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Abstract. Sensitive and accurate detection of sulfur diox-
ide (SO2) from space is important for monitoring and esti-
mating global sulfur emissions. Inspired by detection meth-
ods applied in the thermal infrared, we present here a new
scheme to retrieve SO2 columns from satellite observations
of ultraviolet back-scattered radiances. The retrieval is based
on a measurement error covariance matrix to fully repre-
sent the SO2-free radiance variability, so that the SO2 slant
column density is the only retrieved parameter of the algo-
rithm. We demonstrate this approach, named COBRA, on
measurements from the TROPOspheric Monitoring Instru-
ment (TROPOMI) aboard the Sentinel-5 Precursor (S-5P)
satellite. We show that the method reduces significantly both
the noise and biases present in the current TROPOMI oper-
ational DOAS SO2 retrievals. The performance of this tech-
nique is also benchmarked against that of the principal com-
ponent algorithm (PCA) approach. We find that the qual-
ity of the data is similar and even slightly better with the
proposed COBRA approach. The ability of the algorithm to
retrieve SO2 accurately is further supported by comparison
with ground-based observations. We illustrate the great sen-

sitivity of the method with a high-resolution global SO2 map,
considering 2.5 years of TROPOMI data. In addition to the
known sources, we detect many new SO2 emission hotspots
worldwide. For the largest sources, we use the COBRA data
to estimate SO2 emission rates. Results are comparable to
other recently published TROPOMI-based SO2 emissions
estimates, but the associated uncertainties are significantly
lower than with the operational data. Next, for a limited num-
ber of weak sources, we demonstrate the potential of our data
for quantifying SO2 emissions with a detection limit of about
8 kt yr−1, a factor of 4 better than the emissions derived from
the Ozone Monitoring Instrument (OMI). We anticipate that
the systematic use of our TROPOMI COBRA SO2 column
data set at a global scale will allow missing sources to be
identified and quantified and help improve SO2 emission in-
ventories.
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1 Introduction

Sulfur dioxide (SO2) in the atmosphere rapidly oxidizes
into sulfuric acid and sulfate aerosols, which have environ-
mental effects ranging from local and long-range air pollu-
tion to global climate impact. SO2 is released into the at-
mosphere from anthropogenic activities, due to fossil fuel
burning (coal, oil and gas) and smelting, and from natu-
ral sources, mainly volcanoes. Satellites provide a viable
means to monitor global SO2 emissions and assess their en-
vironmental impacts. Since the late seventies, SO2 vertical
column densities (VCDs) are provided by several ultravio-
let (UV) polar-orbiting nadir instruments, namely the To-
tal Ozone Monitoring Spectrometer (TOMS; Krueger, 1983),
Global Ozone Monitoring Experiment (GOME; Eisinger and
Burrows, 1998; Khokhar et al., 2005), SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY; Afe et al., 2004), Ozone Monitoring Instru-
ment (OMI; Krotkov et al., 2006; Yang et al., 2007, 2010;
Li et al., 2013; Theys et al., 2015), Global Ozone Monitor-
ing Experiment-2 (GOME-2; Nowlan et al., 2011; Rix et al.,
2012; Hörmann et al., 2013), Ozone Mapping and Profiler
Suite (OMPS; Yang et al., 2013; Zhang et al., 2017), and
TROPOspheric Monitoring Instrument (TROPOMI; Theys
et al., 2017). From the various data sets, a remarkable trend
emerges in the ability of successive sensors to detect weaker
and more localized emissions. This is in part due to the bet-
ter spatial resolution and performance in terms of noise of
the modern UV spectrometers (see for example Fioletov et
al., 2013, and Theys et al., 2019), but also from advances in
retrieval techniques. In particular, the principal component
algorithm (PCA) applied to OMI (Li et al., 2013, 2020a)
and OMPS (Zhang et al., 2017) proved to be a very effi-
cient method to reduce retrieval noise and biases and thus
to increase the sensitivity of the retrievals to weak SO2 emis-
sions to 30–40 kt yr−1. This enabled major improvements in
bottom-up emissions inventories (Liu et al., 2018) and detec-
tion of missing SO2 emission sources (Fioletov et al., 2016;
McLinden et al., 2016).

TROPOMI, launched in October 2017 onboard the ESA
and Copernicus Sentinel-5 Precursor (S-5P) platform, is an
atmospheric mission with a dedicated focus on the tropo-
spheric composition (Veefkind et al., 2012). With a spa-
tial resolution as good as 3.5× 5.5 km2 per ground pixel
(3.5× 7 km2 before August 2019), it is specifically designed
to monitor atmospheric constituents from urban to global
scales. The first observations of SO2 by TROPOMI were
focusing on relatively large volcanic sources and indeed re-
vealed the great potential of the instrument to provide infor-
mation about global volcanic SO2 degassing with high res-
olution and unprecedented sensitivity (Theys et al., 2019;
Queißer et al. 2019). However, further investigation of an-
thropogenic and volcanic SO2 sources using TROPOMI re-
vealed problems with the current TROPOMI SO2 retrievals
for weak emission sources (Fioletov et al., 2020). In brief,

large-scale and variable VCD biases on the order of 0.25
Dobson units (DU; 1 DU= 2.69× 1016 molecules cm−2) are
present in the data, which limits their use to medium to large
SO2 sources only.

The operational TROPOMI SO2 algorithm is based on
the differential optical absorption spectroscopy (DOAS; Platt
and Stutz, 2008) technique and essentially works in three
steps (details are given in Theys et al., 2017): a spectral anal-
ysis yielding SO2 slant column densities (SCDs), an empiri-
cal background correction of the SCDs and a radiative trans-
fer calculation of air mass factors (AMFs) to convert the cor-
rected SCD into the VCD output (VCD=SCDcor/AMF). As
a matter of fact, the SO2 SCD retrieval is subject to spectral
misfits which can lead to systematic offsets. These SCD er-
rors are difficult to correct and arise from imperfect DOAS
forward modelling. Here, we propose an alternative spectral
fitting approach, named COBRA, which strongly reduces the
SO2 SCD biases for the weak SO2 columns and suppresses
the need for the post-processing background correction. CO-
BRA is akin to the PCA approach, which constitutes the basis
of the OMI and OMPS SO2 operational retrievals (Li et al.,
2020b, c). As demonstrated below, COBRA significantly im-
proves the quality as compared with the current TROPOMI
DOAS operational SO2 product. The analysis of 2.5 years
of data oversampled at high resolution reveals many new
SO2 emission sources globally, highlighting the great per-
formance of COBRA in terms of SO2 detection.

The paper is structured as follows. Section 2 describes the
algorithm and its practical implementation. In Sect. 3, SO2
retrievals from COBRA are evaluated against other satellite
data sets, model results and ground-based observations. Sec-
tion 4 presents long-term averaged global results. In Sect. 5,
we apply an emission inversion scheme to the COBRA SO2
data set and compare with previously estimated SO2 emis-
sions from the TROPOMI operational product. New SO2
emission sources detected by COBRA are discussed. Con-
clusions are given in Sect. 6.

2 Methodology

2.1 TROPOMI

In this study, we use observations from the TROPOMI in-
strument on the Sentinel-5 Precursor satellite. TROPOMI is
a hyperspectral nadir sensor measuring solar radiation back-
scattered by the atmosphere and reflected by the Earth, in
the ultraviolet, visible, near-infrared and shortwave infrared
wavelength regions. TROPOMI delivers column amounts
of minor atmospheric constituents, such as O3, NO2, SO2,
HCHO, CO and CH4, as well as aerosol and cloud infor-
mation (Veefkind et al., 2012). The S-5P satellite is a polar
orbiting platform crossing the Equator at 13:30 local time.
A nearly global coverage is achieved in one day owing to
a 2600 km wide swath. The footprint on the ground of the
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satellite measurement depends mainly on the across-track
position in the swath and on the spectral band. For SO2, the
ultraviolet spectral band 3 is used, and the swath is divided
into 450 across-track positions (also referred to as “rows”).
The spatial resolution for the centre of the swath is approx-
imately 3.5× 7 km2 (across-track× along-track) until 6 Au-
gust 2019 when the sampling improved to 3.5× 5.5 km2.

For this work, we analyse data measured between 1
April 2018 and 31 December 2020, and solar zenith angles
(SZA) less than 60◦.

2.2 Algorithm description

As mentioned above, the operational TROPOMI SO2 algo-
rithm is based on the DOAS technique, the most widely used
method to derive atmospheric trace gas constituents in the
UV–visible spectral range. The inverse problem can be ex-
pressed (employing the notation of Rodgers, 2000):

y =K · x+ ε, (1)

where y =− log(I/Io) is the optical depth, i.e. the logarith-
mic ratio of the wavelength calibrated measured intensity (I )
and the reference intensity spectrum (Io) over a given wave-
length range; x is the state vector including SCDs of relevant
trace gases and closure fit parameters (e.g. for broadband ef-
fects); K is the forward model matrix with absorption cross
sections and other spectra; and ε is the measurement noise.
The solution can be approximated by least-square fitting:

x̂ = (KT S−1
∈ K)

−1KT S−1
∈ y, (2)

where S∈ is the measurement error covariance matrix. The
latter matrix is most often taken diagonal (no error corre-
lations) or proportional to unity (unweighted least-square).
Equations (1) and (2) describe the simplest DOAS approach
and are given here for illustration purposes only. In prac-
tice, the DOAS problem is fundamentally non-linear in many
aspects and DOAS software packages, such as QDOAS
(Danckaert et al., 2017), support different non-linear retrieval
options (e.g. for wavelength shift and squeeze, or intensity
offset), with the aim to improve the quality of the retrievals.

For weakly absorbing tropospheric species, retrieval arte-
facts are frequent with DOAS (notably for satellite nadir ge-
ometry) and are attributed to spectral interferences, imper-
fect forward model and incomplete treatment of instrumen-
tal effects (e.g. polarization sensitivity). For UV nadir SO2
retrievals in particular, biases in the data arise mainly from
strong ozone absorption and imperfect treatment of the non-
elastic rotational Raman scattering (Ring) effect. It is gen-
erally difficult to completely remove these offsets even after
applying post-processing background corrections (Theys et
al., 2017; Fioletov et al., 2020).

The Covariance-Based Retrieval Algorithm (COBRA)
presented here, and illustrated for TROPOMI measurements,
aims to correct most of the artefacts in the DOAS SO2 SCDs
by optimally retrieving a single parameter: the SO2 SCD.

First introduced by von Clarmann et al. (2001), the re-
trieval approach was developed by Walker et al. (2011) for
nadir observations of SO2 and NH3 from the Infrared Atmo-
spheric Sounding Interferometer (IASI). Then, the technique,
also known as hyperspectral range index (HRI), has been fur-
ther refined and successfully applied to other trace gases and
aerosols (e.g. Van Damme et al., 2014; Franco et al., 2018;
Clarisse et al., 2019a). The method proved to be very sensi-
tive and led to superior data quality both in terms of precision
and accuracy. Surprisingly, this technique has, to our knowl-
edge, never been applied in the UV–visible spectral range.

Starting from Eq. (1), we assume the measurement vector
can be linearized around a background SO2-free spectrum ȳ:

y = ȳ+ kSCD+ εbg+ ε, (3)

with εbg being the deviation of the SO2-free component of
the spectrum relative to the mean spectrum ȳ and ε being
the measurement noise. The SO2 contribution to the mea-
sured spectral optical depth is approximated by the prod-
uct of the instrument slit convolved absorption cross-section
vector k (expressed in cm2/molecule) and the SO2 SCD
(in molecules/cm2). Here, we use as input of the retrieval
the same SO2 absorption cross-section data (Bogumil et al.,
2003) and the same approach for the wavelength calibration
of the spectra as for the operational TROPOMI SO2 retrievals
(see Theys et al., 2017). The only difference is the wave-
length interval of 310.5–326 nm (see discussion below).

The basic principle of the method is to consider all contri-
butions to the difference (y− ȳ) other than SO2 as an error
term (εbg+ ε) with a Gaussian distribution. If one can define
an ensemble Y of N measured SO2-free spectra, representa-
tive of the total (εbg+ ε) variability, and characterized by a
mean measurement vector ȳ and a covariance matrix S,

S=
1

N − 1

∑N

i=1
(yi − ȳ)(yi − ȳ)T , (4)

then the solution of the problem is written as

ŜCD= SCD+
(
kT S−1k

)−1
kT S−1(y− ȳ), (5)

where SCD is the mean SO2 SCD of the ensemble (SCD= 0
by definition). The error on the retrieved SCD is given by the
square root of the error covariance of the solution (Rodgers,
2000):

ŜCDerr =

√(
kT S−1k

)−1
. (6)

Fundamentally, COBRA generalizes the measurement er-
ror covariance matrix of Eq. (2) by incorporating geophys-
ical background spectral variability (including all cross-
correlations), variability from the atmosphere or variability
induced by instrumental changes.

For spectra where no enhancements of SO2 can be de-
tected, the linearization (Eq. 3) simplifies to

y− ȳ = εbg+ ε. (7)
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Both sides of the equation have therefore the same proba-
bility distribution, and it follows that the covariance matrix
associated with εbg+ ε can readily be constructed by apply-
ing Eq. (4) on a representative set of SO2-free spectra. The
key is to define the ensemble Y such that y− ȳ cancels much
of the systematic components of εbg.

A remarkable feature of COBRA is its simplicity. The SO2
SCD retrieval in Eq. (5) reduces to a simple dot product be-
tween the y− ȳ residue and kT S−1 (skipping the normaliza-
tion factor

(
kT S−1k

)−1). The vector kT S−1 essentially con-
tains the weights of each wavelength to the retrieved target
column amount; the strength of the method relies on the fact
that these weights are optimally determined by the measure-
ments themselves. This is in contrast to the DOAS approach
which mostly considers all wavelengths equal. Furthermore,
DOAS also allows for cross-talks between the state vector el-
ements, which can lead to an increase in the SCD data scatter
(in particular for weak absorbers). This is obviously not the
case for COBRA, as only a single parameter is retrieved, the
SO2 slant column. COBRA has other great advantages that
we briefly outline here:

– Except for the wavelength calibration step, the algo-
rithm does not need a reference spectrum (Io). Indeed,
Eqs. (4) and (5) involve differences of logarithmic inten-
sity ratios, and thus Io cancels out. Following the same
logic, any constant spectral feature multiplicative to the
radiance and shared by the ensemble Y will have no in-
fluence on the retrieved SCDs.

– The analysis of individual spectra with COBRA does
not require the fit of a wavelength shift and squeeze, a
common (and often time-consuming) practice in DOAS.
Beirle et al. (2013) have shown that the effects of
spectral shift and squeeze can be linearized and repre-
sented by pseudo-absorbers. Therefore, their contribu-
tions (and variability) to the optical depth are accounted
for by the covariance matrix.

– The COBRA results display low noise. This is a di-
rect result of the COBRA approach in that the wave-
lengths with the largest background radiance variabil-
ity will have the lowest weights on the retrieved SCD
(Eq. 5).

– Very small biases are observed in the COBRA data
(see next section). As a consequence, an empirical SCD
background correction is not needed.

– The approach works in principle for any wavelength
range. This allows flexibility in case of lower instrumen-
tal performance for certain wavelength regions.

– The covariance matrix S and mean measurement vector
ȳ can be pre-calculated and the implementation of CO-
BRA then becomes very efficient in terms of processing

time (about an order of magnitude faster than DOAS
non-linear schemes).

However, the practical implementation for COBRA requires
some caution. The main difficulty lies in the definition of
the ensemble Y used to construct S (and ȳ). The sample of
N spectra should be highly representative of the measure-
ment conditions under consideration, otherwise offsets in the
SCDs will likely occur. Also, in principle, the spectra should
be uncontaminated by absorption of the trace gas of inter-
est. Finally, N should be large enough to ensure statistically
meaningful covariance results.

It should be stressed that COBRA is close in concept to
the PCA SO2 algorithm of Li et al. (2013, 2020a). In brief,
the PCA scheme characterizes the background radiance vari-
ability using a number of leading PC spectra (typically 20–
30), instead of a covariance matrix. The SO2 column is then
retrieved from the measured spectrum along with the PC fit-
ted parameters. In comparison, COBRA removes the need
of having many parameters to fit. Only the SO2 slant col-
umn density is determined, and the background radiance
variability is fully described by the covariance matrix. In
a sense, COBRA can be considered as a generalization of
the PCA scheme. It is therefore of great interest to com-
pare the two methods (see Sect. 3.1). With this perspective
in mind, the parameters of COBRA for the retrieval of SO2
from TROPOMI have been largely aligned with the PCA al-
gorithm, to facilitate the comparison.

The input spectra for the covariance matrix calculation
are analysed separately for each TROPOMI row, to consider
the row-dependent characteristics of the instrument. We also
treat each orbit individually to account best for the orbit-to-
orbit variability. The data are first screened for solar zenith
angles larger than 60◦, and to cope with the latitudinal de-
pendence of the total ozone absorption and of the Ring ef-
fect, the data are divided into six equal and non-overlapping
along-track segments. For each segment, an initial covari-
ance matrix S is derived, and initial estimates of SO2 SCDs
are inverted through Eq. (5). In a second step, improved esti-
mates of S and SO2 SCDs are obtained iteratively by remov-
ing SO2-contaminated spectra from the ensemble Y . To do
this, we use the ratio of the SO2 SCD to its retrieval uncer-
tainty (Eqs. 5 and 6), referred to as the SNR:

SNR=
kT S−1(y− ȳ)
√
kT S−1k

. (8)

A fixed SNR upper value of 1.5 is used for the filtering. This
is a rather strict value but tests over pristine regions indicate
that this choice does not introduce biases in the SCD data.
The number of iterations is set to 4, but in general we already
found small changes in the results after 2 iterations. A lower
limit on the number N of SO2-free spectra is set to 50. If
this limit is reached, because of a major volcanic eruption
for example, the SO2 SCD retrieval is entirely skipped for the
corresponding row–segment pair. This is a limitation of the
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current algorithm version, but in the future a better handling
of this problem would be possible, e.g. by using a covariance
matrix fallback constructed from previously processed orbits.
However, the amount of data skipped is small, on the order
of 0.025 % in total.

To help the comparison with the PCA SO2 algorithm, we
have used a spectral window from 310.5 to 326 nm (instead
of 312–326 nm for the TROPOMI operational DOAS prod-
uct), which includes the same strong SO2 absorption bands as
in the spectral range 310.5–340 nm used by Li et al. (2013).
This choice is also motivated by the inclusion of the intense
absorption band at 310.8 nm, which leads to a further reduc-
tion of the noise on the SO2 column by about 25 %. Note that
initial tests with the TROPOMI operational algorithm using
the 310.5–326 nm window were actually not very successful
(large SO2 SCD offsets). On the contrary, with COBRA, we
tested both wavelength ranges (310.5–326 and 312–326 nm)
and found only small differences between the retrieved SO2
column patterns (Fig. S1 in the Supplement).

In the following sections, SO2 vertical columns will be
presented. For the SCD to VCD conversion, we have used
air mass factors from the operational product. Note that do-
ing so is not strictly valid because one should expect lower
AMFs due to the change in fitting window (from 310.5 to 326
to 312–326 nm). To account for this, we have applied a con-
stant scaling factor of 1.15 to the retrieved SO2 VCDs. Based
on radiative transfer calculations, we found this to be a good
first-order correction. However, in the future, AMFs shall be
recalculated properly. For the cloud filtering and AMF cloud
correction, the operational cloud product OCRA/ROCINN
CRB is used (Loyola et al., 2018; Compernolle et al., 2021).

As a final note, it should be reiterated that the operational
TROPOMI algorithm also handles the retrieval of large SO2
VCDs, by making use of multiple fitting windows (as de-
scribed in Theys et al., 2017). In this study, we have not ap-
plied COBRA on the alternative fitting windows. While there
is no fundamental limitation to doing so, COBRA is relevant
mostly for low-SO2 columns. All the results presented in the
next sections are for situations where the SO2 VCDs are be-
low 5 DU.

3 Verification of the retrievals

3.1 Comparison to satellite observations and CAMS

In order to evaluate the SO2 data from COBRA, it is interest-
ing to first investigate the bias and data scatter over a clean
region and compare with the operational product (hereafter
referred to as “DOAS”). In Fig. 1, the mean and standard
deviation of SO2 slant columns over an equatorial Pacific
region are shown for one particular orbit, as a function of
the TROPOMI row. As can be seen from Fig. 1a, the DOAS
data suffer from SCD offsets in the range of ±0.25 DU, de-
spite the background correction applied. These offsets have a

Figure 1. (a) Mean SO2 slant columns from (black) DOAS (back-
ground corrected) and (red) COBRA for one orbit (10 394 on 15 Oc-
tober 2019) over the equatorial Pacific region (10◦ S–10◦ N), as a
function of the across-track position of TROPOMI, (b) same as (a)
for the SO2 SCD standard deviation.

low-frequency dependence component with the across-track
position, which is not well understood, but also vary sharply
from one row to the next (leading to stripes in the SO2 maps).
Given that the background correction is applied separately
for each row, this behaviour points to limitations in the cor-
rection approach. In contrast, the COBRA results have very
small SCD biases (mostly below ±0.025 DU) and no notice-
able across-track dependence. It follows that COBRA is a
very powerful bias self-correction and destriping scheme. In
Fig. 1b, the standard deviations of the SO2 SCD values are
shown for both algorithms. Compared to DOAS, it is clear
that the data scatter is significantly improved with COBRA,
by a factor of 2. It is understood that part of this noise re-
duction is due to the change in fitting window (Sect. 2.2), but
most of the improvement (∼ 75 %) is from the COBRA ap-
proach. From Fig. 1, it is clear that the combined reduction
of bias and data scatter provided by COBRA over the DOAS
results is very significant. From a practical point of view, a
factor of 2 improvement of the data scatter means 4 times
fewer pixels to average to reach a certain noise level.

In Fig. 1b, we also note a distinct increase in data scatter
for the outermost rows, for both DOAS and COBRA. This
feature is due to a difference in detector signal binning at
the swath edges, which leads to an increase in radiance shot
noise. To keep the data of the best quality, we will not use the
50 outermost rows in the rest of the paper.

Figure 2 compares the DOAS and COBRA seasonally
averaged SO2 VCD maps from September to November
2019. The data are gridded at a resolution of 0.1◦× 0.1◦

and smoothed by a 2-dimensional 5-point box car function.
Both DOAS and COBRA results are extracted using iden-
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tical pixel selection criteria: SZA less than 60◦, radiomet-
ric cloud fraction lower than 30 % and TROPOMI rows 26–
424. From Fig. 2, several artefacts are evident in the DOAS
product. Negative values are found in the tropics and a large-
scale positive bias at mid-latitudes. In comparison, COBRA
remarkably solves all the systematic biases found in the oper-
ational product, whereas the signal from major SO2 sources
(e.g. in China, India, the Middle East, South Africa, Central
and South America) is nicely preserved. Note that for indi-
vidual pixels with unambiguous detection of SO2 (typically
SO2 VCDs larger than 2 DU), the agreement between DOAS
and COBRA is excellent (see e.g. Fig. S2). In Fig. 2, a closer
look at the COBRA SO2 map still reveals some negative
values for specific locations. For instance, the Garabogazköl
Basin near the Caspian Sea is particularly visible. It is char-
acterized by a salt flat with a high albedo. This surface effect
is apparently poorly represented in the radiance covariance
and leads to the negative values observed in the data.

Retrieval results using the new COBRA are also evalu-
ated in Fig. 2 against a scientific TROPOMI SO2 product
generated using the PCA approach. The settings of the ex-
perimental TROPOMI PCA SO2 algorithm, including the
spectral range and number of iterations, are identical to the
operational OMI algorithm with the following exceptions:
(1) TROPOMI pixels from each row are grouped into sec-
tors of 20◦ latitude bands, instead of three sectors as in the
OMI algorithm; (2) a third-degree polynomial is removed
from each Sun-normalized radiance spectrum before PCA
analysis; (3) a maximum of 20 PCs are used in the fitting
instead of 30 in the current OMI algorithm (Li et al., 2020a);
and (4) no attempts were made to reduce TROPOMI retrieval
noise over the SAA affected areas. For this exercise, the PCA
scheme uses as input the same SO2 absorption cross-section
data (Bogumil et al., 2003) as for the DOAS and COBRA
retrievals, and the same selection of pixels. Figure 2 also
compares the TROPOMI SO2 columns (from DOAS, CO-
BRA and PCA) to the operational OMPS SO2 PCA retrievals
NMSO2_PCA_L2 V2 (Zhang et al., 2017; Li et al., 2020c).
Although OMPS has a coarser resolution (50× 50 km2) than
TROPOMI, it nonetheless provides useful reference data be-
cause it operates on the Suomi National Polar-orbiting Part-
nership (SNPP) satellite, which flies in loose formation with
S-5P (i.e. 3–5 min difference of overpass time). To allow a
meaningful comparison, the OMPS pixels were selected sim-
ilarly to TROPOMI, i.e. with cloud radiance fraction lower
than 30 % and OMPS across-track positions 3–34. Note fi-
nally that to avoid discrepancies due to different a priori pro-
files in the TROPOMI and OMPS retrievals, a fixed AMF
of 0.4 was used for all four data sets. As can be seen from
Fig. 2, an overall excellent agreement is found between
COBRA and PCA retrievals, the observed SO2 spatial dis-
tributions being essentially the same. However, the OMPS
SO2 data set has different patterns over China (possibly due
to sampling differences) and also appears noisier than the
TROPOMI results (as expected from the smaller number of

Figure 2. Comparison of seasonal mean SO2 columns for Septem-
ber to November 2019 retrieved from TROPOMI DOAS, COBRA,
PCA and OMPS PCA algorithms (from top to bottom). Consistent
pixel selection criteria, gridding and retrieval settings are applied
(see text). For all four data sets, a fixed AMF of 0.4 is applied.

pixels). When comparing the TROPOMI COBRA and PCA
maps, very consistent results are found. Yet, the quality of
COBRA seems slightly better than the PCA retrievals. In par-
ticular, COBRA is much less sensitive to the South Atlantic
Anomaly than PCA data, which exhibit many outliers in the
corresponding region. At mid-latitudes, there is also a slight
positive bias (of about+0.1 DU on average) and higher noise
in the PCA results compared to COBRA.

We have estimated the data scatter for the three TROPOMI
data sets, based on measurements from the same orbit over
the Pacific as Fig. 1. Results are shown in Fig. 3, as a func-
tion of latitude. We find that COBRA has a SCD noise level
20 %–25 % lower than the PCA retrievals, and twice as good
as DOAS (as in Fig. 1). Translating the numbers of Fig. 3 in
terms of vertical columns for a typical pollution scenario, we
estimate the retrieval precision for individual pixels typically
to be 0.5–1 DU for COBRA.
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Figure 3. Standard deviation of the SO2 slant columns as re-
trieved from DOAS (black), PCA (blue) and COBRA (red) for one
TROPOMI orbit (10 394 on 15 October 2019, same as Fig. 1) for
rows 26–424, as a function of latitude (for 5◦ bins).

To further evaluate the overall quality of the COBRA re-
trievals, the SO2 VCDs can be compared to model data. Here,
we have used the output of the Copernicus Atmosphere Mon-
itoring Service (CAMS; https://atmosphere.copernicus.eu/,
last access: 20 June 2020) regional model, for September to
November 2019. The CAMS regional air quality production
is based on an ensemble of nine European air quality models
that are run at a resolution of 0.1◦ and produce 4 d, daily fore-
casts of the main atmospheric pollutants, including SO2. The
forecasts and analyses from all nine models are combined in
calculating the median value of the individual outputs, which
is designated as the ENSEMBLE output and is the field
used in this study. The CAMS regional ensemble data were
obtained from the Copernicus Atmosphere Data Store (ADS,
https://atmosphere.copernicus.eu/data, last access: 20 June
2020). More information about the CAMS regional system
can be found on the ECMWF website (https://confluence.
ecmwf.int/display/CKB/CAMS+Regional:+European+air+
quality+analysis+and+forecast+data+documentation, last
access: 20 June 2020). The CAMS regional system used the
CAMS-REG-AP_v2_2_1 emissions (reference year: 2015)
between June 2019 and February 2020, and the updated
CAMS-REG-AP_v3_1 emissions data set (reference year:
2016) since February 2020.

In Fig. 4, seasonal regional maps of S-5P SO2 VCDs over
eastern Europe from the DOAS and COBRA schemes are
compared to the output of the CAMS regional model, for
September to November 2019. From the maps, it is clear that
the COBRA results are in much better agreement with the
CAMS analysis than the DOAS data. Owing to the quasi-
absence of bias and the low noise level, the COBRA data
allow better isolation of the emission sources. The agree-

ment between COBRA and CAMS is, however, not perfect
and there are several explanations for this. Most of the SO2
emissions in this region are from coal-fired power plants and
the emission inventory used by CAMS is likely reflecting
neither the actual activity nor the emission mitigation solu-
tion (e.g. SO2 scrubbers) at each power plant. Noteworthy is
also the absence of SO2 emissions from Mt. Etna in CAMS.
Secondly, the AMFs used here are calculated with SO2 pro-
files from TM5, a different model with a coarser resolution
(1◦× 1◦) than CAMS regional data. Therefore the COBRA
and CAMS SO2 columns cannot be strictly compared. Nev-
ertheless, the comparison in Fig. 4 is encouraging. In the
future, the COBRA SO2 retrievals together with the cor-
responding column averaging kernels (Eskes and Boersma,
2003) could be ingested in the CAMS assimilation system
to better constrain the model SO2 output and emission esti-
mates.

3.2 Comparison to ground-based MAX-DOAS
observations

The Multi-Axis DOAS (MAX-DOAS) measurement tech-
nique is an established method to retrieve tropospheric trace
gas columns and vertical profiles from a sequence of spec-
tral observations performed at various elevation angles above
the horizon (Hönninger and Platt, 2002; Tirpitz et al., 2021).
MAX-DOAS measurements leverage the fact that low el-
evation measurements have enhanced sensitivity to atmo-
spheric pollutants in the boundary layer and that the com-
bination of the different elevations carries information on the
vertical distribution of the trace gas of interest as well as
aerosols. The simplest estimation of the tropospheric VCD
from MAX-DOAS measurements is obtained by scaling the
differential SCD at a given elevation angle (often 15◦ or 30◦)
with an AMF assuming a geometrical light path through the
trace gas layer. Recently, more sophisticated approaches have
been developed to retrieve the concentration profile in the tro-
posphere using multiple elevation measurements.

Here we compare our TROPOMI SO2 VCD data to MAX-
DOAS observations at two sites, both characterized by rel-
atively low-SO2 columns: Xianghe and Mohali (Table 1).
In general, the different MAX-DOAS instruments and SO2
retrievals share common characteristics, practices and ap-
proaches, and the reader is referred to the publications listed
in Table 1 for more detailed information.

For the comparison, we have used a common set of selec-
tion criteria for the satellite data. For each day, we selected
the TROPOMI pixels within a 25 km radius circle around the
station of interest, a strict radiometric cloud fraction thresh-
old of 20 %, SZA lower than 60◦ and AMF larger than 0.2. If
the number of retained pixels is larger than 10 then the mean
SO2 VCD is calculated and compared to the averaged SO2
column for the MAX-DOAS measurements within ±1 h of
the S-5P overpass time.
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Figure 4. Seasonal mean SO2 columns for September to November 2019 from (a, b) TROPOMI DOAS and COBRA retrievals, and (c)
simulated by the CAMS regional model. The CAMS data are displayed at the 0.1◦× 0.1◦ native resolution.

Regarding the ground-based retrievals, the SO2 VCDs are
estimated, for Mohali, using the 15◦ elevation SO2 SCDs
and geometrical AMFs. Conversely, the retrieved data for Xi-
anghe consist of SO2 profiles. These are integrated along the
vertical to provide the VCDs. Moreover, to make the compar-
ison between MAX-DOAS and TROPOMI more consistent,
we have rescaled the TROPOMI VCDs using the satellite av-
eraging kernels (Eskes and Boersma, 2003) and the MAX-
DOAS SO2 profiles at Xianghe.

The comparison results between COBRA and MAX-
DOAS measurements are shown in Fig. 5a and b, for Xi-
anghe and Mohali, respectively. Overall, the agreement be-
tween COBRA and MAX-DOAS data is very good, keeping
in mind that the levels of SO2 columns are quite low. The
slopes of the regression lines are close to unity. In Table 1,
the mean SO2 columns from MAX-DOAS, TROPOMI CO-
BRA and DOAS retrievals are given at each station and for
different SZAs. A striking feature of the comparison is that
the COBRA results show similar good agreements over a
wide range of SZA. It further supports the idea that COBRA
yields unbiased results over varying observation conditions.
This is in contrast to the DOAS product, which is clearly bi-
ased high for high SZA. For completeness, the comparison
results between TROPOMI DOAS and MAX-DOAS mea-
surements are shown in Fig. S3, for both Xianghe and Mo-
hali stations. The agreement is clearly not as good as for the
COBRA vs. MAX-DOAS comparison, both in terms of the
correlation coefficients and slopes of the regression lines.

4 Global results

In this section, we present long-term global results from CO-
BRA, based on 2.5 years (April 2018–December 2020) of

cloud-free TROPOMI data (radiometric cloud fraction less
than 30 %). Using an oversampling technique, a global aver-
age SO2 column map at 0.015◦× 0.015◦ resolution was ob-
tained and smoothed by a 2-dimensional 10-point box car
function. Figure 6 shows the resulting SO2 distribution for
specific regions, over eastern China, India, the Middle East,
South America, South Africa, the US and Europe (the global
map is also available in the form of a Google Earth/geotiff
file, in the Supplement). Figure 6 also shows the locations
of the SO2 sources based on the latest OMI 2005–2019 cat-
alogue (Fioletov et al., 2016), with a total of 588 sites, in-
cluding power plants, smelters, oil and gas industry sources,
and volcanoes. As can be seen, many of the sources of the
catalogue are easily identified as SO2 hotspots on the map.
Conversely, there is also a significant number of sources in
the inventory with no detectable SO2 in the TROPOMI data,
but one should keep in mind that the catalogue gathers emis-
sion sources since the beginning of the OMI data record in
2005, and several of these sources have ceased operations or
decreased drastically their emissions since then (e.g. due to
the operation of SO2 scrubbers in coal power plants). To help
identify those sources, Fig. 6 shows with a different marker
the sources detected by OMI for 2018–2019 (i.e. the sources
with emissions above the detection limit, as in Fioletov et al.,
2016, and McLinden et al., 2016; see also Sect. 5.2). This
is also helpful to highlight the differences in sensitivity, as
many sources are detected by TROPOMI but not by OMI.

Generally speaking, the SO2 maps of Fig. 6 are very de-
tailed. Biases over clean regions are remarkably low, and
emissions-related patterns with SO2 VCDs less than 0.25 DU
are clearly visible in many places. By scrutinizing the SO2
distributions, one can identify numerous sources from the
current catalogue but also several potentially new source
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Table 1. Summary of SO2 VCD comparison.

Station Reference MAX-DOAS VCD Period Mean SO2 VCD (DU) )
calculation for SZA< 50◦ (50◦<SZA< 60◦)

MAX-DOAS S-5P COBRA S-5P DOAS

Xianghe, China
39.77◦ N 117◦ E

Wang et al. (2014) Integrated profile Jan 2020–Oct 2020 0.2 (0.28) 0.21 (0.34) 0.34 (0.77)

Mohali, India
30.67◦ N 76.74◦ E

Kumar et al. (2020) 15◦ elevation (geometrical) May 2019–Oct 2020 0.21 (0.18) 0.18 (0.26) 0.16 (0.50)

Figure 5. The left panels show comparison of monthly mean SO2 columns from MAX-DOAS and TROPOMI COBRA for (a) Xianghe
and (b) Mohali. The grey and pale red dots correspond to the individual days. The right panels show scatter plots of monthly mean SO2
columns of TROPOMI COBRA vs. MAX-DOAS observations. Error bars are the standard errors on the monthly average SO2 columns. The
correlation coefficient and slope of the regression line are given as an inset for each plot.

regions. However, some care must be taken in attributing
new sources and relating this to the improved sensitivity of
TROPOMI COBRA. First, the catalogue is arguably not re-
solving the individual sources well for dense regions (e.g. in
eastern China and India) and, as a matter of fact, typically re-
ports a total emission estimate of a point-like source for what
is in reality a cluster of sources. While the algorithm to han-
dle such clusters of sources exists (Fioletov et al., 2017), it
has not been implemented in the catalogue yet. Second, the
SO2 catalogue is being populated on a best-effort basis, and
a number of emission sources might be missing, in partic-
ular for emerging countries where industrial infrastructures
are built quickly. Third, SO2 outflow from the strong sources
– or clusters of sources – can lead to variations in the map

and thus fictitious emission sources. Finally, retrieval arte-
facts, measurement noise or sampling-related issues can also
lead to false source identification. Note that a comprehensive
identification and classification of new sources from the CO-
BRA SO2 data is not within the scope of the present study.
Here, we aim to discuss plausible new SO2 sources (i.e. not
in the OMI catalogue). In Sect. 5.2, we will further demon-
strate the excellent performance of COBRA in detecting very
weak emissions, for a limited number of sources.

The new identified sources are characterized by low-SO2
column levels in the range 0.05–0.2 DU. For instance, in
Fig. 6a we observe hotspots of SO2 from power plants
(mostly coal but also likely gas) in North and South Ko-
rea, northern Vietnam (near Haiphong), several Chinese
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provinces (e.g. Hubei, Guangxi, Guangdong), and along the
coast of China. In Fig. 6b, several weak emission sources can
be isolated in India (e.g. over the western coast and the Indo-
Gangetic plain), Pakistan, Bangladesh and Sri Lanka (near
the city of Colombo). In the Middle East (Fig. 6c), most of
the SO2 emissions are from oil- and gas-related industries,
like power plants, gas flaring and refineries. Examples of
weak SO2 emissions can be found in Saudi Arabia, Oman,
Egypt, Syria (near the city of Damascus) and Iran. In South
America (Fig. 6d), new emission sources are popping up, no-
tably in Brazil (near Rio de Janeiro, São Paulo and Porto Ale-
gre), and on both sides of the Andes (in Chile and Argentina).
In South Africa (Fig. 6e), in addition to the strong emissions
from the coal power plants of the Highveld, a clear SO2 sig-
nal is detected over Cape Town. Interestingly, the measured
SO2 distribution nicely matches the orography setting. In the
US (Fig. 6f), the most striking emission region is the state of
California, with enhanced SO2 over the Central Valley and
the city of Los Angeles. Over the central and eastern parts of
the US, the emissions from power plants have declined dra-
matically over the last 15 years (Krotkov et al., 2016). How-
ever, the data still show enhanced SO2 over some of them.
In Europe (Fig. 6g), most of the observed enhanced SO2 cor-
respond to sources already in the catalogue. Still, a number
of small spots are found, for example in eastern Europe (Ro-
mania, Serbia, Kosovo, Hungary), Germany (near Leipzig),
Turkey and Tunisia (Gulf of Gabes). Interestingly, enhanced
SO2 is also observed over the Gibraltar Strait and Red Sea,
which might result from shipping emissions.

Overall, the SO2 maps of Fig. 6 nicely illustrate the great
ability of TROPOMI to detect weak SO2 point emissions
sources when analysed using a sensitive approach such as
COBRA. Using Google Earth imagery and information on
industrial facility locations, we were able to confirm that
many features in the SO2 map are real sources. For this, we
have also compared our SO2 data to tropospheric NO2 col-
umn maps from TROPOMI. An example of comparison is
shown in Fig. S4 for a region over Central Asia. There, the
SO2 emissions sources in the catalogue are mostly from coal
power plants and smelters, in the Xinjiang province (China)
and eastern Kazakhstan. As can be seen in Fig. S4, several
other SO2 emission hotspots are detected (notably in the Xin-
jiang province) which clearly coincide with locations with
enhanced tropospheric NO2.

Nevertheless, several patterns in the SO2 map (Fig. 6) are
hard to relate to point source emissions. In particular, the SO2
signal observed over Cape Town (Fig. 6e) and Los Ange-
les (Fig. 6f) could be due to area sources rather than point
emissions. Over South America (Fig. 6d) and the eastern US
(Fig. 6f), the apparent SO2 background is intriguing. It is
unclear whether this could be due to real SO2 emissions or
not. We also identify several artefacts in the data. Unsurpris-
ingly, biases in the data occur for specific conditions which
are under-sampled or not optimally represented by the co-
variance matrix. These are most often surface-related effects

(due to peculiar albedo or elevated terrain). One illustration
of this problem is given in Fig. 6c, over the Nile Valley. Al-
though some real SO2 emissions are found in the area, with
SO2 VCDs larger than ∼ 0.1 DU, there are also unexpected
enhancements in the SO2 column that follow the Nile River.
These are probably due to the very dark surfaces there. Sim-
ilarly, elevated values are also found further South in Sudan
and Ethiopia, over vegetated scenes. However, the resulting
SO2 VCD biases are overall very small, typically less than
0.04 DU (∼ 1× 1015 molecules/cm2), and can be suppressed
by a local bias correction or more sophisticated approaches.

As mentioned above, the attribution of new sources based
on SO2 maps is not straightforward. Efficient space-based
techniques to isolate sources and estimate their emissions do
exist (Fioletov et al., 2015; McLinden et al., 2016; Clarisse et
al., 2019b). However, applying such methods systematically
to the TROPOMI COBRA SO2 data goes beyond the scope
of this paper. Instead, in the next section, we will estimate
the SO2 emissions for the known largest sources and demon-
strate the potential of COBRA for the retrieval of weak emis-
sions, for a limited number of new sites.

5 Emissions estimates

Satellite observations are being increasingly used to estimate
SO2 emissions. In particular, new methods have been very
successful in deriving reliable emission rates, and even de-
tecting missing sources, by combining satellite SO2 columns
and wind information, without the need for atmospheric
chemistry transport models (e.g. Beirle et al., 2014; Fiole-
tov et al., 2016, 2017, 2020; McLinden et al., 2016; Carn
et al., 2017). These techniques have been used to derive a
global SO2 emissions inventory from OMI observations (Liu
et al., 2018). Recently, Fioletov et al. (2020) presented an
analysis using the TROPOMI operational SO2 product and
found overall consistent results with the OMI emissions es-
timates. The TROPOMI-based emissions uncertainties were
found to be a factor of 1.5–2 lower than the ones from OMI.
In this section, we repeat the same analysis using the CO-
BRA SO2 retrievals and investigate the added value of CO-
BRA for the estimation of SO2 emissions. The details of the
inversion technique can be found in Fioletov et al. (2015) and
references above.

In brief, the method considers a potential point source and
applies a wind rotation of the satellite-measured SO2 VCDs
around this location. This first step enables all plume disper-
sion patterns to be aligned along a fixed direction and leads to
an improved SO2 detection limit. By contrasting the upwind
and downwind averaged SO2 columns, the wind rotation pro-
cedure allows confirmation of whether the test location is a
real emission source and also correction for a possible bias
in the data. Note that for this first step, the retrieved SO2
VCDs are rescaled using site-specific AMFs so that realistic
SO2 emission profile shapes (based on the elevation of the

Atmos. Chem. Phys., 21, 16727–16744, 2021 https://doi.org/10.5194/acp-21-16727-2021



N. Theys et al.: A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA) 16737

Figure 6.

site and climatological boundary-layer height) are used for
all analysed sources.

The second part of the retrieval method deals with the
emission estimate itself. The averaged downwind SO2 field
is modelled by an exponential modified Gaussian function
which accounts for the SO2 total mass, e-folding time and
plume width. From the fitted parameters, the average SO2
emission rate can be derived directly. Here the baseline in-
version is, however, not to fit all three parameters but rather
to prescribe the e-folding time and plume width, and there-
fore the only parameter derived from the fit is the SO2 total
mass, which is directly proportional to the SO2 emission rate.

5.1 SO2 emissions for large sources

The method was applied to the SO2 data from COBRA for
274 large emissions sources, including power plants, volca-
noes, oil and gas sources, and smelters, distributed world-
wide. In Fig. 7a, the results are compared to the analysis of
Fioletov et al. (2020) using the TROPOMI DOAS product,
for the period from April 2018 to March 2019.

In general, the emission estimates from COBRA and
DOAS are fairly consistent for all four source types. For
two-thirds of all sources, the differences between DOAS and
COBRA emission estimates are within ±3 times the stan-
dard deviations of the DOAS-based emissions. However, it
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Figure 6. Averaged SO2 column (in DU) for April 2018 to December 2020 over (a) eastern China, (b) India, (c) the Middle East, (d) South
America, (e) South Africa, (f) the US and (g) Europe. The black circles mark the locations of SO2 sources detected by OMI (in bold for the
2018–2019 period; see text). Due to the massive eruption of Raikoke on 21 June 2019, all data in the Northern Hemisphere, for the 3-month
period after the eruption, are filtered out. The grey lines in (e) are the topography isolines (in metres) Note that to further reduce the data
scatter, the SO2 map was smoothed by a 2-dimensional 20-point box car function (instead of 10-point function for the other sub-figures).

was found that the local bias in the satellite data (as derived
from the upwind SO2 columns) is much higher with DOAS
(∼ 0.25 DU) than with COBRA (∼ 0.05 DU), and that the
large differences between DOAS and COBRA emission es-
timates for some sources are related to problems with the
DOAS algorithm. Also, as result of the large improvement
in the noise level, the estimated emissions uncertainties are
significantly improved with COBRA compared to DOAS, by
20 %–50 % on average (see Fig. 7b).

It should be emphasized though that the improvement of
emission uncertainties depends on the emission level. The
sources considered here are relatively large sources that have
been previously detected by OMI. The TROPOMI COBRA
SO2 data set presented in this study combines the advantages
of high spatial resolution, low noise level and almost no bias.
It has therefore the potential to detect weaker sources (as
shown in Sect. 4).

5.2 Detection of weak emissions

It is enlightening to estimate the lowest level of SO2 emission
detectable by COBRA. Clearly, it is expected to be depen-
dent on the observation conditions, and generally speaking
the best detection limit is obtained for sites with low noise on
the SO2 SCDs and the highest measurement sensitivity (i.e.
high AMFs). These sites are found at low latitudes and in
particular at high elevations or for high albedos. To estimate
the emission detection limit, we define the statistical signif-
icance of an emission signal as 3 times its standard error.
Based on the global sources presented above (Sect. 5.1), we
performed statistics using this metric. To avoid biases by the
strongest sources, we only considered the sources with esti-
mated emissions less than 50 kt yr−1. The resulting detection
limit values are found in the range between 4 and 11 kt yr−1

depending on the AMF, with a mean value of 8 kt yr−1. It
is important to realize that this limit of detection is remark-
ably low, at least twice as good as using TROPOMI DOAS
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Figure 7. (a) Estimated SO2 emissions from TROPOMI, based on the COBRA and DOAS algorithms analysed for power plants, volcanoes,
oil and gas industries, and smelter sources. (b) Ratios of the estimated emissions and the corresponding uncertainties. The size of the marker
is proportional to the average of COBRA and DOAS (a) ratios between emission value to its corresponding uncertainty and (b) estimated
SO2 emissions.

data. It is also a factor of 4 smaller than the detection limit of
30–40 kt yr−1 offered by OMI for the first years of operation
(Fioletov et al., 2016; McLinden et al., 2016). This suggests
that the TROPOMI COBRA implementation is excellent in
exploiting the gain in spatial resolution of TROPOMI com-
pared to OMI (∼ 16 times smaller pixel sizes). This finding is
supported by the fact that the noise levels for individual pix-
els for TROPOMI COBRA and OMI PCA VCDs are similar
(not shown; see also Sect. 3 of Fioletov et al., 2020).

In the following, we demonstrate the potential of the
TROPOMI COBRA SO2 data set to detect and quantify weak
emissions. For this, we use a slightly adapted version of the
inversion technique of Sect. 5.1 and illustrate the method on
a selection of new emission sources.

The region of interest is the Dhofar governorate in south-
ern Oman. There, the exploitation of oil and gas fields is
growing fast, with a number of rapidly evolving projects
of exploration and production. In Fig. 8 (left column), the
yearly averaged TROPOMI SO2 maps over southern Oman
are shown for 2018–2020. One can clearly identify and iso-
late three main emission locations, namely the Rabab Har-
well integrated plant (18.03◦ N, 54.64◦ E), the Birba Gath-
ering station (18.32◦ N, 55.10◦ E) and the Tayseer gas field
(18.71◦ N, 55.34◦ E). We note that these emission sources
are not listed in any emission inventory and the actual lo-
cations of the sources are approximated from available vis-
ible imagery (e.g. Google Earth). A noticeable feature in
Fig. 8 is the very low observed SO2 column level, in par-
ticular over Birba Gathering and Tayseer with SO2 VCDs
of 0.03–0.1 DU, reflecting again the great sensitivity of CO-
BRA. To estimate the SO2 emissions from the TROPOMI
data, the source method used in Sect. 5.1 has been refined and
tuned for this particular case study. A multi-source SO2 emis-

sion retrieval was applied as in Fioletov et al. (2017) with
one modification: a regression term proportional to the eleva-
tion was added to the fit to adjust for a small altitude-related
bias in retrieved SO2 (the values were slightly lower over
the mountains near the Arabian Sea coast). This multi-source
method is motivated by the fact that the sources are close to
each other (∼ 50–100 km distance) and the emissions cannot
be fitted separately. Here, the approach basically allows for
overlaps of the modelled SO2 spatial distributions: the emis-
sions from the individual sources are then adjusted so that
the total SO2 modelled field fits best the observed SO2 VCD
distribution. In Fig. 8, the results of the fit are shown (cen-
tre column), as well as the residuals of the fit (right column).
The estimated annual SO2 emissions for the three sources
are given in the inset of Fig. 8. Note that for this particu-
lar case, the emission detection limit (as defined above) is
typically about 6 kt yr−1. For the Rabab Harwell site, the al-
gorithm retrieves rather high and stable emissions over the
years, with an average value of about 40 kt yr−1, which is
well above the estimated detection limit. Interestingly, the
Rabab Harwell site has large residuals of ∼ 0.1 DU for all
years. This suggests that the point source representation used
here is likely not sufficient to explain the observations, and
it is possible that there are many small contributing sources
in the area. For the Birba Gathering site, the estimated emis-
sions are much smaller and lie in the range of 7–13 kt yr−1.
Yet, there is a good confidence that these emissions are real,
given that the estimates are a factor of 1–2 larger than the
limit of detection. However, it is clear that the uncertainty of
the emission estimates are quite large. For the Tayseer site,
an SO2 signal could be detected only recently. In 2019, the
estimated emissions are of 2 kt yr−1, i.e. below the detection
limit, and in 2020, the SO2 emissions strongly increased to
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Figure 8. The left column shows yearly mean TROPOMI SO2 columns retrieved from COBRA over southern Oman for 2018 (April to
December), 2019, 2020 (from top to bottom), and after bias correction for the effect of elevation (see text). Three distinct SO2 spots are
discernable from the maps and are the results of emissions from oil and gas fields, referred to as Rabab Harwell, Birba Gathering and Tayseer
(centre column), and results of the fitting of TROPOMI SO2 data. The estimated annual SO2 emissions (given in the inset for the three
sources) are used to reconstruct the SO2 column field (right column) residuals of the fit or the difference between TROPOMI and fitting
results.

about 20 kt yr−1, probably as a result of a change in opera-
tion at the production facility. Finally, note that no significant
residuals could be found for either Tayseer or Birba Gather-
ing site, and this suggests a point source behaviour at both
sites.

In summary, the analysis over southern Oman of Fig. 8
nicely illustrates the strength of a highly sensitive scheme
such as COBRA when applied to a high spatial resolution
instrument as TROPOMI. The fact that such low-SO2 emis-
sions can be tracked and quantified with that level of detail
is remarkable. Although not shown, the emission inversion
scheme was successfully applied not only to the southern
Oman sources but also to other test sites, as they were found
in the global SO2 map (Fig. 6). The wind-rotation technique

when applied to TROPOMI COBRA SO2 data is arguably a
promising tool to monitor weak SO2 emissions and track the
activity from rapidly emerging production facilities world-
wide. However, applying the inversion scheme at the global
scale involves a significant effort, as it also requires some
level of manual intervention and testing. For instance, the in-
formation on source type, location, etc. is typically lacking,
and the supporting visible imagery – useful for identifying
industrial facilities – is often outdated.

6 Conclusions

A new spectral fitting method for the retrieval of sulfur diox-
ide columns in the UV was presented and demonstrated for
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TROPOMI. Based on a dynamical total measurement er-
ror covariance, the method, called COBRA, allows consid-
erable reduction in the noise level (by a factor of 2) and
biases present in the current TROPOMI DOAS SO2 opera-
tional product. COBRA provides greater sensitivity to low-
SO2 columns, and this conclusion is supported by MAX-
DOAS observations. Preliminary comparison of COBRA to
PCA retrievals suggests similar and even better algorithm
performance. The SO2 vertical column precision for indi-
vidual pixels is in the range 0.5–1 DU. The main limitation
of the method relates to the set of spectra chosen to build
the covariance matrix, to what extent it is uncontaminated by
SO2 and its distribution representative of the observations in
the absence of SO2. In particular, very bright or very dark
scenes may be poorly represented by the covariance matrix.
These conditions (i.e. intensity outliers) can lead to retrieval
artefacts. However, the systematic VCD uncertainty (contri-
bution from the COBRA spectral fit only) is very small, typ-
ically less than 0.04 DU.

The benefit of COBRA is clearly demonstrated in this
work using long-term oversampled averages. Owing to the
excellent quality of the data (in terms of precision and accu-
racy), the high spatial resolution of TROPOMI can be better
exploited. Close-up SO2 maps reveal new emission sources
worldwide, with low-SO2 columns of 0.05–0.2 DU, or even
lower.

By using the COBRA SO2 data over large emission
sources, we have recalculated the SO2 emissions obtained
by Fioletov et al. (2020) that were based on the TROPOMI
operational SO2 product. While the derived emission rates
generally agree well, we found that the uncertainties on the
emissions are significantly lower (up to 50 %) using COBRA
than with the operational product. This opens the possibility
to retrieve SO2 emissions for weakly emitting sources, and
we present a number of examples that demonstrate the po-
tential of the COBRA data in this direction.

With an estimated annual emission detection limit of about
8 kt yr−1, the TROPOMI COBRA SO2 data provide unique
access to weak anthropogenic and volcanic point sources and
can help complete current SO2 emission inventories. It can
also be used to more accurately track weak or rapid changes
in SO2 levels, e.g. due to COVID-19 lockdown measures
(Levelt et al., 2021), as well as estimate seasonal and even
monthly emissions. Finally, COBRA data would be particu-
larly relevant for the CAMS assimilation system as well.

COBRA is a good candidate for implementation in the
TROPOMI operational processor, with limited computa-
tional resources and without the need for a separate back-
ground correction processor. COBRA is also adaptable to
other satellite instruments, including from geostationary plat-
forms. In particular, the European Sentinel-4 mission would
likely benefit from a COBRA approach for the retrieval of
SO2 columns, as the atmosphere will be sounded under un-
favourable large observation angles.

Future work could also be dedicated to the application of
COBRA to historical sensors, in order to produce a consistent
long-term SO2 data record, but also to the retrieval of other
molecules.

Code and data availability. The TROPOMI COBRA SO2 data
set is available from the corresponding author on request. The
TROPOMI DOAS SO2 product is publicly available on the
Copernicus Sentinel-5P data hub (https://s5phub.copernicus.eu,
BIRA-IASB/DLR/ESA/EU, 2020). The TROPOMI PCA SO2
data set is available from Can Li on request. The OMPS PCA
SO2 data are publicly available from Goddard Earth Sciences
(GES) Data Information Service Center (DISC) (https://daac.gsfc.
nasa.gov/datasets/OMPS_NPP_NMSO2_PCA_L2_2/summary, Li,
2020). The CAMS regional data are available from the Coper-
nicus Atmosphere Data Store (https://atmosphere.copernicus.eu/
data/, CAMS/EU, 2020). The SO2 emissions estimates can be ob-
tained from Vitali Fioletov on request. The MAX-DOAS measure-
ments used to validate the satellite SO2 data are available on request
from François Hendrick (Xianghe), Thomas Wagner and Vinod Ku-
mar (Mohali).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-16727-2021-supplement.

Author contributions. NT prepared the paper and figures with con-
tributions from all the co-authors. NT, IDS, ChL, LC, JV, HB and
MVR contributed to the development of the COBRA algorithm,
processing of the data and satellite comparison. VF, CM and DG es-
timated the SO2 emissions. CaL and NK developed the TROPOMI
and OMPS PCA algorithms and provided data for the comparison.
PH and DL contributed to the development of the TROPOMI DOAS
algorithm, processing of the data and satellite comparison. AI and
RR provided CAMS SO2 data. TW, VK, FH and MVR analysed
and provided MAX-DOAS data. All authors contributed to the in-
terpretation of the results and improvement of the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank EU/ESA/KNMI/DLR for providing
the TROPOMI/S5P Level 1 products. This paper contains modified
Copernicus data (2018/2020) processed by BIRA-IASB.

Can Li and Nickolay Krotkov acknowledge support from the
NASA Earth Science Division Aura Science Team, Suomi NPP
Science Team and US participating investigator programs. Lieven
Clarisse is a research associate supported by the Belgian F.R.S-
FNRS. We acknowledge Pucai Wang and Ting Wang (IAP/CAS,

https://doi.org/10.5194/acp-21-16727-2021 Atmos. Chem. Phys., 21, 16727–16744, 2021

https://s5phub.copernicus.eu
https://daac.gsfc.nasa.gov/datasets/OMPS_NPP_NMSO2_PCA_L2_2/summary
https://daac.gsfc.nasa.gov/datasets/OMPS_NPP_NMSO2_PCA_L2_2/summary
https://atmosphere.copernicus.eu/data/
https://atmosphere.copernicus.eu/data/
https://doi.org/10.5194/acp-21-16727-2021-supplement


16742 N. Theys et al.: A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA)

China) for their support in operating and maintaining MAX-DOAS
observations in Xianghe. We acknowledge Vinayak Sinha for sup-
porting us with the logistics to operate the MAX-DOAS at Mohali.
Vinod Kumar acknowledges the Alexander von Humboldt founda-
tion for supporting the postdoctoral fellowship.

Financial support. This research has been supported by ESA S5P
MPC (4000117151/16/I-LG), Belgium Prodex TRACE-S5P (PEA
4000105598) and TROVA (PEA 4000130630) projects.

Review statement. This paper was edited by Neil Harris and re-
viewed by Neil Harris and one anonymous referee.

References

Afe, O. T., Richter, A., Sierk, B., Wittrock, F., and Burrows, J.
P.: BrO emissions from volcanoes: a survey using GOME and
SCIAMACHY measurements, Geophys. Res. Lett., 31, L24113,
https://doi.org/10.1029/2004GL020994, 2004.

Beirle, S., Sihler, H., and Wagner, T.: Linearisation of the effects of
spectral shift and stretch in DOAS analysis, Atmos. Meas. Tech.,
6, 661–675, https://doi.org/10.5194/amt-6-661-2013, 2013.

Beirle, S., Hörmann, C., Penning de Vries, M., Dörner, S., Kern,
C., and Wagner, T.: Estimating the volcanic emission rate and
atmospheric lifetime of SO2 from space: a case study for
Kı̄lauea volcano, Hawai‘i, Atmos. Chem. Phys., 14, 8309–8322,
https://doi.org/10.5194/acp-14-8309-2014, 2014.

BIRA-IASB/DLR/ESA/EU, S5P_SO2_L2, available at: https://
s5phub.copernicus.eu, last access: 1 December 2020.

Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleis-
chmann, O., Vogel, A., Hartmann, M., Bovensmann, H., Fr-
erick, J., and Burrows, J. P.: Measurements of molecular absorp-
tion spectra with the SCIAMACHY Pre-Flight Model: instru-
ment characterization and reference data for atmospheric remote-
sensing in the 230–2380 nm region, J. Photoch. Photobio. A, 157,
167–184, 2003.

CAMS/EU: CAMS regional, available at: https://atmosphere.
copernicus.eu/data/, last access: 20 June 2020.

Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C.,
and Krotkov, N. A.: A decade of global volcanic
SO2 emissions measured from space, Sci. Rep., 7, 44095,
https://doi.org/10.1038/srep44095, 2017.

Clarisse, L., Clerbaux, C., Franco, B., Hadji-Lazaro, J., Whitburn,
S., Kopp, A. K., Hurtmans, D. and Coheur, P.-F.: A decadal
data set of global atmospheric dust retrieved from IASI satel-
lite measurements. J. Geophys. Res.-Atmos., 124, 1618–1647,
https://doi.org/10.1029/2018JD029701, 2019a.

Clarisse, L., Van Damme, M., Clerbaux, C., and Coheur, P.-
F.: Tracking down global NH3 point sources with wind-
adjusted superresolution, Atmos. Meas. Tech., 12, 5457–5473,
https://doi.org/10.5194/amt-12-5457-2019, 2019b.

Compernolle, S., Argyrouli, A., Lutz, R., Sneep, M., Lambert,
J.-C., Fjæraa, A. M., Hubert, D., Keppens, A., Loyola, D.,
O’Connor, E., Romahn, F., Stammes, P., Verhoelst, T., and
Wang, P.: Validation of the Sentinel-5 Precursor TROPOMI
cloud data with Cloudnet, Aura OMI O2–O2, MODIS, and

Suomi-NPP VIIRS, Atmos. Meas. Tech., 14, 2451–2476,
https://doi.org/10.5194/amt-14-2451-2021, 2021.

Danckaert, T., Fayt, C.,Van Roozendael, M., De Smedt, I., Letocart,
V., Merlaud, A., and Pinardi, G.: Qdoas Software User Manual,
Version 3.2, available at: http://uv-vis.aeronomie.be/software/
QDOAS/QDOAS_manual.pdf (last access: 24 April 2020), 2017.

Eisinger, M. and Burrows, J. P.: Tropospheric sulfur dioxide ob-
served by the ERS-2 GOME instrument, Geophys. Res. Lett.,
25, 4177–4180, 1998.

Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-
column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291,
https://doi.org/10.5194/acp-3-1285-2003, 2003.

Fioletov, V. E., McLinden, C. A., Krotkov, N., Yang, K., Loyola,
D. G., Valks, P., Theys, N., Van Roozendael, M., Nowlan, C. R.,
Chance, K., Liu, X., Lee, C., and Martin, R. V.: Application of
OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for
detection of large emission sources, J. Geophys. Res.-Atmos.,
118, 11399–11418, https://doi.org/10.1002/jgrd.50826, 2013.

Fioletov, V. E., McLinden, C. A., Krotkov, N. A., and Li,
C.: Lifetimes and emissions of SO2 from point sources
estimated from OMI, Geophys. Res. Lett., 42, 1–8,
https://doi.org/10.1002/2015GL063148, 2015.

Fioletov, V. E., McLinden, C. A., Krotkov, N., Li, C., Joiner, J.,
Theys, N., Carn, S., and Moran, M. D.: A global catalogue
of large SO2 sources and emissions derived from the Ozone
Monitoring Instrument, Atmos. Chem. Phys., 16, 11497–11519,
https://doi.org/10.5194/acp-16-11497-2016, 2016.

Fioletov, V., McLinden, C. A., Kharol, S. K., Krotkov, N. A., Li,
C., Joiner, J., Moran, M. D., Vet, R., Visschedijk, A. J. H., and
Denier van der Gon, H. A. C.: Multi-source SO2 emission re-
trievals and consistency of satellite and surface measurements
with reported emissions, Atmos. Chem. Phys., 17, 12597–12616,
https://doi.org/10.5194/acp-17-12597-2017, 2017.

Fioletov, V., McLinden, C. A., Griffin, D., Theys, N., Loyola, D.
G., Hedelt, P., Krotkov, N. A., and Li, C.: Anthropogenic and
volcanic point source SO2 emissions derived from TROPOMI on
board Sentinel-5 Precursor: first results, Atmos. Chem. Phys., 20,
5591–5607, https://doi.org/10.5194/acp-20-5591-2020, 2020.

Franco, B., Clarisse, L., Stavrakou, T., Müller, J.-F., Van Damme,
M., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Taraborrelli,
D., Clerbaux, C., and Coheur, P.-F.: A General Framework for
Global Retrievals of Trace Gases From IASI: Application to
Methanol, Formic Acid, and PAN, J. Geophys. Res.-Atmos., 123,
13963–13984, 2018.

Hönninger, G. and Platt, U.: Observations of BrO and its vertical
distribution during surface ozone depletion at Alert, Atmos. En-
viron., 36, 2481–2489, 2002.

Hörmann, C., Sihler, H., Bobrowski, N., Beirle, S., Penning de
Vries, M., Platt, U., and Wagner, T.: Systematic investigation
of bromine monoxide in volcanic plumes from space by using
the GOME-2 instrument, Atmos. Chem. Phys., 13, 4749–4781,
https://doi.org/10.5194/acp-13-4749-2013, 2013.

Khokhar, M. F., Frankenberg, C., Van Roozendael, M., Beirle, S.,
Kühl, S., Richter, A., Platt, U., and Wagner, T.: Satellite Obser-
vations of Atmospheric SO2 from Volcanic Eruptions during the
Time Period of 1996 to 2002, J. Adv. Space Res., 36, 879–887,
https://doi.org/10.1016/j.asr.2005.04.114, 2005.

Krotkov, N. A., Carn, S. A., Krueger, A. J., Bhartia, P. K., and
Yang, K.: Band residual difference algorithm for retrieval of

Atmos. Chem. Phys., 21, 16727–16744, 2021 https://doi.org/10.5194/acp-21-16727-2021

https://doi.org/10.1029/2004GL020994
https://doi.org/10.5194/amt-6-661-2013
https://doi.org/10.5194/acp-14-8309-2014
https://s5phub.copernicus.eu
https://s5phub.copernicus.eu
https://atmosphere.copernicus.eu/data/
https://atmosphere.copernicus.eu/data/
https://doi.org/10.1038/srep44095
https://doi.org/10.1029/2018JD029701
https://doi.org/10.5194/amt-12-5457-2019
https://doi.org/10.5194/amt-14-2451-2021
http://uv-vis.aeronomie.be/software/QDOAS/QDOAS_manual.pdf
http://uv-vis.aeronomie.be/software/QDOAS/QDOAS_manual.pdf
https://doi.org/10.5194/acp-3-1285-2003
https://doi.org/10.1002/jgrd.50826
https://doi.org/10.1002/2015GL063148
https://doi.org/10.5194/acp-16-11497-2016
https://doi.org/10.5194/acp-17-12597-2017
https://doi.org/10.5194/acp-20-5591-2020
https://doi.org/10.5194/acp-13-4749-2013
https://doi.org/10.1016/j.asr.2005.04.114


N. Theys et al.: A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA) 16743

SO2 from the Aura Ozone Monitoring Instrument (OMI), IEEE
T. Geosci. Remote Sens., AURA Special Issue, 44, 1259–1266,
https://doi.org/10.1109/TGRS.2005.861932, 2006.

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier,
E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner,
J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F.,
Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets,
D. G.: Aura OMI observations of regional SO2 and NO2 pollu-
tion changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–
4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.

Krueger, A. J.: Sighting of El Chichon sulfur dioxide clouds with
the Nimbus 7 total ozone mapping spectrometer, Science, 220,
1377–1379, 1983.

Kumar, V., Beirle, S., Dörner, S., Mishra, A. K., Donner, S.,
Wang, Y., Sinha, V., and Wagner, T.: Long-term MAX-DOAS
measurements of NO2, HCHO, and aerosols and evaluation
of corresponding satellite data products over Mohali in the
Indo-Gangetic Plain, Atmos. Chem. Phys., 20, 14183–14235,
https://doi.org/10.5194/acp-20-14183-2020, 2020.

Levelt, P. F., Stein Zweers, D. C., Aben, I., Bauwens, M.,
Borsdorff, T., De Smedt, I., Eskes, H. J., Lerot, C., Loyola,
D. G., Romahn, F., Stavrakou, T., Theys, N., Van Roozen-
dael, M., Veefkind, J. P., and Verhoelst, T.: Air quality im-
pacts of COVID-19 lockdown measures detected from space
using high spatial resolution observations of multiple trace
gases from Sentinel-5P/TROPOMI, Atmos. Chem. Phys. Dis-
cuss. [preprint], https://doi.org/10.5194/acp-2021-534, in review,
2021.

Li, C.: OMPS_NPP_NMSO2_PCA_L2, NASA, available at:
https://daac.gsfc.nasa.gov/datasets/OMPS_NPP_NMSO2_
PCA_L2_2/summary last access: 1 June 2020.

Li, C., Joiner, J., Krotkov, N. A., and Bhartia, P. K.: A
fast and sensitive new satellite SO2 retrievalalgorithm based
on principal component analysis: Application to the ozone
monitoring instrument, Geophys. Res. Lett., 40, 6314–6318,
https://doi.org/10.1002/2013GL058134, 2013.

Li, C., Krotkov, N. A., Leonard, P. J. T., Carn, S., Joiner, J., Spurr,
R. J. D., and Vasilkov, A.: Version 2 Ozone Monitoring Instru-
ment SO2 product (OMSO2 V2): new anthropogenic SO2 verti-
cal column density dataset, Atmos. Meas. Tech., 13, 6175–6191,
https://doi.org/10.5194/amt-13-6175-2020, 2020a.

Li, C., Krotkov, N. A., Leonard, P., and Joiner, J.: OMI/Aura
Sulphur Dioxide (SO2) Total Column 1-orbit L2 Swath 13x24
km V003, Greenbelt, MD, USA, Goddard Earth Sciences
Data and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/Aura/OMI/DATA2022, 2020b.

Li, C., Krotkov, N. A., Leonard, P., and Joiner, J.: OMPS/NPP
PCA SO2 Total Column 1-Orbit L2 Swath 50x50km
V2, Greenbelt, MD, USA, Goddard Earth Sciences Data
and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/MEASURES/SO2/DATA205, 2020c.

Liu, F., Choi, S., Li, C., Fioletov, V. E., McLinden, C. A., Joiner, J.,
Krotkov, N. A., Bian, H., Janssens-Maenhout, G., Darmenov, A.
S., and da Silva, A. M.: A new global anthropogenic SO2 emis-
sion inventory for the last decade: a mosaic of satellite-derived
and bottom-up emissions, Atmos. Chem. Phys., 18, 16571–
16586, https://doi.org/10.5194/acp-18-16571-2018, 2018.

Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Rom-
ahn, F., Spurr, R. J. D., Pedergnana, M., Doicu, A., Molina Gar-

cía, V., and Schüssler, O.: The operational cloud retrieval algo-
rithms from TROPOMI on board Sentinel-5 Precursor, Atmos.
Meas. Tech., 11, 409–427, https://doi.org/10.5194/amt-11-409-
2018, 2018.

McLinden, C. A., Fioletov, V., Shephard, M. W., Krotkov, N., Li, C.,
Martin, R. V., Moran, M. D., and Joiner, J.: Space-based detec-
tion of missing sulfur dioxide sources of global air pollution, Nat.
Geosci., 9, 496–500, https://doi.org/10.1038/ngeo2724, 2016.

Nowlan, C. R., Liu, X., Chance, K., Cai, Z., Kurosu, T. P., Lee, C.,
and Martin, R. V.: Retrievals of sulfur dioxide from the Global
Ozone Monitoring Experiment 2 (GOME-2) using an optimal es-
timation approach: Algorithm and initial validation, J. Geophys.
Res., 116, D18301, https://doi.org/10.1029/2011JD015808,
2011.

Platt, U. and Stutz, J.: Differential Optical Absorption Spec-
troscopy (DOAS), Principle and Applications, ISBN 3-340-
21193-4, Springer Verlag, Heidelberg, 2008.

Queißer, M., Burton, M., Theys, N., Pardini, F., Salerno, G.,
Caltiabiano, T., Varnham, M., Esse, B., and Kazahaya, R.:
TROPOMI enables high resolution SO2 flux observations from
Mt. Etna (Italy), and beyond, Nature Scientific Reports, 9, 957,
https://doi.org/10.1038/s41598-018-37807-w, 2019.

Rix, M., Valks, P., Hao, N., Loyola, D. G., Schlager, H., Huntrieser,
H. H., Flemming, J., Koehler, U., Schumann, U., and Inness,
A.: Volcanic SO2, BrO and plume height estimations using
GOME-2 satellite measurements during the eruption of Ey-
jafjallajökull in May 2010, J. Geophys. Res., 117, D00U19,
https://doi.org/10.1029/2011JD016718, 2012.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, The-
ory and Practice, World Scientific Publishing, Singapore-New-
Jersey-London-Hong Kong, 2000.

Theys, N., De Smedt, I., van Gent, J., Danckaert, T., Wang, T.,
Hendrick, F., Stavrakou, T., Bauduin, S., Clarisse, L., Li, C.,
Krotkov, N. A., Yu, H., Van Roozendael, M.: Sulfur dioxide ver-
tical column DOAS retrievals from the Ozone Monitoring In-
strument: Global observations and comparison to ground-based
and satellite data, J. Geophys. Res.-Atmos., 120, 2470–2491,
https://doi.org/10.1002/2014JD022657, 2015.

Theys, N., De Smedt, I., Yu, H., Danckaert, T., van Gent, J., Hör-
mann, C., Wagner, T., Hedelt, P., Bauer, H., Romahn, F., Ped-
ergnana, M., Loyola, D., and Van Roozendael, M.: Sulfur diox-
ide retrievals from TROPOMI onboard Sentinel-5 Precursor: al-
gorithm theoretical basis, Atmos. Meas. Tech., 10, 119–153,
https://doi.org/10.5194/amt-10-119-2017, 2017.

Theys, N., Hedelt, P., Smedt, I. De, Lerot, C., Yu, H., Vlietinck,
J., Pedergnana, M., Arellano, S., Galle, B., Fernandez, D., Bar-
rington, C., Taine, B., Loyola, D., and Van Roozendael, M.:
Global monitoring of volcanic SO2 degassing from space with
unprecedented resolution, Nature Scientific Reports, 9, 2643,
https://doi.org/10.1038/s41598-019-39279-y, 2019.

Tirpitz, J.-L., Frieß, U., Hendrick, F., Alberti, C., Allaart, M., Apit-
uley, A., Bais, A., Beirle, S., Berkhout, S., Bognar, K., Bösch, T.,
Bruchkouski, I., Cede, A., Chan, K. L., den Hoed, M., Donner, S.,
Drosoglou, T., Fayt, C., Friedrich, M. M., Frumau, A., Gast, L.,
Gielen, C., Gomez-Martín, L., Hao, N., Hensen, A., Henzing, B.,
Hermans, C., Jin, J., Kreher, K., Kuhn, J., Lampel, J., Li, A., Liu,
C., Liu, H., Ma, J., Merlaud, A., Peters, E., Pinardi, G., Piters,
A., Platt, U., Puentedura, O., Richter, A., Schmitt, S., Spinei, E.,
Stein Zweers, D., Strong, K., Swart, D., Tack, F., Tiefengraber,

https://doi.org/10.5194/acp-21-16727-2021 Atmos. Chem. Phys., 21, 16727–16744, 2021

https://doi.org/10.1109/TGRS.2005.861932
https://doi.org/10.5194/acp-16-4605-2016
https://doi.org/10.5194/acp-20-14183-2020
https://doi.org/10.5194/acp-2021-534
https://daac.gsfc.nasa.gov/datasets/OMPS_NPP_NMSO2_PCA_L2_2/summary
https://daac.gsfc.nasa.gov/datasets/OMPS_NPP_NMSO2_PCA_L2_2/summary
https://doi.org/10.1002/2013GL058134
https://doi.org/10.5194/amt-13-6175-2020
https://doi.org/10.5067/Aura/OMI/DATA2022
https://doi.org/10.5067/MEASURES/SO2/DATA205
https://doi.org/10.5194/acp-18-16571-2018
https://doi.org/10.5194/amt-11-409-2018
https://doi.org/10.5194/amt-11-409-2018
https://doi.org/10.1038/ngeo2724
https://doi.org/10.1029/2011JD015808
https://doi.org/10.1038/s41598-018-37807-w
https://doi.org/10.1029/2011JD016718
https://doi.org/10.1002/2014JD022657
https://doi.org/10.5194/amt-10-119-2017
https://doi.org/10.1038/s41598-019-39279-y


16744 N. Theys et al.: A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA)

M., van der Hoff, R., van Roozendael, M., Vlemmix, T., Vonk, J.,
Wagner, T., Wang, Y., Wang, Z., Wenig, M., Wiegner, M., Wit-
trock, F., Xie, P., Xing, C., Xu, J., Yela, M., Zhang, C., and Zhao,
X.: Intercomparison of MAX-DOAS vertical profile retrieval al-
gorithms: studies on field data from the CINDI-2 campaign, At-
mos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-
2021, 2021.

Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi,
Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., and Coheur, P. F.:
Global distributions, time series and error characterization of at-
mospheric ammonia (NH3) from IASI satellite observations, At-
mos. Chem. Phys., 14, 2905–2922, https://doi.org/10.5194/acp-
14-2905-2014, 2014.

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries,
J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool,
Q., van Weele, M., Hasekamp, O., Hoogeven, R., Landgraf,
J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B.,
Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA
Sentinel-5 Precursor: A GMES mission for global observations
of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.

von Clarmann, T., Grabowski, U., and Kiefer, M.: On the role of
non-random errors in inverse problems in radiative transfer and
other applications, J. Quant. Spectrosc. Ra., 71, 39–46, 2001.

Walker, J. C., Dudhia, A., and Carboni, E.: An effective method
for the detection of trace species demonstrated using the MetOp
Infrared Atmospheric Sounding Interferometer, Atmos. Meas.
Tech., 4, 1567–1580, https://doi.org/10.5194/amt-4-1567-2011,
2011.

Wang, T., Hendrick, F., Wang, P., Tang, G., Clémer, K., Yu, H.,
Fayt, C., Hermans, C., Gielen, C., Müller, J.-F., Pinardi, G.,
Theys, N., Brenot, H., and Van Roozendael, M.: Evaluation of
tropospheric SO2 retrieved from MAX-DOAS measurements
in Xianghe, China, Atmos. Chem. Phys., 14, 11149–11164,
https://doi.org/10.5194/acp-14-11149-2014, 2014.

Yang, K., Krotkov, N., Krueger, A., Carn, S., Bhartia, P. K.,
and Levelt, P.: Retrieval of Large Volcanic SO2 columns
from the Aura Ozone Monitoring Instrument (OMI): Com-
parisons and Limitations, J. Geophys. Res., 112, D24S43,
https://doi.org/10.1029/2007JD008825, 2007.

Yang, K., Liu, X., Bhartia, P., Krotkov, N., Carn, S., Hughes, E.,
Krueger, A., Spurr, R., and Trahan, S.: Direct retrieval of sulfur
dioxide amount and altitude from spaceborne hyperspectral UV
measurements: Theory and application, J. Geophys. Res., 115,
D00L09, https://doi.org/10.1029/2010JD013982, 2010.

Yang, K., Dickerson, R. R., Carn, S. A., Ge, C., and Wang, J.:
First observations of SO2 from the satellite Suomi NPP OMPS:
Widespread air pollution events over China, Geophys. Res. Lett.,
40, 4957–4962, https://doi.org/10.1002/grl.50952, 2013.

Zhang, Y., Li, C., Krotkov, N. A., Joiner, J., Fioletov, V., and McLin-
den, C.: Continuation of long-term global SO2 pollution moni-
toring from OMI to OMPS, Atmos. Meas. Tech., 10, 1495–1509,
https://doi.org/10.5194/amt-10-1495-2017, 2017.

Atmos. Chem. Phys., 21, 16727–16744, 2021 https://doi.org/10.5194/acp-21-16727-2021

https://doi.org/10.5194/amt-14-1-2021
https://doi.org/10.5194/amt-14-1-2021
https://doi.org/10.5194/acp-14-2905-2014
https://doi.org/10.5194/acp-14-2905-2014
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.5194/amt-4-1567-2011
https://doi.org/10.5194/acp-14-11149-2014
https://doi.org/10.1029/2007JD008825
https://doi.org/10.1029/2010JD013982
https://doi.org/10.1002/grl.50952
https://doi.org/10.5194/amt-10-1495-2017

	Abstract
	Introduction
	Methodology
	TROPOMI
	Algorithm description

	Verification of the retrievals
	Comparison to satellite observations and CAMS
	Comparison to ground-based MAX-DOAS observations

	Global results
	Emissions estimates
	SO2 emissions for large sources
	Detection of weak emissions

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

