equivalent circular radii ri = (Ai/π)0.5 as a characteris-
tic length. Using the D-kernel with a constant Ecoll that does
not depend on particle size (as done, e.g., in SB06), the D-
kernel approximation cannot account for the decrease in Ar
with increasing size (Fig. 3d). Therefore, we test whether an
alternative formulation of the collision kernel that takes the
projected areas into account (A-kernel; Connolly et al., 2012)
provides a better approximation.

K(Di,Dj )=
(
Ai(Di)

0.5
+Aj (Dj )

0.5
)2

|vi(Di)− vj (Dj )|Estick(T )Ecoll(Di,Dj ) (9)

The A-kernel approximation has been used previously in
the same or similar formulation (Kienast-Sjögren et al., 2013;
Morrison and Milbrandt, 2015; Dunnavan, 2021). In these
studies, the aggregation rates are calculated numerically and,
in the case of the scheme proposed by Morrison and Mil-
brandt (2015), stored in lookup tables that are used at the
model run time. Lookup tables can accurately store precom-
puted process rates and might be numerically more efficient
than analytical solutions, depending on the computer archi-
tecture, size of the lookup table, and complexity of the ana-
lytical solution. However, Seifert et al. (2014) argue that the
use of lookup tables also has disadvantages, like increasing
complexity during preprocessing, additional memory access,
and difficult reproducibility for follow-up studies. To avoid
these disadvantages, the SB06 scheme uses analytical solu-
tions of the variance approximation introduced by Seifert and
Beheng (2006). To use the A-kernel we have to generalize the
collision rates. For brevity, we moved the lengthy derivations
to Appendix A. To our knowledge, this is the first applica-
tion of an A-kernel in a bulk microphysics scheme that uses
an analytical formulation of the aggregation rates. How large
the difference is between the D- and the A-kernel depends on
the particle properties (e.g., area–size and vt–size relation).

3.1.3 Particle properties

Particle properties influence aggregation because they are an
essential part of the aggregation kernel. According to Eqs. (1)
and (9) collection is enhanced if the product of the difference
in vt and the joint cross section is large. Thus, a particle pop-
ulation will aggregate rapidly if the mean mass is relatively
large and particles with largely different vt are present. The
coefficients of area–size and vt–size relations of the SB06
default scheme and the particle from K20 are included in Ta-
ble 2.

While the particle properties of the SB06 default scheme
particle classes are taken from in situ observations, K20 used
an aggregation model and hydrodynamic theory to simulate
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Table 1. Size distribution parameter for µm = 1/3, the mass–size relationship of the Mix2 particles (Table 2), q = 2× 10−4 kg m−3, and
N = 104 m4 (same as Fig. 2). ZeKa, MDVKa, and DWRX,Ka are calculated using the self-similar Rayleigh–Gans approximation (SSRGA)
and the SSRGA parameters of Mix2 as provided by Ori et al. (2021). µmax is estimated by the zeroth, third, and sixth moment of the
distribution.

νm µeq µmax ZeKa [dBz] MDVKa [m/s] DWRX,Ka [dB] DWRKa,W [dB]

0.0 2.0 −0.11 12.11 0.91 1.21 3.89
2.0 8.0 2.19 9.83 0.83 0.02 1.12

the particle properties. The advantages of this approach are
that particle properties can be studied over a large size range,
are physically consistent, and can be studied in great detail.
Particle property relations from in situ observations have a
comparably small sample size. Thus, extrapolation to small
and large sizes is unavoidable because microphysics schemes
need information about particle properties in a large size
range. This extrapolation might lead to inaccuracies, such as
the overestimation of vt at large sizes (K20). Since we take
all snow particle properties (m–size,A–size, vt–size; Table 2)
from the same aggregate type within the dataset, all proper-
ties are physically consistent. By comparing with in situ ob-
servations, K20 found that their mixed aggregates consisting
of small columns and large dendrites (Mix2) can approxi-
mate mean aggregate properties well. Besides aggregates (in-
cluding aggregates of columns and aggregates of dendrites;
Sect. 3.1.5), K20 also summarized different monomer parti-
cle properties, e.g., the columns and needles shown in Fig. 3.
vt of the default cloud ice and snow class increases con-

tinuously with increasing size (Fig. 3) due to the power-law
relation used.

vt = avelm
bvel (10)

Due to this continuous increase, the self-collection rates of
these hydrometeor classes stay relatively large at large sizes
(Figs. B3 and B4). In contrast, the asymptotic approach to
a limit of vt in the new relations leads to rapidly decreasing
collision rates at large sizes. The asymptotic approach is ev-
ident from in situ observations and can be accounted for by
using an Atlas-type vt–size relation.

vt = αv −βv exp(−γvDeq) (11)

The relative vt of cloud ice and snow particles also plays a
role in ice–snow collection rates. In the SB06 default scheme,
vt of cloud ice and vt of snow differ greatly. However, K20
showed that vt of cloud ice and snow should have similar
values. The difference between cloud ice and snow vt de-
termines the location and magnitude of the minimum of the
collection rates.

The projected area A is derived differently in the D- and
the A-kernel. In the D-kernel, the m–Dmax relation,

m= amD
bm
max, (12)

determines the relation between A and size. Since m is the
primary variable in the SB06 scheme, it is most useful to
consider the differences between the kernels and the particle
classes as a function of Deq (which is directly related to the
mass).

Asphere =
π

4
D2

max =
π

4

(
πρwD

3
eq

6am

) 2
bm

(13)

Thus, the particles which have the lowest effective density,

ρeff =
6m

πρiceD3
max

, (14)

have the largest A for a given Deq (e.g., needles of K20 in
Fig. 3b). The other particles have similar A. In the A-kernel,
the actual projected area Aact derived from the particle shape
is relevant.

Aact = γAD
σA
eq (15)

The particle shapes and thusAact are not defined for the SB06
default classes because this property is not required. The area
ratio Ar is commonly defined as the ratio of Aact to the area
of a sphere with diameter Dmax.

Ar =
4γAD

σA
eq

πD2
max

(16)

At small sizes, Ar is close to 1, indicating compact parti-
cles and small differences between the D- and the A-kernel
(Fig. 3d). With increasing size, Ar decreases down to 0.2 at
Deq = 5 mm for the Mix2 class and lower for the cloud ice
classes needle and column. Aact is similar to observations of
Mitchell (1996) as shown in K20.

However, the low values of Ar of the cloud ice classes
are less important because such large sizes of cloud ice are
rarely reached in the model. The decrease in Ar leads to a de-
crease in collision rates, especially at large sizes, similar to
the Atlas-type vt–size relations. Thus, combining the new vt–
size relations with the A-kernel substantially decreases colli-
sion rates at large sizes.

While the properties of snow can be validated well against
mean observed quantities (as done in K20 and in Sect. 3.1.5
of this study), selecting a single habit for cloud ice is a strong
simplification that is necessary for a simplified microphysics
scheme.
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Figure 3. Particle properties from the default (SB06 default cloud ice, SB06 default snow) and modified version (column, needle, Mix2) of
the scheme. (a) Terminal velocity vt, (b) projected area A of a circumscribing sphere (as assumed in D-kernel), (c) “real” projected area A
considering the voids in the circumscribing sphere (as assumed in A-kernel), and (d) area ratio (Eq. 16). The default scheme does not assume
an A–D relation explicitly, and therefore the real projected area and the area ratio are not given.

3.1.4 Sticking efficiency

The parameters discussed so far determine how often col-
lisions occur. The percentage of the colliding particles that
stick together after a collision is defined by the sticking effi-
ciency Estick.
Estick is mostly only described as a function of the tem-

perature (Mitchell, 1988; Connolly et al., 2012, M88, C12).
To stick to each other, ice particles must form ice bonds
(Lamb and Verlinde, 2011), which is highly unlikely for col-
liding solid-ice particles when the temperature is well be-
low the melting temperature and the particles only touch
for a short time. There are two main mechanisms that in-
crease the likelihood of adhesion after a collision and ex-
plain the temperature dependence. The first mechanism is
explained by the quasi-liquid layer (QLL) on the ice par-
ticle surface. The phenomenon of QLL has been studied
since the mid-19th century (Slater and Michaelides, 2019).
QLL thickens with increasing temperature and consists of
weakly bound molecules on the particle surface (Slater and
Michaelides, 2019). When two particles touch, the molecules
form a solid bond at the point of contact. The second mecha-

Figure 4. The sticking efficiency (Estick) in the SB06 scheme for
collisions among ice particles (ice self-collection) follows L83; for
other collisions (ice–snow collection, snow self-collection) it ap-
plies the C86 parameterization. Our new relation (red) combines the
relations from M88 and C12 with a characteristic maximum around
−15◦ C and values quickly approaching unity for temperature larger
than −5◦ C.
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Table 2. Parameterizations used in ICON-LEM, the snowshaft model, and radar forward simulations of hydrometeor properties in PAMTRA.

D represents the particle maximum dimension andDeq =
(

6 m
πρw

)1/3
the mass-equivalent diameter;m is the particle mass and ρw the density

of water. The mass–size (m–D), terminal velocity vt–size, and projected area–size (A–D) relations are reported in their full mathematical
form. For the SSRGA scattering model, the four parameters (κ , β, γ , ζ0) are given in parentheses. SB indicates that the properties are
exclusively used in the default setup. Cloud droplets, rain, graupel, and hail (which are only relevant for the 3D simulations) follow the same
properties in all simulations. The aspect ratio is 1.0 for all classes except for the snow classes (SB snow, Mix2, and Mix2; O20 scat), for
which an aspect ratio of 0.6 is assumed. All variables are in SI units.

Hydrometeor m–D A–D v–D Scattering
classes

SB cloud ice 1.588D1.56
max – 30.6D0.55

max SSRGA(0.18,0.89,2.06,0.08)
Column 0.046D2.07

max 8.21D2.23
eq 1.63− 1.67e−1586Deq SSRGA(0.18,0.89,2.06,0.08)

Needle 0.0047D1.89
max 13.97D2.26

eq 1.41− 1.43e−1650Deq SSRGA(0.18,0.89,2.06,0.08)
SB snow 0.038D2.0

max – 5.51D0.25
max SSRGA(0.25,1.00,1.66,0.04)

Mix2 (O20 scat) 0.017D1.95
max 685.93D2.73

eq 1.12− 1.19e−2292Deq SSRGA(0.25,1.00,1.66,0.04)
Mix2 0.017D1.95

max 685.93D2.73
eq 1.12− 1.19e−2292Deq SSRGA(0.22,0.60,1.81,0.11)

Aggregates of columns 0.074D2.15
max 69.34D2.50

eq 1.583− 1.6e−1419Deq SSRGA(0.23,1.45,2.05,0.02)
Aggregates of dendrites 0.027D2.22

max 367.91D2.53
eq 0.88− 0.895e−1393Deq SSRGA(0.23,0.75,1.88,0.10)

Cloud drop π
6 ρwD

3
max – 2.49× 107D2

max Mie
Rain π

6 ρwD
3
max – 9.3− 9.6e−622.2Deq Mie

Graupel 500.86D3.18
max – 406.7D0.85

max soft-sphere Mie
Hail 392.33D3.0

max – 106.3D0.5
max soft-sphere Mie

nism is the mechanical interlocking of relatively large parti-
cles with dendritic features (Pruppacher et al., 1998). These
dendritic features occur at temperatures between −17 and
−12 ◦C.

The SB06 default scheme uses the Estick parameterization
of Cotton et al. (1982) for ice–ice collisions and Lin et al.
(1983) for ice–snow and snow–snow collisions (Fig. 4). The
exponential shape of both parameterizations can be justified
by the approximately exponentially increasing QLL thick-
ness. These relations, however, miss the maximum of Estick
suggested by studies (M88, C12) that consider the mechani-
cal interlocking mechanism.

We combine M88 and C12 to propose a new parametriza-
tion. For T <−20 ◦C we follow C12, then linearly approach
the plateau proposed by M88 with Estick = 1 between −17
and −12 ◦C. As discussed in the Introduction, there is ample
evidence from both in situ and remote sensing observations
that Estick is likely to be present at temperatures near−15 ◦C
(at which particles with dendritic features are present) and
near the melt boundary. At −10 ◦C the new parameteriza-
tion again follows C12 but increases towards 1 at higher
temperatures, at which C12 does not provide an estimate of
Estick. One might prefer to follow C12 rather than M88, since
C12 derived Estick directly from laboratory measurements
and M88 provided only an ad hoc parameterization. How-
ever, C12 analyzed only the initial stage of aggregation, dur-
ing which few monomers compose the aggregates. The inter-
locking mechanism might be more efficient for more com-
plex aggregates compared to early aggregates as discussed in
C12. Even considering only the initial stage of aggregation,

the confidence interval of Estick at −15 ◦C ranges from 0.35
to 0.85 (C12).

3.1.5 Selecting a particle type representative for a large
aggregate ensemble

After discussing the various components of the aggregation
process formulation, we need to decide which aggregate type
to use to best represent the physical particle properties (e.g.,
vt) and scattering properties. In O20, the particle proper-
ties were defined by the assumptions in the standard SB06
scheme. The best-fitting aggregate model and associated SS-
RGA parameters were selected based on the best fit in the
triple-frequency DWR space. In this section, we ask whether
there is an aggregate type in the database of K20 and Ori
et al. (2021) that reproduces both the physical and scattering
properties well compared to the observations.

O20 already noted that the representation of MDV as a
function of DWR resembles to some extent the underlying
vt–size relation. In contrast to the triple-frequency DWR-
DWR, the MDV-DWR space is rather insensitive to the
PSD width. Different aggregate types composed of differ-
ent monomer types generated and studied in K20 are used to
simulate their corresponding MDV-DWR signatures (Fig. 5).
The underlying distribution shows the observed values from
D18, which naturally contain larger scatter and even neg-
ative DWR values, mainly due to imperfect radar volume
matching (for a detailed discussion, see D18). Fortunately,
as shown in D18, the dataset contains only very short and
weak riming events. This scarcity of substantial riming is
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Figure 5. Comparison of the modeled and observed relationship
between MDV and DWR: (a) DWRKa,W, (b) DWRX,Ka. The his-
togram shows the observations from the Tripex campaign (D18).
The lines show the theoretical MDV at a given DWR for the vt
size relations of snow particles as assumed in the SB default (black)
and as modeled in K20. For the dashed lines, the SSRGA param-
eters have been directly derived from the corresponding aggregate
ensemble properties (as found in Ori et al., 2021). The solid lines
use SSRGA parameters as used in O20 in order to illustrate the un-
certainty due to the scattering parameters. The lines are calculated
using PAMTRA and the properties of the US standard winter atmo-
sphere at 700 hPa.

important because the increased MDV due to riming would
bias our comparison. Moderately or strongly rimed particles
would exceed 1.5 ms−1 upon reaching a size that results in
a nonzero DWRKa,W (Mason et al., 2018). The MDV-DWR
space is also well-suited to evaluate our aggregate choice, as
it combines the two radar variables that showed the largest
discrepancies with the model simulations in O20.

O20 already recognized the overestimation of vt at
large sizes, which is also evident in Fig. 5. For exam-
ple, at DWRX,Ka = 5 dB the observed MDV scatters around
1 ms−1, while the snow falls at 1.7 m s−1 in the SB06 default
scheme. From the aggregate dataset of K20 the aggregates
of dendrites fall the slowest and the aggregates of columns
fall the fastest. A mixture composed of small columns and
large dendrites (Mix2), which fit in situ observations (K20)
best, also matches the observations in the MDV-DWR space
well. Therefore, we utilize the Mix2 aggregate properties as
an improved description for the snow class in the following.

Interestingly, the use of the SSRGA coefficients of the ag-
gregate type O20 does not lead to a strong change in the
curves in the MDV-DWR space. Although it would be most
consistent to use the SSRGA coefficients of Mix2 directly,
we will use the scattering properties of O20 in the following
analysis to allow a fair comparison of our new results with
the discrepancies found in O20.

3.2 Exploring sensitivity to microphysical parameters
in the snowshaft model

The snowshaft model (Sect. 2.1) allows us to test the influ-
ence of the particle properties, the formulation of the col-
lision kernel, Estick, and the size distribution on the aggre-
gation rates with low computational effort and with reduced
complexity. In Sect. 3.1 we showed how these parameters af-
fect aggregation. We not only examine the influence of the
parameters on the predicted model variables but also on the
radar observables. After carefully setting up the model, the
comparison in radar space enables us to directly contrast the
statistics of the simulation and the observations, as given in
O20 and D18. Since we compare the statistics of the model
and observations over a relatively long time range this anal-
ysis already attempts to select a combination of parameters
that can reproduce the observational statistics well. The opti-
mal parameter combinations found in the snowshaft simula-
tions will then be applied in the 3D model to simulate a case
study (Sect. 3.3) before we use it to rerun simulations for the
whole time period of the Tripex campaign (Sect. 3.4).

This comparison between the model and observation ben-
efits from the simultaneous consideration of multiple model
parameters and multiple observables. When looking at a sin-
gle observable only, one might reduce a bias by an adjust-
ment of a single process or parameter, even though this might
just compensate for an inaccurate choice in another parame-
ter, introducing compensating errors. As the number of inde-
pendent observables increases, this problem is reduced as the
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inaccurate choice of a parameter might be detectable in one
of the remaining observables. In other words, the larger de-
gree of freedom in the observations helps to better constrain
the parameters by comparison with the model when several
observables are considered. We focus our comparison on the
DWRs (as a measure of particle size) and the MDV (as a
measure of vt). These two quantities constrain the strength
of aggregation and the assumed vt–size relationship, and the
statistical comparison in O20 also revealed the largest differ-
ences between observations and the model in these variables.

3.2.1 Optimizing the snowshaft model and selecting
microphysical parameters for new setup

O20 pointed out that the inconsistencies between observed
and synthetic MDV and DWRs are especially evident for
raining periods. As we attempt to remove these inconsisten-
cies, the atmospheric variables and the hydrometeor contents
at the top of the simulation are chosen so that the hydrome-
teor profiles in the snowshaft simulation roughly follow the
profiles of the ICON-LEM simulations from O20 wherein
RR is larger than 1 mm h−1; compare “default” and the his-
togram in Fig. 6. To match the profiles the RHi has to be
set to 1 % above about −18 ◦C with increasing values up
to about 6 % at about −7 ◦C. These values of RHi , which
are relatively high compared to those from the ICON-LEM
simulations (Fig. B5), might be necessary because of the ab-
sence of nucleation and advection in the snowshaft simula-
tions. Also, the values ofQi ,Ni ,Qs, andNs at the model top
are chosen so that the hydrometeor profiles of the CTRL sim-
ulation (performed with the SB06 default setup) match those
of the profiles of the ICON-LEM simulations of O20 with
RR> 1 mm (Fig. 6). After this optimization of the snow-
shaft model, the simulated profiles from ICON-LEM (O20
and Figs. 11 and 12) and the snowshaft model (Figs. 6) re-
veal that a simple initialization (nucleation) of the profiles
at cloud top is sufficient at least for testing the sensitivities
of aggregation to our set of parameters and various formula-
tions.

After iterating over many parameter combinations,
we found one particular setup (which we refer to as
colMix2_Akernel or simply as NEW) to match the ob-
served profiles particularly well. In these iterations, we var-
ied mostly the less-known components, e.g., the size distri-
bution width, while parameters that we were already better
able to constrain (Sect. 3.1.5), e.g., the vt size relation, were
not varied. Our approach can hence be seen as a combination
of a purely physically based approach, incorporating current
knowledge of parameters obtained, e.g., through laboratory
studies, and an empirical correction based on observations.

3.2.2 Sensitivity of aggregation to individual ice
microphysical parameters in the snowshaft model

The hydrometeor profiles (Fig. 6) and radar observables
(Fig. 7) of the NEW setup exhibit many interesting differ-
ences from the profiles of the CTRL run. In the following,
we discuss where the differences originate from by looking at
the different sensitivity runs. In each sensitivity run only one
set of parameters is different from the NEW run (Table 3).

The cloud ice mixing ratio Qi and the cloud ice number
density Ni are lower in the NEW run than in the CTRL run
for T <−10 ◦C (Fig. 6). At the same time, the snow mix-
ing ratio Qs and number density Ns are slightly larger in the
NEW run at temperatures below −17 ◦C. These differences
can be explained by the higher Estick at lower temperatures
in the NEW setup (Fig. 4), which leads to more collisions
among cloud ice particles, and therefore more particles are
converted from the cloud ice to the snow category. When us-
ing the Estick parameterization of Cotton et al. (1982) and
Lin et al. (1983) (colMix2_Akernel_LinCot;),Qi and Ni are
larger at lower temperatures (and Qs and Ns are smaller).

The smaller values of Estick in colMix2_Akernel_LinCot
compared to NEW at lower temperatures (compare L83
and C86 with “new” in Fig. 4) lead to further differences;
colMix2_Akernel_LinCot has a smaller mean mass x, which
is the mean mass of the sum of the cloud ice and snow
class ((Qi +Qs)(Ni +Ns)

−1), and correspondingly lower
DWRs for T <−7 ◦C (Fig. 7c and d). The smaller mean
size also leads to slower-falling particles (visible in MDV;
Fig. 7b). For T >−7 ◦C the strong increase in Estick in
colMix2_Akernel_LinCot triggers a strong increase in x and
DWRX,Ka. A similar increase in the mean and median of
the investigated statistics of DWRX,Ka was already discussed
in O20. As in O20 the strong increase is not visible in
DWRKa,W, since this observable already reaches saturation
for mass median diameters of about 3 mm (Sect. 2.5). The
local maximum of the new Estick parameterization at tem-
peratures from −17 to −12.5 ◦C leads in the NEW run to a
rapid increase in the x, DWRs, and MDVs in the same tem-
perature range and therefore matches the observed profile of
DWRKa,W better than the CTRL run.

O20 speculated that the overestimation of the particle sizes
at high temperatures and the mismatch in the profiles of the
DWRs might be mainly due to the Estick parameterization
and the vt–size relation. However, Figs. 6 and 7 as well as
the aggregation rates (Appendix A) reveal that the vt rela-
tion at smaller sizes and the aggregation kernel formulation
also strongly affect the aggregation rates. Both x (Fig. 6i)
and DWRX,Ka are lower in colMix2_Akernel_LinCot than in
the CTRL run. IfEstick were the dominating driver, these two
simulations would be very similar. The differences in the x
profiles of these two simulations can only be explained by
relevant influences of other parameters on the aggregation
rates.
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The simulations with the D-kernel (colMix2_Dkernel) ex-
hibit a strong influence on aggregation. This is evident in the
rapid decrease in Qi and Ni and a rapid increase in xi , xs,
and x caused by high aggregation rates (supported by Ap-
pendix A). From this simulation, it is evident that the use of
the new particle properties (including the Atlas-type vt–size
relation) together with the D-kernel results in even larger par-
ticles than in the default run, and thus DWRs are strongly
overestimated (Fig. 7d). This overestimation can only be re-
duced by using the A-kernel.

The vertical gradients of Q result from mass uptake by
depositional growth and divergence of vt (Fig. 6h). First, Q
increases from the cloud top to the cloud bottom due to de-
positional growth. Second, deposition growth and aggrega-
tion increase particle size and thus vt increases. If there were
no mass uptake (no deposit growth) but only aggregation, Q
could only decrease because the product of vt and Q would
be conserved. The vt–size relation plays an important role
in these processes: on the one hand, smaller vt for a given
particle size, e.g., as in NEW vs. CTRL, means more time
for mass uptake, leading to a faster increase in Q per height.
On the other hand, smaller vt could also lead to less venti-
lation and thus less mass uptake due to depositional growth.
The vt–size relationship, which defines the slope of vt with
increasing size, influences the divergence of vt with height
and the aggregation rates (Sect. 3.1.3). These multiple effects
also interact, which further complicates the interpretation of
the profiles of Q. Nevertheless, we attempt to interpret the
most obvious features of the profiles of Q.

At about −17 ◦C, MDV increases sharply in the NEW
run (Fig. 7b), causing a decrease in Q at these temperatures
(Fig. 6f), while Q increases continuously in the CTRL run.
The differences in the profiles of Q between the sensitivity
runs are relatively large. These large differences are likely
due to the different conversion rates of cloud ice to snow and
differently strong increasing x near the model top. For ex-
ample, in colMix2_Dkernel the cloud ice converts rapidly to
larger snow particles. As a result, particles near the model
top fall faster and therefore have less time to grow by de-
positional growth (the increase in Q is weaker compared to
the NEW run); colMix2_Akernel_LinCot shows a weaker
increase in x for T >−15 ◦C compared to the NEW run
(Fig. 6i). This weaker increase in x leads to a weaker in-
crease in MDV (Fig. 7b) and thus to a stronger increase in
Q (Fig. 6h). The reflectivity ZeKa is closely related to Q
so that colMix2_Dkernel (colMix2_Akernel_LinCot) has the
lowest (highest) reflectivity. However, the CTRL run has the
highest ZeKa, although Q is lower than in some sensitivity
runs. The large ZeKa here could be caused by the relatively
dense snow particles assumed in CTRL (Fig. 3). Overall, Q
and ZeKa show relatively large sensitivity to the varied pa-
rameters in these snowshaft simulations. However, this ob-
servation must be interpreted with caution. The simulations
assume a relatively large humidity in order to match the hy-
drometeor profiles and compensate for processes not consid-

ered (Sect. 3.2.1). This high humidity could lead to an over-
estimation of mass uptake due to depositional growth. Ad-
ditionally, considering that supersaturation is not consumed
by depositional growth but is held constant in our snowshaft
simulations, one could hypothesize that Q and Ze might be
more similar among the sensitivity runs in the ICON-LEM
simulations.

The new particle properties reduce the bias of the scheme
regarding MDV to a large extent (Fig. 7b). While all simula-
tions with the new particle properties are within the deciles
of the observations, the standard run is already outside the
deciles at −35 ◦C and is more than 0.5 ms−1 larger than the
median at some temperatures (e.g., at T = 5 ◦C). The other
parameters change the profile of the MDV to a much lesser
extent. At temperatures from −18 to −12 ◦C, all simulations
show an increase in MDV, while all quantiles of the observed
MDV decrease. This discrepancy could be due to the lack of
habit prediction, underestimated or missing upwinds, or the
lack of collisional fragmentation (Korolev and Leisner, 2020)
in the model. At these temperatures dendritic growth occurs,
which could lead to decreasing particle density and thus de-
creasing vt and/or updrafts as a result of strong latent heat
release. Collisional fragmentation could furthermore lead to
the formation of new small particles with low vt, which also
reduces the MDV.

In addition to the particle properties, the width of the size
distribution changes the MDV the most. The simulation with
the wider size distribution (colMix2broad_Akernel) has a
larger MDV (Fig. 7b) than the NEW run, which is due to
the increasing number of large particles at the larger end of
the distribution (Sect. 3.1.1). These large particles contribute
more to the MDV than the smaller particles; to calculate
MDV, each particle must be weighted by reflectivity, which
for Rayleigh scatterers scales approximately with mass to the
power of 2. The higher weight of the large participants also
explains why the DWRs in colMix2broad_Akernel are sig-
nificantly higher compared to the NEW run, even though the
mean size of the hydrometeors is relatively similar. This sen-
sitivity illustrates that the DWRs can only to some extent be
used to infer x and the size distribution width has to be addi-
tionally considered.

Despite the various simplifications in the snowshaft model
(no nucleation, no advection, constant humidity) the mean
profile of the radar profiles from the ICON-LEM simulations
of O20 could be well-matched. This allowed us to investigate
the sensitivity of aggregation to the individual model compo-
nents and to select a model setup that best matches the ob-
served radar profiles. The particle properties of the snow, the
aggregation kernel formulation, and Estick have a strong in-
fluence on the hydrometeor contents and the simulated radar
observables. Interestingly, the choice of particle size distri-
bution has little effect on the hydrometeor profiles but a large
effect on the DWR values. The choice of cloud ice properties
(needle or column) is less important than the choice of the
other parameters in this cloud regime. However, the choice of
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cloud ice properties might be more important for clouds with
smaller aggregation rates, e.g., cirrus. If we combine the A-
kernel, the particle properties of Mix2 from K20, the newly
proposedEstick parameterization, and a relatively narrow size
distribution the observed profiles of MDV and DWRs could
be better matched. To test whether these sensitivities and im-
provements in NEW are also found persistently in more re-
alistic simulations, in the next section we test whether these
observations occur similarly in the ICON-LEM simulations.

3.3 ICON-LEM case study simulation using the new
parameterizations

In the snowshaft simulations (Sect. 3.2) we had to use sev-
eral idealized assumptions. ICON-LEM (Sect. 2.2) contains
additional processes (e.g., advection, nucleation, varying hu-
midity field) and therefore simulates a more realistic repre-
sentation of the atmosphere. In this section, we investigate
the impact of the various parameters studied in the sensitiv-
ity analysis in a more complex case study with an ICON-
LEM simulation. Furthermore, the ICON-LEM simulations
provide an opportunity to extend the analysis to various con-
ditions (e.g., nonstationary regime during the frontal passage,
sublimation layers).

The case study of interest was 3 January 2016, when a
low-pressure area over the British Isles and an accompany-
ing frontal system over western and central Europe deter-
mined the synoptic situation over the modeled domain. Shal-
low mixed-phase clouds are present in the morning and dis-
sipate around noon (Fig. 8a). The passage of a warm front
manifests itself at 10:00 UTC, first in high clouds and then in
sinking cloud bases. These frontal clouds start to precipitate
at 18:00 UTC. The selected case is particularly interesting
because it contains clouds in different regimes and precipita-
tion of weak to moderate intensity.

The observed and simulated ZeKa fields match relatively
well for all simulations in terms of cloud structure and pre-
cipitation (Fig. 8). Both the shallow mixed-phase clouds and
the frontal cloud are very well-captured in terms of temporal
and spatial structure.

ZeKa exhibits strong differences between the observations
and the simulation only in the rain and ice slightly above the
melting temperature in the period from 19:00 to 23:00 UTC.
The sharp decrease in the observed ZeKa indicates strong
sublimation. The presence of sublimation is also revealed
by the model showing subsaturated air in this time range
(Fig. B6). There are three main reasons that explain why the
model does not accurately represent the sharp decrease in
ZeKa in this sublimation scenario. First, the humidity could
be overestimated in the model, e.g., due to inaccurate forc-
ing data. Second, particle sizes could be overestimated due
to processes in microphysics that weaken the effect of sub-
limation. We cannot completely rule out the humidity mis-
match, but we found good agreement between the model and
radiosonde data when available. Unfortunately, there was no

radiosonde launched on the considered day. Thus, we are
confident in the general ability of the model to accurately
simulate the humidity field, but we cannot rule out the pos-
sibility that inaccuracies in the simulated humidity field con-
tribute to the bias in ZeKa. Lastly, the parameterization of
sublimation could also be an error source. For example, the
evolution of the PSD during sublimation is challenging to
represent in a two-moment scheme (Seifert, 2008). Since all
of these reasons might be able to explain the mismatch in
ZeKa, we should be cautious in assessing the validity of the
assumptions of the individual model settings based on this
sublimation feature. However, regardless of the accuracy of
the model in predicting the humidity or simulating sublima-
tion, the following differences in ZeKa of the model simula-
tions underscore the importance of accurate prediction.

While the NEW (Fig. 8c) and most sensitivity runs show
a slight decrease in ZeKa due to sublimation in the time
period when the air is subsaturated, the sublimation is
barely seen in ZeKa of some other simulations (e.g., CTRL,
colMix2_Dkernel; Fig. 8b and g). The differences between
the simulations are caused by the differences in the particle
size indicated by DWRX,Ka (Fig. 9). Similar to the snow-
shaft simulations, DWRX,Ka is strongly overestimated in
colMix2_Dkernel and the CTRL run. In contrast, DWRX,Ka
is well-matched closely above the melting temperature in the
NEW simulation. The hydrometeor populations with realis-
tic particle sizes are more strongly affected by the subsatu-
rated air and sublimate quickly, whereas particles that are too
large sublimate less and therefore retain more mass. Thus,
the overestimated particle size leads to overestimated precip-
itation. Between 18:00 and 24:00 UTC, 1.40 mm of accumu-
lated rain was observed, 8.91 mm simulated by the default
simulation and 2.29 mm by colMix2_Akernel. While this
represents an overestimates of 536 % by the CTRL run dur-
ing this time period, we emphasize the overall good agree-
ment between modeled and observed precipitation reported
by O20 for the entire campaign. While Estick appeared to
be important for the simulated DWRKa,W in the snowshaft
simulations (Fig. 7), the differences between the simulation
with the old (colMix2_Akernel_LinCot; Fig. 9d) and the
new Estick parameterization (colMix2_Akernel; Fig. 9c) are
relatively small. In the ICON-LEM simulation, the weaker
growth of the particles in colMix2_Akernel_LinCot at lower
temperatures might be partly compensated for by advection
or nucleation.

Besides the DWRs, MDV provides valuable information
about the microphysical properties. As also reported by O20,
MDV is overestimated in the SB06 default simulation, espe-
cially in regions where the particle sizes are overestimated
(Fig. 10). MDV is often used to distinguish rimed from un-
rimed particles (e.g., Mosimann, 1995). Using this method,
we detect some smaller episodes in which rimed particles
dominate at about 04:00, 18:00, and 22:00 UTC. At other
times, the observations indicate unrimed or only slightly
rimed particles. In the SB06 default simulation, high MDVs
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.

Figure 6. Profiles of model variables in the snowshaft simulations. Number density N (a, d, g), mass mixing ratio Q (b, e, h), and mean
mass x (c, f, i) of the cloud ice (a, b, c), snow (d, e, f), and the sum of cloud ice and snow (g, h, i). Lines: simulations using different model
settings as described in Table 3. Greyscale: histogram of the hydrometeor contents vs. temperature from the ICON-LEM simulations of the
Tripex campaign (O20) filtered to include only profiles for which the precipitation rate exceeds 1 mmh−1. The simulations in O20 used the
default model settings.

Figure 7. (a) Reflectivity ZeKa, (b) mean Doppler velocity MDVKa, (c) DWRKa,W, and (d) DWRX,Ka. Lines: simulated profiles based on
snowshaft simulations (Fig. 6) as well as the median and quartiles of the observations. Greyscale: histogram of observations from the Tripex
campaign (O20).
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Table 3. Overview of parameters and settings varied in the microphysical sensitivity experiments. The sensitivity runs have the same settings
as colMix2_Akernel unless otherwise noted.K is the collision kernel,D the maximum dimension, and A the particle’s projected area; µ and
ν are parameters in the generalized gamma function describing the mass distribution in the microphysics scheme (Eq. 5).

Main runs Sensitivity runs (difference to colMix2Akernel)

SB06 default/ colMix2_ needMix2_ colMix2_ colMix2_ colMix2
CTRL Akernel/ A-kernel D-kernel Akernel_LinCot broad_Akernel

NEW

Particle SB06 default cloud ice, Column Needle
properties SB06 default snow Mix2
(Fig. 3)

Collision D-kernel: A-kernel:
kernel K ∝ (Di +Dj )

2 K ∝ (A0.5
i
+A0.5

j
)2 D-kernel

Sticking efficiency L83/C86 Modification of
(Fig. 4) M88 L83/C86

Size distribution ν = 0 ν = 2 (cloud ice ν = 2 (cloud ice)
N(m)= Amνe−λm

µ
(cloud ice & snow) ν = 0 (snow)

& snow)

are obtained in the whole time range after 18:00. Since the
profiles of the hydrometeors show only very little mass of
rimed particles during this period, the larger predicted MDV
can be attributed to the overestimation of the unrimed snow
particle vt.

The new simulations, all using the new particle proper-
ties, have significantly lower values of MDV at all tempera-
tures. This reduction of MDV compared to the SB06 default
setup constitutes a significant reduction of the bias in MDV
at temperatures below −10 ◦C. For T >−10 ◦C, MDV is
even slightly underestimated. Considering that Fig. 5 shows
good agreement of MDV between the observations and the
vt–size relation of Mix2, we assume that the underestimation
of MDV is not caused by the underestimation of the vt–size
relation of aggregates. Since DWRX,Ka also matches well
at these temperatures, processes other than aggregation and
sedimentation of unrimed aggregates most probably cause
this underestimation of MDV. One could speculate that rim-
ing rates are underestimated or that the vertical air motion is
not well-simulated.

Most of the findings from the snowshaft simulations (e.g.,
the strong reduction of MDV and DWR at temperatures close
to the melting temperature) are confirmed by the ICON-LEM
simulation of this case study. However, the ICON-LEM sim-
ulations reveal that the influence of Estick seems to be over-
estimated in the snowshaft simulations. Moreover, accurate
modeling of particle sizes and vt in the presence of a subli-
mating layer is critical. The simulations with the new parti-
cle properties showed a slight underestimation of the MDV.
This underestimation most likely does not arise from an inac-
curate representation of the particle properties or the aggre-
gation rates but is caused by another process (e.g., riming,
vertical air motion). In previous analyses of the SB06 default
setup, this underestimation could not have been detected be-

cause it was masked by the overestimation of the aggregate’s
vt. Because errors can be specific to the chosen day, such as a
particular mismatch of the relative humidity, relying on only
one case to detect a discrepancy in the microphysical proper-
ties is prone to error. Therefore, we analyze the statistics of a
multi-month simulation in the next section.

3.4 Statistical comparison

After evaluating the choices of the new scheme in the snow-
shaft model and in a case study with ICON-LEM, we per-
form ICON-LEM simulations for the entire Tripex time pe-
riod. By comparing observed and modeled histograms of
DWR and MDV as a function of temperature, we can evalu-
ate the new scheme. Since we additionally contrast the his-
tograms of the NEW and CTRL simulations, we can test
whether the reduction in the bias of DWRs and MDV found
in Sect. 3.3 is specific to the selected case or rather a consis-
tent feature of the model changes. As DWRs are related to
the mean particle size, we can assess whether the chosen pa-
rameter combination can accurately simulate aggregation in
various weather situations present in the simulated days. The
same applies to MDV profiles, which are especially valuable
in evaluating the suitability of the assumed vt–size relation-
ship.

The observed and synthetic radar profiles are filtered in
the same way for comparability. For example, the first 6 h
of simulation and observation are not considered because the
model output could contain artifacts during this spin-up time.
Moreover, we include only profiles in which the rain rate RR
exceeds 1 mm h−1. The latter filter enables us to focus on
the most relevant cases for precipitation. Interestingly, O20
found the discrepancy between the model and observations
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Figure 8. Time–height profile of ZeKa from 3 January 2016 as observed (a) and simulated (b–g) with various model settings (Table 3).
Selected temperature isolines from CloudNet (Illingworth et al., 2007) for the observations (a) and the corresponding ICON-LEM output (b–
g) are also shown.

to be especially obvious for these profiles. For a detailed de-
scription of the processing, we refer to O20.

To quantify the agreement between the histograms of the
simulations and the observation, the Hellinger distance H is
used.H can be defined for two distributions P =(p1, . . . , pk)
and Q =(q1, . . . , qk) as

H(P,Q)=
1
√

2

√√√√ k∑
i=1

(√
pi −
√
qi
)2
. (17)

H is zero for two identical distributions and 1 if the distribu-
tions do not overlap at all.

The medians and larger quantiles of the observed distri-
butions of DWRs indicate a strong increase in particle size
around−15 ◦C (most evident in DWRKa,W; Fig. 11a) and just
above the melting temperature (most evident in DWRX,Ka;
Fig. 11e). Both of these characteristic increases in the parti-
cle sizes are found to some extent in CTRL (panels b and f in

Fig. 11) and NEW (panels c and g in Fig. 11). The increase in
particle sizes between −15 and −10 ◦C happens in the new
simulations at slightly lower temperatures, and the different
profiles reveal a greater variability (visible, e.g., in the dif-
ference of DWRKa,W between the lower and upper decile).
H indicates a slightly better match by CTRL in this temper-
ature range. For T >−10 ◦C the mean and higher quantiles
of DWRX,Ka increase very rapidly in CTRL and more slowly
in NEW and the observation. The increase in particle sizes as
simulated by NEW is in much better agreement with the ob-
served profiles. The upper quartile of DWRX,Ka only slightly
exceeds 5 dB in the observations and NEW but is higher than
10 dB in CTRL for T >−1 ◦C. This better match is also in-
dicated by H (Fig. 11h), which is about 5 times larger for
CTRL compared to NEW.

Besides the overestimation of DWRX,Ka closely above the
melting temperature, O20 also highlighted the overestima-
tion of MDV by CTRL. This overestimation is present at all
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Figure 9. Same as Fig. 8 but displaying DWRX,Ka, which is sensitive to mean mass diameters of 1 to 20 mm.

temperatures (compare panels a and b in Fig. 12) and can
be attributed to the overestimation of the vt–size relation-
ship of the snow class as reported in Karrer et al. (2020) and
the overestimated particle sizes for the higher temperatures.
The overestimation of MDV by CTRL is most pronounced
for T >−15 ◦C. In this temperature range, CTRL cannot re-
produce the asymptotic approach because of the power-law
vt–size relationship (Sect. 3.1.3). For example, the median of
MDVKa at−5 ◦C is 1 m s−1 in the observations and 1.3 m s−1

in CTRL. In contrast, the new simulations agree better with
the observations and H is about half as large as for CTRL.
The new scheme setup is more accurate in this temperature
range because the Atlas-type vt–size relationship of the Mix2
particles (Fig. 3) correctly considers the asymptotic approach
to 1 m s−1 at large sizes. However, MDV is slightly un-
derestimated by NEW for T >−10 ◦C. Values substantially
above 1 m s−1 occur in the observations and the new sim-
ulations only closely above the melting temperature, where
rain is present. At temperatures below −15 ◦C, both simu-

lations perform similarly, with H ranging from 0.2 to 0.5.
While CTRL exhibits a continuous overestimation of MDV,
the new simulations lack the observed increase in MDV for
T <−20 ◦C. At these temperatures, the selected PSD width
(Sect.3.1.1) and cloud ice particle properties (Sect. 3.1.3)
may not be ideal.

The statistical comparison shows that the changes we
made to the model could eliminate the most striking biases,
namely the overestimation of DWRX,Ka and MDV closely
above the melting temperatures. The match of these quanti-
ties is important for accurate simulation of precipitation, as
exemplified in the case study in Sect. 3.3. Some discrepan-
cies remain, namely the overly strong increase in the DWRs
at temperatures between −15 and −10 ◦C and the over-
estimation (underestimation) of MDV temperatures below
−25 ◦C (above −10 ◦C). These discrepancies can be caused
by several model errors (inaccurate simulation of, e.g., PSD
shape, Estick, degree of riming, variability in cloud ice prop-
erties) that cannot be fully deciphered by this observational
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Figure 10. Same as Fig. 8 but displaying MDVKa, which is strongly linked to vt.

setup and could benefit from advances in laboratory measure-
ments, observational setup, and representation of cloud ice
habits and riming degree in the model.

4 Conclusions

Aggregation is a key ice microphysical growth process for
the formation of precipitating ice particles, which are the
precursor of raindrops in cold rain formation. Recent studies
using statistics from multi-frequency Doppler radar observa-
tions provided observational constraints on how critical radar
quantities, such as DWRs or MDV, change with temperature.
In this study, we aimed at a deeper analysis of the under-
lying causes for the observed discrepancies between radar
statistics and a state-of-the-art two-moment microphysical
scheme, and we improved its simulation of aggregation.

To this end, as a first step, we revisited all relevant com-
ponents of aggregation as considered in the two-moment
scheme to see how well they represent current knowledge
of physics. These components are the size distribution width,
the temperature dependence of Estick, the particle properties
(with a focus on the vt–size relation of aggregates), and the

representation of nonspherical particles in the aggregation
kernel formulation.

To systematically test the sensitivities of various parameter
combinations, we performed 1D simulations with the snow-
shaft model, which uses simple profiles of thermodynamic
variables and a simple initialization of particles at the model
top. Moreover, the model only accounts for a subset of all
the microphysical processes that occur in real clouds. Nev-
ertheless, by adjusting the model setup we could match the
average profiles of radar observables obtained by the 3D sim-
ulations of O20, which used the SB06 default scheme setup.

The snowshaft simulations revealed high sensitivity of ag-
gregation to particle properties, the aggregation kernel for-
mulation, and Estick. Surprisingly, the size distribution width
had a relatively small effect on the modeled mean mass but
a considerable influence on the simulated DWRs. The influ-
ence of the cloud ice properties was small in both the model
and radar variables.

By comparing the profiles from the snowshaft simulation
with the average observed profiles, we were able to select
a set of parameters that provided the best agreement with
the observations. In this selection process, we mainly varied
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Figure 11. Contour frequency by temperature diagrams (CFTDs) for all profiles with RR> 1 mm h−1 of the dual-wavelength ratios between
the X and Ka band (DWRX,Ka, top) and between the Ka and W band (DWRX,Ka, bottom) from the default simulation (a, e), the new
simulation (colMix2_Akernel; b and f), and measured (c, g). The black lines represent the statistical measures (median, mean, quartiles, and
deciles) at different temperatures. Panels (d) and (h) show the Hellinger distance between the simulated and observed distributions for all
temperatures.

the less-known components, e.g., the size distribution width,
and held other parameters constant that we could better con-
strain, e.g., the vt–size relationship. The size distribution
width proved to be a critical component in linking modeled
x to observed DWRs and at the same time is difficult to con-
strain with the given observational setup. Therefore, using
a microphysical scheme that explicitly simulates the width
of the size distribution (e.g., a three-moment scheme) would
provide a more consistent link between the model and obser-
vation. However, additional observational constraints from
radar (e.g., Doppler spectrum width) and in situ observations
should be considered in this case. In particular, we find that
the vt–size relationship, which accounts for the asymptotic
behavior of vt at large sizes, leads to better agreement with
the observations. Moreover, the A-kernel appears to be a bet-
ter approximation of the aggregation kernel when combined
with a constant Ecoll.

We implemented this improved scheme setup in the ICON-
LEM and also tested the individual model modifications in
a case study. These more realistic ICON-LEM simulations
allowed us to derive potential differences in the analysis of
sensitivities compared to the snowshaft simulations, possi-
bly caused by effects such as dynamics and advection. Over-
all, the ICON-LEM simulations yielded similar sensitivities
as the snowshaft simulations, but slight differences were ap-
parent with respect to sensitivity to Estick. The differences
between simulations with different Estick parameterization
were less pronounced in the ICON-LEM simulations. This
discrepancy between the simulation frameworks could result

from accounting for feedback from microphysics to model
humidity in the ICON-LEM simulation.

On the day considered in the case study, relatively dry low-
level air resulted in strong sublimation of ice particles. This
sublimation feature demonstrated the relevancy of accurately
simulating x. The SB06 default scheme with its largely over-
estimated aggregate sizes strongly overestimated the rainfall
rate on the ground because the large snowflakes could not
sublimate fast enough. In contrast, the more realistic aggre-
gate sizes obtained with the new scheme were able to fit the
observations much better.

Finally, the entire period of the campaign dataset (46 d)
was simulated again with ICON-LEM using the best-
matching parameter combination from the previous tests.
This allowed us to directly compare the new statistics with
the previous analysis of the default scheme provided in O20.
The new aggregation formulation is clearly able to reduce
the observed overestimation of MDV. This improvement can
be attributed to the new Atlas-type vt–size relationship. The
overestimation of the mean particle size at high temperatures
revealed in the DWRs was also substantially reduced by the
new aggregation parameterization.

Remaining discrepancies are found for DWRs at temper-
atures of about −12 ◦C and for MDV at low and high tem-
peratures. The overestimated DWRs by the new simulations
could result in an overestimated x or overly broad size dis-
tribution in the model. Inclusion of a higher-frequency radar
(Battaglia et al., 2014) may help to infer the particle growth
above −12 ◦C. The analysis of Doppler spectra (e.g., simi-
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Figure 12. Contour frequency by temperature diagrams (CFTDs) of the mean Doppler velocity of the Ka band (MDVKa) from the default
simulation (a, e), the new simulation (colMix2_Akernel, b and f), and measured (c, g). The black lines represent the statistical measures
(median, mean, quartiles, and deciles) at different temperatures. The histograms on top are calculated including all data and on the bottom
only data from profiles for which the precipitation rate RR exceeds 1 mmh−1. A vertical line at 1 ms−1 eases the comparison of the different
distributions. Panels (d) and (h) show the Hellinger distance between the simulated and observed distributions for all temperatures.

lar to Barrett et al., 2019) or observational techniques, e.g.,
in situ probing of the particle size distribution, would pro-
vide additional constraints on the size distribution and ease
the interpretation of the MDV and DWR. The mismatch of
the MDV at lower temperatures could be caused by an inac-
curate size distribution width, as well as Estick or cloud ice
properties. Future studies could focus on this temperature re-
gion, which is highly relevant for cloud radiative effects. The
slight underestimation of MDV at high temperatures could
be due to underestimated riming rates, the representation of
partially rimed particles, or other effects such as vertical air
motion. Further insight could be gained, e.g., from the anal-
ysis of the Doppler spectra or comparison with other micro-
physical schemes with a different representation of the rim-
ing process (Morrison and Milbrandt, 2015; Tsai and Chen,
2020).

In addition to the results obtained in this study for aggrega-
tion in the SB06 scheme, we think that our approach for how
to utilize state-of-the-art radar datasets to improve parameter-

izations may also serve as a blueprint for future studies focus-
ing on other processes or microphysical schemes. Therefore,
we shortly summarize the approach in general terms with the
following points.

1. Revisit components of the physical parameterization.

2. Set up single-column simulations which match the av-
erage profiles of simulated observables obtained from
long-term 3D simulations with the default scheme
setup.

3. Systematically test the sensitivities of various parameter
combinations in 1D simulations.

4. Select the model configuration that best matches the ob-
servations.

5. Implement model modifications in the 3D model and
infer possible differences in sensitivities between a 3D
simulation and 1D simulations in a case study.
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6. Rerun the long-term 3D simulation using the best-
matching parameter combination and investigate the
improvements by comparing observations with simula-
tions using the default and the new scheme setup.

Appendix A: Bulk aggregation rates

We summarize the bulk aggregation formulas for all aggrega-
tion processes: ice–snow collection, ice self-collection, and
snow self-collection. While the formulations using the D-
kernel were already given by Seifert et al. (2014), the for-
mulas using the A-kernel were newly derived in this study.

Combining the definition of the moments,

Mn =

∞∫
0

mnf (m)dm, (A1)

the SCE (Eq. 4) and its simplifications in the SB06 scheme
(Sect. 3.1), an equation can be derived that allows for the
calculation of all relevant aggregation rates between particles
of the classes i and j :

∂Mi,n

∂t

∣∣∣∣
coll,ij
=8

∞∫
0

∞∫
0

fi

(Di)fj (Dj )Ki,j (Di,Dj )m
n
i dDjdDi, (A2)

where Mj,n is the nth moment of the hydrometeor class j ,
f is the particle size distribution for a selected size variable
(Dmax, Deq, or m), K is the aggregation kernel, and m is the
particle mass.

Seifert et al. (2014) use the variance approach proposed
in Seifert and Beheng (2006), which parameterizes the bulk
velocity difference by the square root of the second moment
of the velocity differences. In this way, the integral is sepa-
rated into a term containing the geometrical properties (Cn,ij )
and a part which contains the velocity difference (1vn,ij ) to
enable the analytical integration.

∂Mi,n

∂t

∣∣∣∣
coll,ij

= Ei,j1vn,ijCn,ij (A3)

The expressions of Cn,ij and 1vn,ij depend on the ex-
pression of the PSDm (Sect. 3.1.1), the formulation of the
aggregation kernel (Sect. 3.1.2), and the particle properties
(Sect. 3.1.3). The SB06 scheme assumes a modified gamma
distribution as a function of mass (Eq. 5), which can be eas-
ily converted to a gamma distribution as a function of Deq if
µm = 1/3 (Eq. 7). The particle properties are characterized
by power-law relations of m (Eq. 12) and Aact (Eq. 15) vs.
Dmax and Deq. In the new scheme, vt of cloud ice and snow
is parameterized by an Atlas-type relation as a function of
Deq (Eq. 11). Coefficients of the relations can be found in
Table 2.

A1 D-kernel

Inserting the D-kernel (Eq. 1) into Eq. (A2), the Cn,ij and
1vn,ij can be written as

Cn,ij =
π

4

∞∫
0

∞∫
0

(
Dmax,i +Dmax,j

)2
fi(mi)

fj (mj )m
n
jdmidmj , (A4)

1vn,ij =

{
1

Nn,ij

∞∫
0

∞∫
0

[
vi(Deq,i)− vj (Deq,j )

]2
×D2

eq,iD
2
eq,j

feq,i(Deq,i)feq,j (Deq,j )m
n
i dDeq,idDeq,j

} 1
2
, (A5)

where N is the normalization factor given by

Nn,ij =

∞∫
0

∞∫
0

D2
eq,iD

2
eq,jfeq,i(Deq,i)feq,j (Deq,j )

mni dDidDj . (A6)

Inserting the Dmax−m relation,

Dmax,i = aim
bi
i =

πρwai

6
D

3bi
eq,i, (A7)

and the PSDm (Eq. 5) into Cn,ij (Eq. A4) and solving the
integral, we obtain

Cn,ij =
(πρw

6

)nπ
4
NiNj[

δ0
D,iD

2
i + δ

n
D,ijDiDj + δ

n
jD

2
j

]
, (A8)

where δni and δnj are equal to δ0
p of Eq. (90) of SB2006 and

δnij is equal to δ0
g of Eq. (91) of SB2006.

δnD,i =
0((2bi + νm,i + 1+ n)/µm,i)

0((νm,i + 1)/µm,i)

[
0((νm,i + 1)/µm,i)
0((νm,i + 2)/µm,i)

]2bi+n

(A9)

δnD,ij = 2
0((bi + νm,i + 1+ n)/µm,i)

0((νm,i + 1)/µm,i)
0((bj + νm,j + 1)/µm,j )
0((νm,j + 1)/µm,j )

×

[
0((νm,i + 1)/µm,i)
0((νm,i + 2)/µm,i)

]bi+n[0((νm,j + 1)/µm,j )
0((νm,j + 2)/µm,j )

]bj
(A10)

Inserting the velocity relation (Eq. 11) and the size distri-
bution using Deq (Eq. 7) into the velocity variance (Eq. A4)
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and solving the integral, we obtain

1vn,ij =

[
(αv,j −αv,i)

2
− 2βv,j (αv,j −αv,i)

(
1+

γv,j

λeq,j

)−ξnD,i
−2βv,i(αv,i −αv,j )

(
1+

γv,i

λeq,i

)−ξnD,i
+β2

v,j

(
1+

2γv,j
λeq,j

)−ξD,j
+β2

v,i

(
1+

2γv,i
λeq,i

)−ξnD,i
− 2βv,jβv,i

(
1+

γv,j

λeq,j

)−ξD,j
×

(
1+

γv,i

λeq,i

)−ξnD,i] 1
2
, (A11)

with

ξnD,i = µeq,i + 3+ 3n,ξD,j = µeq,j + 3. (A12)

A2 A-kernel

Inserting the A-kernel (Eq. 9) into Eq. (A2), the velocity vari-
ance and the geometric part of the bulk collision rates can be
written as

Cn,ij =
∞∫

0

∞∫
0

(
A0.5
i +A

0.5
j

)2
fi(Di)fj (Dj )m

n
jdDidDj (A13)

1vn,ij =

{
1

Nn,ij

∞∫
0

∞∫
0

[
vi(Deq,i)− vj (Deq,j )

]2
×D

σA,i
eq,iD

σA,j
eq,j ,

feq,i(Deq,i)feq,j (Deq,j )m
n
i dDeq,idDeq,j

} 1
2

(A14)

Nn,ij =

∞∫
0

∞∫
0

D
σA,i
eq,iD

σA,j
eq,j feq,i(Deq,i)feq,j (Deq,j )

mni dDeq,idDeq,j . (A15)

Inserting theA–Deq relation (Eq. 15) and the size distribution
as a function ofDeq (Eq. 7) into the geometric part (Eq. A13)
and solving the integral leads to

Cn,ij =
(πρw

6

)n
NiNj[

δnA,iD
σ ∗A,i
max,i + δ

n
A,ijD

σ ∗A,i/2
max,i D

σ ∗A,j /2
max,j + δ

n
A,jD

σ ∗A,j
max,j

]
, (A16)

with the following.

δnA,i = γA,i
0(µeq,i + σA,i + 1+ 3n)

0(µeq,i + 1)
c
σA,i+3n
λ,i (A17)

δnA,ij = 2(γA,iγA,j )0.5
0(µeq,i + σA,i/2+ 1+ 3n)

0(µeq,i + 1)
c
σA,i/2+3n
λ,i

×
0(µeq,j + σA,j/2+ 1)

0(µeq,j + 1)
c
σA,j /2
λ,j (A18)

δnA,j = γA,j
0(µeq,j + σA,j + 1)

0(µeq,j + 1)
c
σA,j
λ,j

×

[
0(µeq,i + 4)
0(µeq,i + 1)

]n
c3n
λ,i (A19)

σ ∗A,i =
bm,iσA,i

3
(A20)

cλ,i =

[
6am,i
πρw

0(µeq,i + 1)
0(µeq,i + 4)

]1/3

(A21)

Inserting the velocity relation (Eq. 11) and the size distri-
bution as a function of Deq (Eq. 7) into the velocity variance
(Eq. A14) and solving the integral, we obtain

1vn,ij =

[
(αv,j −αv,i)

2
− 2βv,j (αv,j −αv,i)

(
1+

γv,j

λeq,j

)−ξA,j
−2βv,i(αv,i −αv,j )

(
1+

γv,i

λeq,i

)−ξnA,i
+β2

v,j

(
1+

2γv,j
λeq,j

)−ξA,j
+β2

v,i

(
1+

2γv,i
λeq,i

)−ξnA,i
− 2βv,jβv,i

(
1+

γv,j

λeq,j

)−ξA,j

×

(
1+

γv,i

λeq,i

)−ξnA,i] 1
2
, (A22)

with

ξni,A = µeq,i + σA,i + 1+ 3n, (A23)
ξj,A = µeq,j + σA,j + 1. (A24)

A3 Ice self-collection

A3.1 D-kernel

For ice self-collection the geometry part (Eq. A13) simplifies
to

Cn,ii =
(πρw

6

)nπ
4
N2
i

[
2δ0
D,i + δ

n
D,ii

]
D

2
i , (A25)
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where δni is equal to δ0
p of Eq. (90) of SB2006 and δnii is equal

to δ0
g of Eq. (91) of SB2006.

δnD,i =
0((2bi + νm,i + 1+ n)/µm,i)

0((νm,i + 1)/µm,i)[
0((νm,i + 1)/µm,i)
0((νm,i + 2)/µm,i)

]2bi+n

(A26)

δnD,ii = 2
0((bi + νm,i + 1+ n)/µm,i)

0((νm,i + 1)/µm,i)2

0((bi + νm,i + 1)/µm,i)

×

[
0((νm,i + 1)/µm,i)
0((νm,i + 2)/µm,i)

]2bi+n

(A27)

The velocity variance simplifies to

1vn,ii = βv,i
√

2
[(

1+
2γv,i
λeq,i

)−ξnD,i
−

(
1+

γv,i

λeq,i

)−2ξnD,i
] 1

2
, (A28)

with

ξnD,i = µeq,i + 3+ 3n. (A29)

A3.2 A-kernel

For ice self-collection C (Eq. A13) simplifies to

Cn,ii =
(πρw

6

)n
N2
i

[
δnA,i + δ

n
A,ii + δ

n
A,i2

](
6am,i
πρw

) σA,i
3

min

γA,i( πρw

6am,i

) σA,i
3
D
σ ∗A,i
max,i,

π

4
D

2
max,i

 , (A30)

with the following.

δnA,i =
0(µeq,i + σA,i + 1+ 3n)

0(µeq,i + 1)
c
σA,i+3n
λ,i (A31)

δnA,ii = 2
0(µeq,i + σA,i/2+ 1+ 3n)

0(µeq,i + 1)2
0

(µeq,i + σA,i/2+ 1)cσA,i+3n
λ,i (A32)

δnA,i2 =
0(µeq,i + σA,i + 1)
0(µeq,i + 1)

c
σA,i+3n
λ,i

[
0(µeq,i + 4)
0(µeq,i + 1)

]n
(A33)

σ ∗A,i =
bm,iσA,i

3
(A34)

cλ,i =

[
6am,i
πρw

0(µeq,i + 1)
0(µeq,i + 4)

]1/3

(A35)

For small sizes, the parametrization of Aact yields values
of Ar larger than 1 (e.g., columns smaller than 8× 10−5;
Fig. 3d). For small mean sizes, these particles with unphys-
ical Ar can substantially contribute to Cn,ii . Therefore, we
limit Aact to Asphere in Eq. (A30). The effect of this limiter
can be seen in the kink of the bulk collision rates (Fig. B3c
and d).

Inserting the velocity relation (Eq. 11) and the size distri-
bution usingDeq (Eq. 7) into the velocity variance (Eq. A14)
and solving the integral, we find

1vn,ii =
√

2βv,i

[(
1+

2γv,i
λeq,i

)−ξnA,i
−

(
1+

γv,i

λeq,i

)−2ξnA,i
] 1

2
, (A36)

with

ξni,A = µeq,i + σA,i + 1+ 3n. (A37)

A4 Snow self-collection

A4.1 D-kernel

For snow self-collection only the first moment is relevant and
C (Eq. A13) simplifies to

C0,ss =
π

4
N2

s

[
2δ0
D,s + δ

0
D,ss

]
D

2
s , (A38)

where δns is equal to δ0
p of Eq. (90) of SB2006 and δnss is equal

to δ0
g of Eq. (91) of SB2006.

δ0
D,s =

0((2bs+ νm,s+ 1)/µm,s)
0((νm,s+ 1)/µm,s)

[
0((νm,s+ 1)/µm,s)
0((νm,s+ 2)/µm,s)

]2bs
(A39)

δ0
D,ss = 2

[
0((bs+ νm,s+ 1)/µm,s)
0((νm,s+ 1)/µm,s)

]2[
0((νm,s+ 1)/µm,s)
0((νm,s+ 2)/µm,s)

]2bs

(A40)

The velocity variance simplifies to

1v0,ss =
√

2βv,s

[(
1+

2γv,s
λeq, s

)−ξD,s
−

(
1+

γv,s
λeq, s

)−2ξD,s ] 1
2
, (A41)

with

ξD,s = µeq, s+ 3. (A42)

A4.2 A-kernel

C of the A-kernel for snow self-collection simplifies to

C0,ss =N
2
s

[
2δ0
A,s+ δ

0
A,ss

](
6am,s
πρw

) σA,s
3

min

γA,s( πρw

6am,s

) σA,s
3
D
σ ∗A,s
max,s,

π

4
D

2
max,s

 , (A43)

with the following.

δ0
A,s =

0(µeq, s+ σA,s+ 1)
0(µeq, s+ 1)

c
σA,s
λ,s (A44)

δ0
A,ss = 2

0(µeq,s+ σA,s/2+ 1)2

0(µeq,s+ 1)2
c
σA,s
λ,s (A45)

σ ∗A,s =
bm,sσA,s

3
(A46)

cλ,s =

[
6am,s
πρw

0(µeq, s+ 1)
0(µeq, s+ 4)

]1/3

(A47)

The area ratios are limited in the same way as for ice self-
collection.
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Table A1. Prefactor8 of the aggregation rates (Eq. A2) for different
aggregation processes and the predicted moments of the cloud ice
and snow distribution.

Collision partners

i j
∂Ncloud ice

∂t
∂Lcloud ice

∂t
∂Nsnow
∂t

∂Lsnow
∂t

Cloud ice cloud ice −1 −1 +1/2 +1
Cloud ice snow −1 −1 0 +1
Snow snow 0 0 −1 0

The velocity variance simplifies to

1v0,s =
√

2βv,s

[(
1+

2γv,s
λeq, s

)−ξA,s
−

(
1+

γv,s
λeq, s

)−2ξA,s
]0.5

, (A48)

with

ξA,s = µeq, s+ σA,s+ 1. (A49)
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Appendix B: Atmospheric setup for 1D simulation and
atmospheric fields of the case study predicted by
ICON-LEM

Figure B5 shows the atmospheric variables from O20 simula-
tions and the setup for the snowshaft simulations. Figure B6
shows the atmospheric variables of the case study.

Figure B1. Numeric and analytic solution of the bulk collision rates for ice–snow (column and Mix2, respectively) collisions for Atlas-type
and power-law velocity size relations. The shape parameter is µeq = 2 (Eq. 7), which is equal to µm = 0 (Eq. 5) for cloud ice and snow.
Left: number density, right: mass density; top: D-kernel; bottom: A-kernel. (a, c) normalized number collision rate, (b, d) normalized mass
collision rate, (a, b) D-kernel, (c, d) A-kernel.
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Figure B2. Same as Fig. B1 but with µeq = 8 (Eq. 7), which is equal to µm = 2 (Eq. 5) for snow.

Figure B3. Numeric and analytic solution of the bulk collision rates for ice–ice (both column) collisions: (a, c) normalized number collision
rate, (b, d) normalized mass collision rate, (a, b) D-kernel, (c, d) A-kernel.
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Figure B4. Numeric and analytic solution of the bulk collision rates
for snow–snow (both Mix2) collisions: (a) D-kernel; (b) A-kernel.

Figure B5. Setup of atmospheric variables in the 1D simulations
(Sect. 3.2) (black line), which was chosen based on the histograms
from the ICON-LEM simulation (the histogram is shown in the
background, O20). The histogram is filtered to include only profiles
for which the rain rate exceeds 1 mmh−1. (a) Temperature, (b) rel-
ative humidity with respect to water, and (c) relative humidity with
respect to ice. The height of the melting temperature 0◦C is set to
0 m, and other heights are calculated assuming a temperature gra-
dient of 0.0062 Km−1. Counts in the ICON-LEM simulations from
O20 are color-coded.
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Figure B6. Temperature (a), vertical velocity (b), and relative humidity with respect to water (c) and ice (d) over Jülich in the SB06 default
simulation on 3 January 2016. Temperature isolines are shown in each plot.
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