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Abstract. Satellite-based observations of atmospheric car-
bon dioxide (CO2) provide measurements in remote regions,
such as the biologically sensitive but undersampled northern
high latitudes, and are progressing toward true global data
coverage. Recent improvements in satellite retrievals of to-
tal column-averaged dry air mole fractions of CO2 (XCO2 )
from the NASA Orbiting Carbon Observatory 2 (OCO-2)
have allowed for unprecedented data coverage of northern
high-latitude regions, while maintaining acceptable accuracy
and consistency relative to ground-based observations, and
finally providing sufficient data in spring and autumn for
analysis of satellite-observed XCO2 seasonal cycles across a
majority of terrestrial northern high-latitude regions. Here,
we present an analysis of XCO2 seasonal cycles calculated
from OCO-2 data for temperate, boreal, and tundra regions,
subdivided into 5◦ latitude by 20◦ longitude zones. We quan-
tify the seasonal cycle amplitudes (SCAs) and the annual half
drawdown day (HDD). OCO-2 SCAs are in good agreement
with ground-based observations at five high-latitude sites,
and OCO-2 SCAs show very close agreement with SCAs
calculated for model estimates of XCO2 from the Copernicus
Atmosphere Monitoring Services (CAMS) global inversion-
optimized greenhouse gas flux model v19r1 and the Carbon-

Tracker2019 model (CT2019B). Model estimates of XCO2

from the GEOS-Chem CO2 simulation version 12.7.2 with
underlying biospheric fluxes from CarbonTracker2019 (GC-
CT2019) yield SCAs of larger magnitude and spread over
a larger range than those from CAMS, CT2019B, or OCO-
2; however, GC-CT2019 SCAs still exhibit a very similar
spatial distribution across northern high-latitude regions to
that from CAMS, CT2019B, and OCO-2. Zones in the Asian
boreal forest were found to have exceptionally large SCA
and early HDD, and both OCO-2 data and model estimates
yield a distinct longitudinal gradient of increasing SCA from
west to east across the Eurasian continent. In northern high-
latitude regions, spanning latitudes from 47 to 72◦ N, longi-
tudinal gradients in both SCA and HDD are at least as pro-
nounced as latitudinal gradients, suggesting a role for global
atmospheric transport patterns in defining spatial distribu-
tions of XCO2 seasonality across these regions. GEOS-Chem
surface contact tracers show that the largest XCO2 SCAs oc-
cur in areas with the greatest contact with land surfaces, inte-
grated over 15–30 d. The correlation ofXCO2 SCA with these
land surface contact tracers is stronger than the correlation of
XCO2 SCA with the SCA of CO2 fluxes or the total annual
CO2 flux within each 5◦ latitude by 20◦ longitude zone. This
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indicates that accumulation of terrestrial CO2 flux during at-
mospheric transport is a major driver of regional variations
in XCO2 SCA.

1 Introduction

The changing climate influences carbon exchange in every
ecosystem on the planet, and polar amplification is driving
more rapid changes at higher latitudes (Smith et al., 2019;
Park et al., 2018; Pithan and Mauritsen, 2014; Holland and
Bitz, 2003; Manabe and Wetherald, 1975). An understand-
ing of the rapidly changing carbon dynamics at high north-
ern latitudes is necessary to improve our understanding of
global carbon exchange. However, despite the apparent im-
portance of northern high-latitude regions in quantifying the
global carbon budget, Bradshaw and Warkentin (2015) point
out that a great deal of uncertainty remains in the spatial pat-
terns of carbon stocks and fluxes in boreal forest regions, and
their results from predictive climate models show that the bo-
real forest may eventually shift from a carbon sink to a car-
bon source. Euskirchen et al. (2017), Barlow et al. (2015),
and Pan et al. (2011) all point out that a shortage of obser-
vations in boreal forest regions is a major impediment to un-
derstanding global carbon uptake, motivating further explo-
ration of alternative data sources, such as satellite measure-
ments. Since pioneering work by Thoning et al. (1989), anal-
ysis of the seasonal cycles of atmospheric CO2 concentra-
tions has been widely used to evaluate carbon exchange dy-
namics, and the amplitude of the regular seasonal oscillations
in atmospheric CO2 concentrations is a common metric used
to infer relative CO2 uptake. Many studies have combined
process-based and atmospheric transport modeling with in
situ and airborne observations to infer long-term temporal
trends and spatial distributions of seasonal CO2 exchange
and concluded that boreal forest regions play an essential
role in global carbon dynamics (Lin et al., 2020; Yin et al.,
2018; Piao et al., 2017; Barlow et al., 2015; Bradshaw and
Warkentin, 2015; Gauthier et al., 2015; Graven et al., 2013;
Pan et al., 2011; Tans et al., 1990). Lin et al. (2020) com-
pared seasonal cycle amplitudes (SCAs) from surface in situ
measurements of CO2 to those estimated from GEOS-Chem
transport modeling coupled with CAMS v17r1 flux estimates
and found that Siberia had the largest SCA of any region con-
sidered when normalized for area. Furthermore, Lin et al.
(2020) found that even though Siberia is a relatively small
source region, fluxes from Siberia were the second most in-
fluential in determining SCA of in situ CO2 on a global scale,
following those from Northern Hemisphere midlatitudes.

It has been well established that the SCA of atmospheric
CO2 increases with latitude in the Northern Hemisphere due
to the increased seasonal attenuation of sunlight which drives
more extreme seasonality in temperature and ecosystem pro-
ductivity at higher latitudes. There is general consensus that

this latitudinal gradient in SCA is increasing over time, so
that while CO2 SCAs are increasing across the Northern
Hemisphere, the SCAs at higher northern latitudes are in-
creasing at an accelerated rate. There is still some contro-
versy regarding what mechanisms are driving changes in
CO2 SCA and how spatial distributions or temporal trends in
CO2 seasonality are influenced by atmospheric transport pat-
terns or regional changes in carbon exchange. Recent work
by Liu et al. (2020) suggests that global increases in CO2
SCA since the 1960s are a result of increases in growing sea-
son mean temperatures, and polar amplified warming would
then explain the increase in the latitudinal gradients in SCA.
Studies by Piao et al. (2017), Forkel et al. (2016), and Graven
et al. (2013) used global models to show that increasing lat-
itudinal gradients in SCA are driven by the ecological ef-
fects of climate change and changes in vegetation, primar-
ily suggesting CO2 fertilization as the dominant mechanism.
This point is confirmed by findings from Bastos et al. (2019)
that attribute enhanced SCA in boreal Asia and Europe to in-
creases in net biome productivity as a result of CO2 fertiliza-
tion. Although they do not address the increase in latitudinal
gradients over time, Zeng et al. (2014) and Gray et al. (2014)
argue that agricultural expansion in the Northern Hemisphere
midlatitudes has resulted in increases in seasonal carbon ex-
change, which, in turn, result in larger SCA of CO2 con-
centrations on a global scale. Barnes et al. (2016) suggest
that it is actually the temperate forest between 30 and 50◦ N
that is the dominant driver of seasonal carbon exchange on
global scales. Yet another study by Yin et al. (2018) found
evidence that challenged previous assumptions about the re-
lationship between seasonal cycle amplitude and spring and
autumn temperatures in northern high latitudes, emphasizing
the need for continued data-driven model validation for these
regions. Despite their disagreements, most agree that the sea-
sonality in atmospheric CO2 at northern high latitudes, and
specifically the boreal forest, requires continued attention as
carbon dynamics continue to change. While this paper does
not consider temporal changes in SCA, an assessment of spa-
tial distributions of SCA implied by satellite-based observa-
tions over northern high-latitude terrestrial regions can pro-
vide a good foundation for exploring temporal changes in
these spatial distributions in later analyses.

Satellite-based infrared spectrometers like the NASA Or-
biting Carbon Observatory 2 (OCO-2) (O’Dell et al., 2018;
Wunch et al., 2017; Crisp et al., 2017), SCIAMACHY
(Reuter et al., 2011; Bovensmann et al., 1999; Burrows
et al., 1995), and GOSAT (Basu et al., 2013; Yoshida
et al., 2013; Hamazaki et al., 2005) provide global measure-
ments of column-averaged dry air mole fractions of CO2
(XCO2 ) and particularly can quantify XCO2 in remote, un-
instrumented regions. Retrievals and instrument technolo-
gies have been advancing rapidly, and boreal-forest-specific
methods of XCO2 bias correction and quality control filter-
ing have been developed and validated where ground truth
exists (Jacobs et al., 2020; Kiel et al., 2019; O’Dell et al.,
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2018). In addition, the development of collaborative net-
works of ground-based solar-viewing spectrometers, includ-
ing the Total Carbon Column Observing Network (TCCON)
and the Collaborative Carbon Column Observing Network
(COCCON), has provided a framework for robust global val-
idation of similar passive satellite-based observations (Frey
et al., 2019; Wunch et al., 2011). These combined efforts of
satellite-based and ground-based total atmospheric column
measurements of CO2 offer a wealth of opportunities for
gaining insights into the global climate system as a whole.

In this paper, we quantify and analyze seasonal cycle pa-
rameters derived directly from satellite-based observations of
XCO2 , across the northern high-latitude terrestrial regions.
This work represents progress in the application of global
monitoring of atmospheric CO2 to the continued evalua-
tion of global-scale carbon dynamics and shows how satel-
lites like OCO-2 can be used to monitor CO2 biospheric ex-
change. In this analysis, OCO-2 data over terrestrial northern
high latitudes are used to explore spatial distributions of sea-
sonal cycle amplitude (SCA) and seasonal cycle phase. In-
terpretation of these spatial distributions can be used to test
previous claims and provide new insights into what is driv-
ing carbon exchange at northern high latitudes. In particular,
we explore how seasonality in XCO2 differs for the North
American, European, and Asian boreal forest regions and
how the boreal forest fits within the broader context of north-
ern high-latitude regions. In addition, seasonal cycle param-
eters derived from OCO-2 observations are combined with
those from ground-based TCCON and COCCON observa-
tions and then compared with seasonal cycle parameters from
three model frameworks: the Copernicus Atmospheric Mon-
itoring Services (CAMS) global inversion-optimized green-
house gas flux model estimates of XCO2 (Chevallier, 2020b),
with in situ data assimilation; CarbonTracker2019 posterior
XCO2 estimates (CT2019B; Jacobson et al., 2020a); and the
GEOS-Chem CO2 simulation (Nassar et al., 2010) with un-
derlying biospheric fluxes from CarbonTracker2019 (GC-
CT2019). Ultimately, we use simulations of GEOS-Chem
surface contact tracers and flux estimates from CAMS and
CarbonTracker2019, as well as estimates of fossil fuel emis-
sions from the Community Emissions Data System (CEDS;
Hoesly et al., 2018) and estimates of biomass burning emis-
sions from the Global Fire Emissions Database, version 4.1
(GFED4.1s; Randerson et al., 2018; van der Werf et al.,
2017), to address the question of how much spatial variabil-
ity in XCO2 seasonal cycle parameters may be attributed to
magnitudes of fluxes within the observation zones and how
much may be attributed to the regional- and continental-scale
accumulation of CO2 fluxes during atmospheric transport.

2 Methods

2.1 OCO-2 data

The NASA Orbiting Carbon Observatory 2 (OCO-2)
launched in 2014 and began collecting data in September
of that year. Daily averages of XCO2 are calculated for each
zone using observations from OCO-2 Lite files (version 9,
“B9”; OCO-2 Science Team/Michael Gunson, Annmarie El-
dering, 2018). Ongoing improvements in the ACOS retrieval
algorithm and previous efforts by Jacobs et al. (2020) to de-
velop quality control thresholds tailored to OCO-2 B9 re-
trievals over boreal forest regions (boreal QC) have allowed
sufficient data over our 5◦ latitude by 20◦ longitude zones
to construct XCO2 time series that yield robust seasonal cy-
cle parameterization. The boreal QC was evaluated for use
with terrestrial OCO-2 B9 retrievals north of 50◦ N (Jacobs
et al., 2020), and the zones considered here cover the major-
ity of land north of 50◦ N. The southern boundaries of the
southernmost zones of North America are at 47◦ N, but the
3◦ of latitude is not expected to significantly impact the ef-
fectiveness of the boreal QC filtering. Instead of the standard
B9 bias correction, we use a modified bias correction that in-
cludes temperature at 700 hPa (T700), as discussed by Jacobs
et al. (2020), because it was found in previous results to re-
duce the seasonality of OCO-2 bias relative to ground-based
TCCON and EM27/SUN measurements. Seasonal cycle fits
to OCO-2 retrievals of XCO2 with the standard B9 bias cor-
rection, as well as fits to OCO-2 B10 retrievals, were also
calculated and compared to model-derived seasonal cycle fits
in the Supplement (see Sect. S2). The spatial distribution of
seasonal cycle parameters across northern high-latitude re-
gions is similar for all three types of OCO-2 retrievals, but the
alternative bias correction yields improved agreement with
model-derived seasonal cycle parameters.

2.2 TCCON and EM27/SUN data

The Total Carbon Column Observing Network (TCCON) is
a ground-based network of sites observing XCO2 using high-
spectral-resolution solar-viewing Fourier transform infrared
spectrometers (FTSs). Data are included from four TCCON
sites: East Trout Lake, Canada, in North American boreal
zone 3 (Wunch et al., 2018); Sodankylä, Finland, in Eu-
ropean boreal zone 6 (Kivi et al., 2014; Kivi and Heikki-
nen, 2016); Białystok, Poland, in European temperate zone 2
(Deutscher et al., 2019); and Bremen, Germany, in Euro-
pean temperate zone 3 (Notholt et al., 2019) (see site de-
tails in Table 1 and locations mapped in Fig. 1). The Col-
laborative Carbon Column Observing Network (COCCON)
is a network of sites observing with the Bruker EM27/SUN
FTS (Gisi et al., 2012), which are lower-resolution mobile
solar-viewing spectrometers that serve as complement to
TCCON measurements. EM27/SUN observations have been
compared to TCCON observations in multiple studies, most
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Figure 1. Map for of regions, zones, and locations of ground-based XCO2 observations.

notably Sha et al. (2020), Tu et al. (2020), Frey et al. (2019),
Velazco et al. (2018), and Hedelius et al. (2017). In most
of these comparisons EM27/SUN and TCCON observations
agree with biases less than 0.25 ppm on average. In some
cases offsets between EM27/SUN and TCCON observations
are reported to be as large as 2 ppm, but the proven stability of
the EM27/SUN should allow for a bias correction that would
yield good agreement between TCCON and EM27/SUN re-
trievals. The EM27/SUN instruments have measuredXCO2 in
a number of campaigns to validate OCO-2 and other satellite-
based observations, including work by Jacobs et al. (2020),
Velazco et al. (2018), and Klappenbach et al. (2015), sug-
gesting good agreement between EM27/SUN observations
and satellite-based observations. In this analysis, observa-
tions with an EM27/SUN FTS in Fairbanks, Alaska, USA
(65.859◦ N, 147.850◦W; Jacobs et al., 2021), are used as a
fifth ground-based comparison in the boreal forest. Fairbanks
is an established COCCON site as of 2018, so the instrument
participates regularly in performance and calibration checks
at the central facility operated by KIT, and data processed
in compliance with COCCON recommendations are avail-

able. In this study, we use the GGG2014 retrieval algorithm
coupled with the EM27/SUN GGG interferogram process-
ing suite (EGI; Hedelius and Wennberg, 2017) instead of the
standard COCCON retrieval methods for consistency with
TCCON retrievals and because this data product has already
been bias corrected to TCCON using side-by-side observa-
tions at Caltech, as described in detail by Jacobs et al. (2020).
Seasonal cycle fits for ground-based observations at these
five sites use daily averages of retrievals collected within
2 h of local solar noon, weighted by retrieval error, as de-
scribed by Jacobs et al. (2020). We refer to these daily av-
erages as near-noon ground-based (NNG) observations, and
this time frame is chosen because OCO-2 overpasses tend to
occur within approximately 1 h of local solar noon over these
northern high-latitude regions.

2.3 Regions and zones

We define regions in North America, Europe, and Asia,
which are further subdivided into 5◦ latitude by 20◦ longi-
tude zones, and zones are designated as temperate, boreal, or
tundra. For the purposes of this analysis, the classification of
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Table 1. Summary of instrument type, years of observations, geographic coordinates, and corresponding coordinates of the nearest model
grid point in CAMS, CT2019B (CT), and GC-CT2019 (GC) for each ground site.

Site Type Years Site location CAMS location CT location GC location

Białystok TCCON 2014–2018 53.23◦ N, 23.03◦ E 54.0◦ N, 22.5◦ E 53.0◦ N, 22.5◦ E 54.0◦ N, 22.5◦ E
Bremen TCCON 2014–2019 53.1◦ N, 8.85◦ E 54.0◦ N, 7.5◦ E 53.0◦ N, 7.5◦ E 54.0◦ N, 10.0◦ E
East Trout Lake TCCON 2016–2019 54.35◦ N, 104.99◦W 54.0◦ N, 105.0◦W 55.0◦ N, 103.5◦W 54.0◦ N, 105.0◦W
Sodankylä TCCON 2014–2019 67.26◦ N, 26.25◦ E 67.37◦ N, 26.63◦ E 67.0◦ N, 25.5◦ E 68.0◦ N, 27.5◦ E
Fairbanks EM27/SUN 2016–2019 64.86◦ N, 147.85◦W 65.37◦ N, 146.25◦W 65.0◦ N, 148.5◦W 64.0◦ N, 147.5◦W

zones as temperate, boreal, or tundra, as well as the longitu-
dinal division between the European and Asian regions, are
guided by maps of ecoregions from Hayes et al. (2011) and
Euskirchen et al. (2007) (see Fig. 1). The boreal forest zones
considered cover a narrower range of latitudes than the bo-
real regions defined for the Transcom 3 ecoregions (Gurney
et al., 2000), which include all high Arctic tundra and por-
tions of temperate Asia as part of the boreal regions. Other-
wise, the North American boreal region and Eurasian boreal
region defined by Transcom 3 are very similar to the North
American boreal and Asian boreal regions defined in this
analysis. We differ markedly from Transcom 3 in defining
separate European boreal and European temperate regions,
while Transcom 3 combines all of Europe into a single Eu-
ropean region. In North America, the zones are shifted by 3◦

latitude relative to the zones in Eurasia – starting at 47◦ N
and extending in to 72◦ N in 5◦ increments. This was done
to bring ground sites in the North American boreal region
closer to the center latitude of their encompassing zones and
to more accurately fit the boundaries of temperate, boreal,
and tundra biomes.

Also shown in Fig. 1 are the locations of five ground sites
where long-term observations of XCO2 have been collected
(see Table 1 for details). These ground sites include two
sites in the European temperate region (Białystok and Bre-
men), one site in the European boreal region (Sodankylä),
and two sites in the North American boreal region (East Trout
Lake and Fairbanks). Ground-based data are explained fur-
ther in Sect. 2.2, and seasonal cycles of ground-based data
are compared to satellite and model-derived seasonal cycles
in Sect. 3.1.

2.4 XCO2 seasonal cycle modeling and parameters

The primary focus of our analysis is characterizing season-
ality in XCO2 and exploring how and why this seasonality
differs across northern high-latitude regions, with particu-
lar emphasis on the boreal forest. To this end, time series
are constructed using daily averaged XCO2 from satellite re-
trievals, ground-based solar-viewing Fourier transform in-
frared (FTIR) spectrometers, and model estimates (see pre-
vious methods sections for details). Seasonal cycles are char-
acterized following methods used by Lindqvist et al. (2015),

in which daily XCO2 values are fit to a skewed sine wave of
the form

f (t)= a0+ a1t + a2 sin
(
ω[t − a3]

+ cos−1
[a4 cos(ω[t − a5])]

)
, (1)

where t is days, ω = 2π
365.25 , the interannual trend is defined

by a0+ a1t , and the seasonal cycle amplitude (SCA) is de-
fined by 2|a2|. As a metric for seasonal timing we define half
drawdown day (HDD) as the day of year when the detrended
seasonal cycle fit, f (t)− a0− a1t , crosses zero from posi-
tive to negative. The fit is calculated using nonlinear least
squares optimization with the standard error, σ , defined as
the mean of daily standard deviations in XCO2 over all days
in the time series. If there is no daily standard deviation, as
is the case with single point model estimates near ground
sites from the CT2019B and GC-CT2019 models, the stan-
dard error is assumed to be 0.25 ppm. Specifically, we imple-
ment the Levenberg–Marquardt algorithm for nonlinear least
squares fitting, which seeks to minimize the quantity,

χ2
=

n∑
i=1

[
yi − f (xi,ao,a1, . . .aj )

]2
σ 2 , (2)

and yields variance for each parameter in the fit equation
given by

σ 2
aj
= ([JTWJ]−1)jj , (3)

where J is the Jacobian and W= V−1
xi

, the inverse of the co-
variance matrix. In this case uncertainties are scaled by χ2,
such that Vxi is defined as χ2σ 2I. The variance in fit param-
eters is taken to be a direct estimate of fit uncertainty and
translate to uncertainty in SCA, defined as 2σa2 and depicted
in figures as error bars, where appropriate.

The seasonal cycle fitting approach used by Lindqvist et al.
(2015) was found to be more numerically stable than fitting
to a truncated Fourier series, as has been employed in pre-
vious studies (Wunch et al., 2013; Thoning et al., 1989), be-
cause periods of missing data can produce unrealistic oscil-
lations in a fit to a truncated Fourier series. Even in cases
with continuous data, the fit to a truncated Fourier series
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can yield unrealistic oscillations within the overall seasonal
cycle that do not appear to accurately depict variability in
the data. These unrealistic oscillations are more pronounced
when there are gaps in the time series of data. The fits to
Eq. (1) also show a degradation of the seasonal cycle shape
with larger gaps in the time series but yield more stability
in fitting time series with some data gaps than the fits to a
truncated Fourier series. This is an important consideration
for high-latitude regions, which have winter gaps in observa-
tions for most passive atmospheric remote sensing measure-
ments, due to lower solar elevation angles or night at satellite
overpass time (near solar noon).

2.5 CAMS model estimates

Model estimates of XCO2 from the Copernicus Atmospheric
Monitoring Services (CAMS) global inversion-optimized
greenhouse gas flux model v19r1 are used here as a model
comparison to OCO-2 and NNG data. The modeling frame-
work for CAMS CO2 flux inversions is described in detail
by Chevallier (2020b). Quality assessments for the North-
ern Hemisphere by Chevallier (2020a) report that nearly all
biases in both CAMS estimates of in situ CO2 relative to
unassimilated aircraft observations and CAMS estimates of
XCO2 relative to TCCON observations are within 1 ppm, with
standard deviation in bias around 2 ppm. CAMS estimates of
XCO2 are available as 3-hourly estimates with 1.9◦ latitude
by 3.75◦ longitude spatial resolution, which is sufficient for
providing multiple grid points within each zone and coinci-
dence with most ground sites within approximately 100 km
(see Table S1 in the Supplement for exact coordinates of grid
points nearest to the ground sites). Daily averages and stan-
dard deviation in CAMSXCO2 , used to calculate seasonal cy-
cle fits, are taken from combined spatial aggregations within
zones or coincidence regions and temporal aggregations for
each 24 h date in UTC. We use CAMS model estimates with
data assimilation from a global network of surface in situ
observations at 119 locations but without any satellite data
assimilation. In addition to the XCO2 estimates, the CAMS
model output includes surface flux estimates, which will be
considered further in the Discussion, Sect. 4.2. Both CAMS
flux estimates and CAMS XCO2 estimates use the same at-
mospheric transport modeling framework.

2.6 CarbonTracker2019 model estimates

The CarbonTracker2019 (CT2019) model is an inverse
model that provides estimates of global CO2 fluxes with a
1◦ by 1◦ spatial resolution and estimates of global XCO2

fields with a atmospheric transport simulated by the TM5
model (Krol et al., 2005) with a spatial resolution of 2◦

latitude by 3◦ longitude (Jacobson et al., 2020a, b). The
model assimilates in situ measurements of atmospheric CO2
concentrations from aircraft, AirCore (Karion et al., 2010),
tall tower, and surface measurement platforms at 460 sites

around the world. For CT2019 fluxes considered in this anal-
ysis and used in GEOS-Chem simulations, we use the origi-
nal CT2019 release from May 2020 (Jacobson et al., 2020a),
but for the posterior estimates of XCO2 we use results from
an updated release, CT2019B (Jacobson et al., 2020b). This
was a matter of practical necessity because of the timing of
the updated CT2019B release and the fact that XCO2 esti-
mates from the previous CT2019 version were unavailable
after this release. The purpose of the release of CT2019B was
reported as “Correction of a minor bug in CT2019” (Jacob-
son et al., 2020b). CT2019 uses the Global Fire Emissions
Database, version 4.1 (GFED4.1s; Randerson et al., 2018;
van der Werf et al., 2017), as one part of the fire module
that estimates emissions from biomass burning, while fos-
sil fuel emissions are driven by a combination of the Miller
emissions inventory (see Jacobson et al., 2020b, for more de-
tails) and the Open-Data Inventory for Anthropogenic Car-
bon dioxide (ODIAC; Oda and Maksyutov, 2011) emissions
datasets. Biospheric exchange is driven by the Carnegie-
Ames-Stanford Approach (CASA) biogeochemical model
introduced by Potter et al. (1993). In this analysis we calcu-
late seasonal cycle fits using daily CT2019B posterior XCO2

and compare these to corresponding seasonal cycle fits from
ground-based and satellite-based observations. The CT2019
estimates of biospheric CO2 exchange are also used within a
GEOS-Chem model framework, described in Sect. 2.7, and
considered in an assessment of the role of fluxes in shaping
XCO2 seasonality.

2.7 GEOS-Chem CO2 and transport tracer simulations

The GEOS-Chem atmospheric transport model ver-
sion 12.7.2 (more detailed information at https:
//geos-chem.seas.harvard.edu/, last access: 31 July 2020)
has 2◦ latitude by 2.5◦ longitude spatial resolution, using
MERRA-2 meteorology (Gelaro et al., 2017). We use the
GEOS-Chem CO2 simulation (Nassar et al., 2010) and
GEOS-Chem surface contact tracers, for 2014–2016, to
examine the relationships between seasonal cycle param-
eters and atmospheric transport patterns and speculate on
the role of atmospheric transport in determining spatial
distributions of XCO2 seasonality across northern high
latitudes. The GEOS-Chem CO2 simulation provides daily
XCO2 estimates and source attributions for total column
CO2, with biospheric fluxes for land and ocean taken from
the CT2019 model (Jacobson et al., 2020a), so we refer to
this combination of GEOS-Chem atmospheric transport and
CT2019 biospheric exchange as GC-CT2019 throughout
this paper. Similar to CT2019, this GC-CT2019 simulation
uses GFED4.1 to estimate emissions from biomass burning,
but unlike CT2019, it uses the Community Emissions Data
System (CEDS; Hoesly et al., 2018) for fossil fuel emissions
and results from Bukosa et al. (2021) for the chemical
production of CO2 in the atmosphere. For the fossil fuel
emissions, the CEDS inventory ended in 2014, so 2015 and

Atmos. Chem. Phys., 21, 16661–16687, 2021 https://doi.org/10.5194/acp-21-16661-2021

https://geos-chem.seas.harvard.edu/
https://geos-chem.seas.harvard.edu/


N. Jacobs et al.: Spatial distributions of XCO2 seasonal cycle amplitude and phase 16667

2016 emissions were scaled by the CEDS 2014 emissions
to match the global total in those later years, as reported by
ODIAC. We used this approach, rather than using ODIAC
alone, because the CEDS inventory includes anthropogenic
biofuel emissions that are not in ODIAC. The GC-CT2019
simulation is initialized on 1 January 2007 with observed
global ocean surface mean CO2 (Dlugokencky and Tans,
NOAA/GML, http://www.esrl.noaa.gov/gmd/ccgg/trends/,
last access: 15 December 2020), giving the model 7 years
of spin-up before generating the output for 2014–2016
used here. GC-CT2019 estimates, like CT2019B posterior
XCO2 estimates, are obtained as daily values for grid points
with daily averages and standard deviation calculated
spatially for each 5◦ latitude by 20◦ longitude zone or 5◦

latitude by 10◦ longitude satellite coincidence region; there
is no temporal averaging performed on these estimates
for this analysis. Unlike the CAMS model and CT2019B
XCO2 estimates, which provide optimized CO2 flux, and
XCO2 estimates using internally consistent atmospheric
transport models, GC-CT2019 uses CT2019 fluxes that are
estimated using TM5 to simulate atmospheric transport
rather than the GEOS-Chem transport model. In addition,
the fossil fuel and biomass burning flux estimates used in
GC-CT2019 are based on slightly different source datasets.
GEOS-Chem simulations are run for 2014–2016 rather
than for 2014–2019, like the OCO-2 observations and other
model estimates. The analysis shown in the Supplement
(see Fig. S39) suggests that the spatial distributions of SCA
and HDD across northern high-latitude zones are not likely
to significantly change for CAMS, CT2019B, or OCO-2
when calculated for 2014–2016 instead of 2014–2019. In
particular, changes in SCA for the different time periods are
less than approximately 0.5 ppm, which represents less than
10 % of the∼ 5 ppm variability in SCA across these northern
high-latitude regions. There are some larger discrepancies
between OCO-2 HDD for 2014–2016 and OCO-2 HDD for
2014–2019, with a couple of zones yielding a difference
of around 8 d, but this may be partially attributed to the
fact that some zones lack sufficient data points in the
2014–2016 time period for a stable and accurate seasonal
phase determination.

To examine the role of atmospheric transport in shaping
the seasonal cycle of XCO2 , we define new tracers of air
mass surface contact in the GEOS-Chem atmospheric trans-
port model. These surface contact tracers are emitted uni-
formly and continuously over specific surface types at a rate
of 1 molecule m−2 s−1, transported like CO2 and other con-
stituents, and decay with a prescribed e-fold lifetime. One
set of these surface contact tracers is emitted uniformly over
the ocean and another set is emitted uniformly over land. For
both surfaces, we release multiple tracers with lifetimes of
5, 15, 30, and 90 d, making eight surface contact tracers in
total. After spinning up the simulation for several e-fold life-
times, the tracer concentration at a point in the model indi-
cates the integrated upwind contact with land or ocean over

the timescale of the tracer lifetime. For example, high con-
centrations of the land surface contact tracers reveal locations
where atmospheric circulations have confined air over con-
tinents. These surface contact tracers are like e90 (Prather
et al., 2011), except that e90 is emitted uniformly from all
surfaces and therefore indicates upwind contact with any sur-
face rather than particular surface types as we have done. The
sum of our land and ocean tracers with 90 d lifetimes is equal
to e90. The surface contact tracers are initialized and run for
the same periods as the GC-CT2019 simulation, 2014–2016.
The surface contact tracers for a given zone were found to
vary minimally in time, so a total zonal average of surface
contact tracer contributions was taken spatially and tempo-
rally within each zone (see map in Fig. 1) and over all days
in 2014–2016.

2.8 Treatment of CO2 flux estimates

The role of fluxes in determining XCO2 seasonality at north-
ern high latitudes is assessed using flux estimates from
CAMS, as well as the sum of CO2 flux estimates from the
CEDS and GFED4.1s inventories (Hoesly et al., 2018; Ran-
derson et al., 2018; van der Werf et al., 2017) and Carbon-
Tracker2019 biospheric fluxes from land and ocean (Jacob-
son et al., 2020a) used to generate the GC-CT2019XCO2 esti-
mates. While the CAMS v19r1 and CT2019B model frame-
works have internally consistent atmospheric transport be-
cause both CO2 flux and XCO2 estimates are generated using
the same atmospheric transport model (Chevallier, 2020b;
Jacobson et al., 2020a), GC-CT2019 includes biospheric
fluxes from CarbonTracker2019 using the TM5 transport
model but then applies GEOS-Chem atmospheric transport
modeling to estimate XCO2 . In addition, the fossil fuel fluxes
from CEDS and biomass burning fluxes from GFED4.1s may
include other assumptions about atmospheric transport.

First, CO2 fluxes from each model are averaged spatially
within each 5◦ latitude by 20◦ longitude zone (see Fig. 1) for
each 3-hourly time step. A total average annual flux is calcu-
lated for each zone by summing all 3-hourly CO2 fluxes in
each year and taking an average over the 6 years in 2014–
2019. To calculate the flux seasonal cycle amplitude (flux
SCA), the 3-hourly, spatially averaged fluxes within each
zone are summed for each 24 h period in UTC and used to
derive a 15 d rolling mean, which is then averaged by day
of year to yield an average annual cycle for 2014–2019. The
difference between the maximum and minimum of the aver-
age annual cycle is then taken to be the flux SCA. The annual
cycles of fluxes are plotted in Figs. S32 through S49 of the
Supplement.
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Figure 2. Correlations of observed versus model-derived SCA and HDD. Observed XCO2 seasonal cycles are based on NNG and OCO-2
satellite-based observations, while model-derivedXCO2 seasonal cycles are based on estimates from the CAMS, CT2019B, and GC-CT2019
model frameworks. SCA and HDD are compared for three spatial types at each of the five ground sites: seasonal fits of near-noon ground-
based (NNG) observations from TCCON and EM27/SUN measurements are compared to fits of daily model estimates at the nearest model
grid point to the ground site; seasonal fits of daily average OCO-2 retrievals that fall within the 5◦ latitude by 10◦ longitude region of
coincidence, centered on the location of each ground site, are compared to fits of daily model estimates averaged across the coincidence
region; seasonal fits of OCO-2 daily averages for the 5◦ latitude by 20◦ longitude zone containing each ground site are compared to fits of
daily model estimates averaged across those same zones (see map in Fig. 1 and site details in Table 1).

3 Results

3.1 XCO2 seasonal cycles near ground sites

Before attempting to interpret spatial distributions of sea-
sonal cycle parameters on continental scales, it is of value
to get a better idea of how seasonal cycle parameters from
observations at a single location compare to those from spa-
tially averaged data. To this end, five high-latitude sites are
considered with long-term ground-based observations, as de-
scribed in Sect. 2.2. There are three spatial scales considered
with seasonal cycle fits to near-noon ground-based (NNG)
observations and seasonal cycle fits to spatially averaged data
over a commonly used satellite coincidence region of 5◦ lati-
tude by 10◦ longitude centered on the location of the ground
site, as well as over the 5◦ latitude by 20◦ longitude zone in
which the ground site is located (reference zones in Fig. 1).
In Fig. 2, observed SCAs and HDDs from NNG and OCO-2
observations are correlated against model-derived SCAs and
HDDs from CAMS, CT2019B, and GC-CT2019 at each of
the three spatial scales, and the corresponding linear regres-
sion equations and correlation coefficients are reported in Ta-
ble 2. These correlations exhibit tight linearity for SCA (with

mostR2 > 0.7) and reasonable linearity for HDD when com-
paring observed and model-derived parameters at all scales.
SCAs from CAMS or CT2019B are in better agreement with
observations than those from GC-CT2019 in every case, as
demonstrated by the fact that the CAMS and CT2019B linear
regressions fall closer to the y = x line than the GC-CT2019
linear regression in panels (a), (b), and (c) of Fig. 2. Agree-
ment between model-derived and observed HDD is better for
the single-point model estimates nearest the ground site ver-
sus NNG results in panel (d) of Fig. 2, and the scatter in-
creases in the comparisons of HDD from spatially averaged
model estimates versus spatially averaged OCO-2 observa-
tions in panels (e) and (f) of Fig. 2. All three models tend to
yield slightly larger SCAs than observations at all sites, as
well as later HDD than observations with the exception of
CAMS HDD at Bremen and Sodankylä. These results stand
in contrast to earlier work by Yang et al. (2007), who found
that the Transcom model underestimated SCA of CO2 mix-
ing ratios relative to aircraft observations at nearly every al-
titude. Details of the full time series, plots of seasonal cycle
fits, and seasonal cycle fit parameters, with uncertainties, for
these ground sites, coincidence regions, and encompassing
zones are reported in the Supplement.
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Figure 3. Correlations of SCA and HDD from NNG observations or the model grid point nearest the ground site versus SCA and HDD from
spatially averaged OCO-2 observations or model estimates. For these correlations, we only compare across spatial scales by pairing NNG
observations with spatially averaged OCO-2 data and pairing single-point CAMS, CT2019B, and GC-CT2019 model estimates nearest to
the ground sites with corresponding spatially averaged model estimates in the same model framework. Note that there are some overlapping
points in the correlations of HDD in panels (c) and (d) that may visually obscure some of the results.

In Fig. 3 and Table 3 the relationships between seasonal
cycle parameters from spatially averaged data versus those
from a single point, at or nearest the ground sites, are ex-
plored. In this case, seasonal cycle parameters derived from
NNG observations are correlated against seasonal cycle pa-
rameters derived from spatially averaged OCO-2 retrievals,
while model-derived seasonal cycle parameters for a sin-
gle point near the ground site are correlated against model-
derived seasonal cycle parameters from spatially averaged
model estimates. Jacobs et al. (2020) have shown that an
alternative bias correction, parameterized for temperature
at 700 hPa, resulted in reduced seasonality in OCO-2 bias
within the 5◦ latitude by 10◦ longitude coincidence region
relative to NNG observations at East Trout Lake, Sodankylä,
and Fairbanks. Results in the Supplement show that the alter-
native bias correction improved agreement in both SCA and

HDD between NNG seasonal cycles and coincident OCO-2
seasonal cycles. The results in Fig. 3 and Table 3 indicate that
HDD correlations across scales tend to be slightly weaker
and markedly different depending on whether one considers
observed or model-derived seasonal cycles. For the coinci-
dence region and the encompassing zone, OCO-2 data con-
sistently yield later HDD than NNG data, while spatially av-
eraged model estimates tend to yield HDD that is in good
agreement or slightly earlier than the point nearest to the
ground site. SCAs for ground sites are well correlated and
mostly in close agreement with both SCAs for 5◦ latitude
by 10◦ longitude coincidence regions and SCAs for encom-
passing 5◦ latitude by 20◦ longitude zones, demonstrating
that SCA scales well with spatial averaging and is a cred-
ible metric to consider in the context of this analysis. The
relatively weaker correlations in HDD across spatial scales
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in panels (c) and (d) of Fig. 3 suggest greater spatial het-
erogeneity in HDD within zones from both observed and
model-derived seasonal cycles. This result, in combination
with the scatter in panels (d), (e), and (f) of Fig. 2, implies
that HDD may display more random variability than SCA
and may therefore be a less useful metric in this context.

3.2 XCO2 seasonal cycles by zone

The full set of seasonal cycle fit parameters, correspond-
ing uncertainty estimates, and plots of time series and sea-
sonal cycle fits for each zone and ground site in Fig. 1 are
reported in the Supplement. While the fits to model esti-
mates are generally similar in shape with fits to observations,
there are some zones that yield an unrealistic drop in win-
tertime values in the OCO-2 seasonal cycle fits, which is
more pronounced for zones with fewer satellite-based XCO2

observations near the peak and trough of the seasonal cy-
cle. This wintertime drop in the shape of the seasonal cycle
is evidence that should motivate further efforts to increase
satellite-based observations over high-latitude regions out-
side of the summer months. Only a small number of zones,
particularly in the Asian tundra, have seasonal cycle fits that
are obviously compromised by insufficient data in spring
and autumn, while the majority of zones have seasonal fits
that look reasonable and are similar to seasonal cycle fits to
continuous model estimates, with the exception of the noted
wintertime drop. An analysis of changes in CAMS seasonal
cycle fits when selecting only days with OCO-2 observa-
tions available rather than the full continuous time series of
model estimates is presented in the Supplement, which indi-
cates that shifts in CAMS SCA due to imposed data gaps
are −0.044± 0.197 ppm, with shifts in SCA for all zones
less than 0.5 ppm, while biases in CAMS SCA for the full
time series relative to OCO-2 SCA are 0.547±0.720 ppm and
range from −1.0 to 3.0 ppm. These shifts in CAMS SCA are
also small relative to the approximately 5 ppm variability in
SCA seen across the northern high-latitude regions. In addi-
tion, the Lindqvist method of fitting (Lindqvist et al., 2015)
still provides a more constrained shape than a fit to a trun-
cated Fourier series, which can yield highly unrealistic os-
cillations in time series with only minimal gaps in data cov-
erage. The close similarities between spatial distributions of
seasonal cycle parameters from OCO-2, CAMS, CT2019B,
and GC-CT2019 are apparent in Fig. 4.

Comparing observed and model-derived SCA and HDD

Direct correlations of model-derived versus observed SCA
and HDD are shown in Fig. 5, indicating that model-derived
and observed SCAs agree with tight linearity (R2 > 0.68)
while model-derived and observed HDD agree with reason-
able linearity (R2 > 0.45). Model estimates tend to yield
slightly larger SCA and later HDD than OCO-2 and NNG
observations. The most notable discrepancies between ob-

served and model-derived SCAs tend to occur in the Asian
tundra and North American tundra regions for which model
estimates yield larger values of SCA that are more homoge-
neous across zones than observations. SCAs and HDDs from
CAMS and CT2019B model-derived seasonal cycles are in
better agreement with observed SCA and HDD than those
from GC-CT2019. For SCA in particular, the CAMS and
CT2019B seasonal cycles are in very close agreement with
OCO-2 seasonal cycles when satellite retrievals are treated
with the alternative high-latitude quality controls and bias
correction described by Jacobs et al. (2020) (see Sects. 2.1
and S2). SCAs and HDDs derived from GC-CT2019 (see
panels e and f of Fig. 5) cover a broader range of values, par-
ticularly overestimating SCA in the Asian boreal and tundra
regions and exhibiting more scatter in correlations of model-
derived versus observed HDD. GC-CT2019 SCAs remain
strongly correlated with observed SCAs, but the slope of this
correlation is steeper than for CAMS and CT2019B model
estimates.

3.3 Spatial distributions of SCA and HDD

Seasonal cycle amplitudes (SCA) and half drawdown day
(HDD) are mapped in Fig. 4, showing results from OCO-2
observations, CAMS model estimates, CT2019B model esti-
mates, and GC-CT2019 model estimates of XCO2 . Figure 4
demonstrates that both OCO-2 observations and model esti-
mates from CAMS, CT2019B, and GC-CT2019 yield larger
SCAs and earlier HDDs in the Asian boreal forest than any
other region. The earlier seasonal timing of the Asian bo-
real forest zones is consistent with results from Keppel-Aleks
et al. (2012) and Schneising et al. (2011), and these stud-
ies also linked earlier drawdown in Asia to larger SCA. Al-
though one would not necessarily expect SCA of surface in
situ measurements to match SCA of XCO2 , this finding also
aligns with the study by Lin et al. (2020), who found that
Siberia had the largest SCA in surface CO2 concentrations
when normalized for area. The CAMS, CT2019B, and GC-
CT2019 results in Fig. 4 exhibit more apparent latitudinal
gradients, whereas the results from OCO-2 show more spatial
heterogeneity, and this is particularly true for HDD. Seasonal
cycles of direct observations are expected to display more
heterogeneity than seasonal cycles of model estimates, which
depend on mathematical modeling of atmospheric transport
to calculate XCO2 , even if the underlying fluxes are based
on in situ data assimilation. Overall, the spatial distributions
in SCA and HDD from OCO-2 agree more with those from
CAMS and CT2019B than those from GC-CT2019. GC-
CT2019 yields larger magnitudes of SCA for many regions,
as well as SCAs and HDDs spread across a larger range for
northern high-latitude regions, relative to SCAs from OCO-
2, CAMS, or CT2019B. In addition, OCO-2 observations
yield notably smaller SCA than CAMS, CT2019B, or GC-
CT2019 in the western zones of the Asian boreal forest, in
the Asian tundra, and in the eastern zones of North America.

Atmos. Chem. Phys., 21, 16661–16687, 2021 https://doi.org/10.5194/acp-21-16661-2021



N. Jacobs et al.: Spatial distributions of XCO2 seasonal cycle amplitude and phase 16671

Table 2. Linear regression equations and correlation coefficients for the correlations, presented in Fig. 2, of model-derived versus observed
SCA and HDD at three spatial scales for five ground sites.

Panel CAMS fit CT2019B fit GC-CT2019 fit

(a) y = 0.84x+ 1.92, R2
= 0.840 y = 0.80x+ 2.46, R2

= 0.919 y = 0.90x+ 1.98, R2
= 0.872

(b) y = 0.84x+ 1.94, R2
= 0.657 y = 0.64x+ 4.04, R2

= 0.597 y = 1.04x+ 0.87, R2
= 0.754

(c) y = 0.89x+ 1.31, R2
= 0.797 y = 0.67x+ 3.66, R2

= 0.729 y = 1.03x+ 0.91, R2
= 0.834

(d) y = 0.86x+ 19.63, R2
= 0.304 y = 0.85x+ 33.17, R2

= 0.563 y = 0.47x+ 98.21, R2
= 0.622

(e) y = 0.13x+ 141.06, R2
= 0.015 y = 0.42x+ 104.04, R2

= 0.432 y = 0.35x+ 117.36, R2
= 0.432

(f) y = 0.31x+ 110.00, R2
= 0.059 y = 0.57x+ 77.95, R2

= 0.522 y = 0.48x+ 94.97, R2
= 0.385

Table 3. Linear regression equations and correlation coefficients for the correlations in Fig. 3 in which SCA and HDD from NNG or model
estimates near the ground sites are compared to SCA and HDD from spatially averaged satellite observations or spatially averaged model
estimates over the corresponding 5◦ latitude by 10◦ longitude coincidence regions and encompassing 5◦ latitude by 20◦ longitude zones.

Panel Observed fit CAMS fit CT2019B fit GC-CT2019 fit

(a) y = 0.82x+ 1.44, R2
= 0.808 y = 1.03x+−0.47, R2

= 0.986 y = 0.91x+ 0.82, R2
= 0.995 y = 1.13x+−1.38, R2

= 0.984
(b) y = 0.92x+ 0.71, R2

= 0.889 y = 1.04x+−0.55, R2
= 0.958 y = 0.86x+ 1.25, R2

= 0.901 y = 1.12x+−1.21, R2
= 0.974

(c) y = 1.38x+−60.07, R2
= 0.666 y = 1.07x+−12.53, R2

= 0.899 y = 0.94x+ 9.53, R2
= 0.990 y = 1.50x+−89.00, R2

= 1.000
(d) y = 1.29x+−45.32, R2

= 0.698 y = 1.17x+−28.55, R2
= 0.873 y = 1.01x+−3.56, R2

= 0.899 y = 1.94x+−167.50, R2
= 0.958

Panels (a), (c), (e), and (g) of Fig. 6 show a clear in-
crease in SCA from west to east across the Eurasian continent
in both model-derived and observational results. In North
America, longitudinal gradients are more subtle. While
OCO-2 observations exhibit a slight gradient in SCA across
North America that increases from east to west, CAMS,
CT2019, and GC-CT2019 yield SCAs that increase from
west to east, in the same direction as gradients across Eurasia.
This discrepancy in North America hinges primarily on the
zones of boreal forest and tundra in eastern North America,
which have the smallest SCAs for that continent when us-
ing OCO-2 data but have the largest SCAs for that continent
when using CAMS, CT2019B, or GC-CT2019 model esti-
mates. As expected, panels (a), (c), (e), and (g) in Fig. 6 show
latitudinal gradients with increasing SCA from south to north
for both observed and model-derived seasonal cycles. How-
ever, the Asian boreal forest zones stand apart from other re-
gions in all panels of Fig. 6, particularly when plotted against
latitude, with larger SCA than other data at similar latitudes
or longitudes. Results in Fig. 7 demonstrate that HDDs are
far more scattered and do not follow the distinct trends with
latitude and longitude that SCAs do. HDD spatial gradients
seem to be inverted relative to SCA with a vague tendency
toward later HDD at more northern latitudes and more west-
ern longitudes, and HDD also exhibits similar discrepancies
between observed and model-derived longitudinal gradients
for North America.

3.4 The relationship between SCA and HDD

Figure 8 and the calculated linear regressions in Table 4 show
that there is a negative correlation between HDD and SCA

for both observed and model-derived seasonal cycle fits, such
that earlier HDD corresponds to larger SCA. CAMS model
estimates yield correlations between HDD and SCA that are
more similar to those from OCO-2 and NNG measurements,
while GC-CT2019 yields stronger correlations with steeper
slopes. The results in Fig. 8 emphasize the exceptionally
early HDD and large SCA of the Asian boreal forest, such
that many of the Asian boreal zones fall more in line with
the tundra zones than with the other boreal zones. A latitu-
dinal gradient is suggested by the fact that the linear regres-
sions plotted in Fig. 8 are shifted up for the tundra zones and
shifted down for the temperate zones, with the boreal zones
in between the two. Furthermore, the separate linear regres-
sions for the temperate, boreal, and tundra zones plotted in
Fig. 8 have much larger R2 than the linear regressions for
all the zones together (see Table 4), suggesting that there are
different dynamics in different biomes that affect relation-
ships between extent and timing of apparent CO2 uptake. The
strength of this correlation in observed and CAMS seasonal
cycles was highest for tundra and lowest for temperate zones
with the boreal zones falling in between.

3.5 Comparing GEOS-Chem surface contact tracers to
observed SCA and HDD

GEOS-Chem surface contact tracers were used to simulate
the release of tracers from land and ocean yielding relative
concentrations of tracers with lifetimes of 5, 15, 30, and 90 d
for a given grid point and day. In these results the relative
contributions of surface contact tracers for each zone repre-
sent an overall average of surface contact tracer contributions
for all days in 2014–2016 and aggregated spatially across the
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Figure 4. Maps of SCA and HDD (represented as color scaling) from seasonal cycle fits to OCO-2 observations and model estimates from
CAMS, CT2019B, and GC-CT2019 for each zone defined in Fig. 1.

5◦ latitude by 20◦ longitude zone. The surface contact trac-
ers show that the largest XCO2 SCAs occur in areas with the
greatest influence from air that contacted land surfaces 15 to
30 d prior. There are clear similarities in the spatial distribu-
tions of SCA in panels (a), (c), and (e) of Fig. 4 and those
of the surface contact tracers from land with a 15 or 30 d

lifetime, as shown in panels (c) and (e) of Fig. 9. There are
also similarities in the spatial distributions of HDD in pan-
els (b), (d), and (f) of Fig. 4 and those for the surface contact
tracers from ocean with a 15 or 30 d lifetime, as shown in
panels (d) and (f) of Fig. 9. The relative strength of linear
relationships between seasonal cycle parameters from OCO-
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Figure 5. Plots of model-derived versus observed SCA and HDD using the model estimated from CAMS (a, b), CT2019B (c, d), and
GC-CT2019 (e, f), and using observations from OCO-2 within 5◦ latitude by 20◦ longitude zones and NNG observations at five ground sites.

2 observations and surface contact tracers is quantified with
correlation coefficients in Fig. 10. Figure 10 shows that the
observed SCAs are most correlated with land-based surface
contact tracers with 15 and 30 d atmospheric lifetimes, while
observed HDDs are most correlated with ocean-based sur-
face contact tracers with 15 and 30 d atmospheric lifetimes.

Correlations between HDD and land tracers are weak (see
Fig. S45) and seem to follow a curve rather than a line or may
be representative of two different linear relationships for dif-
ferent groups of zones. The correlations with ocean tracers
were always inverted relative to those with land tracers, such
that reduced contribution from ocean tracers and increased
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Figure 6. Plots of latitude and longitude correlated to SCA using observational results from OCO-2 and NNG observations (a, b), CAMS
model estimates (c, d), CT2019B model estimates (e, f), and GC-CT2019 model estimates (g, h). The latitude and longitude for each zone is
located at its center.

contributions from land tracers consistently correspond with
larger SCA and often correspond with earlier HDD.

4 Discussion

In this analysis, methods described by Lindqvist et al. (2015)
were used to fit daily average time series of daily XCO2 to a
skewed sine wave (see Eq. 1) and subsequently calculate sea-
sonal cycle amplitude (SCA) and half drawdown day (HDD),
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Figure 7. Plots of latitude and longitude correlated to HDD using observational results from OCO-2 and NNG observations (a, b), CAMS
model estimates (c, d), CT2019B model estimates (e, f), and GC-CT2019 model estimates (g, h). The latitude and longitude for each zone is
located at its center.

as described in Sect. 2.4. These fitting methods have been
found to yield more stable and realistic fits for time series
with winter gaps than fitting to a truncated Fourier series. In-
creased OCO-2 throughput (Kiel et al., 2019; O’Dell et al.,
2018; Osterman et al., 2018) and use of a bias correction

and quality control methods tailored to northern high lati-
tudes (Jacobs et al., 2020) improve the availability of OCO-2
data at the edges of the growing season and assist in gener-
ating stable and realistic seasonal cycle fits. Results in Fig. 3
and Table 3 indicate close agreement between SCAs from
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Figure 8. Correlations between SCA and HDD using OCO-2 and NNG seasonal cycle fits (a), CAMS seasonal cycle fits (b), CT2019B
seasonal cycle fits (c), and GC-CT2019 seasonal cycle fits (d). Linear regressions are plotted for all zones, as well as separately for temperate,
boreal, and tundra regions.

Table 4. Linear regression equations and correlation coefficients for the correlations in Fig. 8 in which SCA is correlated against HDD for
observed and model-derived results. Linear regressions were calculated considering all 5◦ latitude by 20◦ longitude zones and then separately
for zones in temperate, boreal, and tundra regions.

Ecoregion(s) Observed fit CAMS fit CT2019B fit GC-CT2019 fit

All y =−0.11x+ 28.75, R2
= 0.193 y =−0.03x+ 15.93, R2

= 0.017 y =−0.14x+ 34.65, R2
= 0.302 y =−0.18x+ 42.75, R2

= 0.373
Temperate y =−0.10x+ 27.01, R2

= 0.151 y =−0.05x+ 17.77, R2
= 0.077 y =−0.16x+ 37.42, R2

= 0.556 y =−0.15x+ 37.05, R2
= 0.606

Boreal y =−0.18x+ 41.54, R2
= 0.514 y =−0.15x+ 37.26, R2

= 0.463 y =−0.21x+ 48.17, R2
= 0.815 y =−0.24x+ 54.27, R2

= 0.843
Tundra y =−0.21x+ 46.85, R2

= 0.751 y =−0.14x+ 36.45, R2
= 0.724 y =−0.15x+ 38.25, R2

= 0.679 y =−0.20x+ 48.05, R2
= 0.878

NNG observations at five ground sites and corresponding
SCAs from OCO-2 data in the 5◦ latitude by 10◦ longitude
spatial coincidence regions. Relatively weak correlations in
HDD at the five ground sites, both across spatial scales and
between observed and model-derived seasonal cycles, are

likely to be at least partly attributable to spatial heterogene-
ity in seasonal cycle timing within 5◦ latitude by 20◦ lon-
gitude zones. It is possible that HDD as a phase metric is
not as well constrained by the seasonal cycle fitting meth-
ods used here as SCA. Many of the greatest discrepancies
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Figure 9. Maps of GEOS-Chem surface contact tracer contributions from land and ocean with 5, 15, 30, and 90 d lifetimes for each zone, with
units that are scaled relative to an arbitrary initial release of tracer particles. Surface contact tracer contributions shown here are calculated as
an average of all days in the simulation period, 2014–2016.

in HDD when comparing coincidence regions or zones to
ground sites (see Fig. 3 and Table 3) occur in observed sea-
sonal cycles and may arise from disagreement between NNG
and OCO-2 observations. Discrepancies between observed
and model-derived HDD, which are most apparent for GC-
CT2019 XCO2 estimates, could reflect an inaccurate repre-
sentation of ecosystem respiration in the CASA terrestrial
biosphere model, which underlies the CarbonTracker2019

biospheric fluxes used in the GC-CT2019. Byrne et al. (2018)
found that differences in the seasonal timing of net ecosys-
tem exchange (NEE) maximum drawdown were primarily
driven by differences in the timing of ecosystem respiration
in spring and fall, while the amplitude of NEE was largely in-
fluenced by the magnitude of peak gross primary production
(GPP). This could explain the higher degree of spatial het-
erogeneity in seasonal cycle timing because ecosystem res-
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Figure 10. Panel (a) shows correlation coefficients for surface contact tracer contributions from land and ocean (mapped in Fig. 9) versus
OCO-2 SCA (mapped in Fig. 4a), and panel (b) shows correlation coefficients for surface contact tracer contributions from land and ocean
versus OCO-2 HDD (mapped in Fig. 4b).

piration is driven by soil temperature, soil moisture, and litter
accumulation, which could all be expected to exhibit a higher
degree of spatial heterogeneity than ambient temperature and
sunlight,. If there is, in truth, more spatial heterogeneity in
the timing of seasonal CO2 uptake, then a failure to accu-
rately represent these spatial distributions in timing could be
exacerbated by errors or differences in atmospheric transport
modeling and result in larger or more variable discrepancies
between observed and model-derived HDD. In this case, the
relatively spatially homogeneous values of SCA would be
easier to accurately predict in the models than HDD. Alter-
natively, if SCA is primarily defined by the magnitude of
maximum GPP, it may be better constrained in the models
because data products like solar-induced fluorescence (SIF)
and the normalized difference vegetation index (NDVI) can
be used to validate model estimates of GPP, while ecosystem
respiration does not have a direct data proxy.

OCO-2, CAMS, CT2019B, and GC-CT2019 all yield very
similar spatial distributions of SCA and HDD across the
northern high-latitude regions (see map in Fig. 1), and both
had large SCA and early HDD in the Asian boreal forest
as well as a clear increase in SCA from west to east across
the Eurasian continent. We found an inverse linear relation-
ship between SCA and HDD across northern high latitudes
for both observed and model-derived seasonal cycle fits (see
Fig. 8 and Table 4), and these correlations were stronger
when separating by ecological type (temperate, boreal, or
tundra). This relationship is an interesting result of this anal-
ysis that warrants a more in depth exploration in future work,
though we cannot speculate on the cause of this phenomenon
in the context of this study. Discrepancies between SCA from
GC-CT2019 and SCAs from CAMS, CT2019B, and obser-
vations are consistent with the assessments of seasonal bias
resulting from the GEOS-Chem transport modeling frame-

work with MERRA-2 meteorology, as described by Schuh
et al. (2019), but may also be partly explained by the lack
of internally consistent atmospheric transport modeling for
CO2 flux and XCO2 estimates in the GC-CT2019 framework.
Schuh et al. (2019) found that the GEOS-Chem CO2 simula-
tion overestimates XCO2 in winter and underestimates XCO2

in summer relative to the TM5 transport model, yielding
an exaggerated seasonal oscillation and larger SCA. Byrne
et al. (2018) found that CarbonTracker2016, using CASA to
constrain biospheric carbon exchange, estimated later NEE
drawdown than flux inversions with either GOSAT or TC-
CON data assimilation, and this appears to be consistent with
the later HDD estimated by the GC-CT2019. Despite these
discrepancies, we contend that the strong correlations be-
tween GC-CT2019 and observational results (see panels e
and f for Fig. 5) suggest that GEOS-Chem simulations re-
main a useful tool for investigating the broader implications
of spatial distributions in SCA and HDD from OCO-2 obser-
vations.

Two limiting hypotheses for the origin of the spatial pat-
terns in XCO2 SCA shown in Fig. 4 are that they arise from
differences in flux magnitudes within the 5◦ latitude by 20◦

longitude zone or that they arise from transport patterns ac-
cumulating CO2 exchanges across multiple zones or regions.
To investigate the relative influences of atmospheric transport
or fluxes within zones on XCO2 seasonal cycles, we consider
source apportionment from the GEOS-Chem CO2 simula-
tion (Nassar et al., 2010) and GEOS-Chem surface contact
tracers, as well as surface CO2 flux estimates from Carbon-
Tracker2019 and CAMS models.
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Figure 11. Maps of average total annual CO2 flux, using GC-CT2019 (GC) and CAMS flux estimates (a, b), and SCA in CO2 flux, calculated
as the difference between the maximum and minimum of the average annual cycle in flux (c, d).

4.1 The role of atmospheric transport in shaping XCO2
seasonality

Fisher et al. (2010) and Wang et al. (2011) demonstrated
the ability of GEOS-Chem to represent synoptic transport
from midlatitudes to the Arctic. Schuh et al. (2019) evalu-
ated meridional transport of CO2 and SF6 in GEOS-Chem,
using the same MERRA-2 meteorology used here, and sug-
gested that the model may underestimate vertical and merid-
ional mixing, which slightly increases CO2 seasonal cycle
amplitude in GEOS-Chem in high northern latitudes com-
pared to some other models. Despite some discrepancies in
SCA and HDD from GC-CT2019, relative to observed SCA
and HDD, which may arise from differences between the
GEOS-Chem and TM5 atmospheric transport models, the
GEOS-Chem transport model reproduces surface tempera-
ture and pressure patterns and thus is a reasonable repre-
sentation of atmospheric transport (Wang et al., 2011; Fisher
et al., 2010). Therefore, comparing these GEOS-Chem sur-
face contact tracers with observed SCA and HDD should pro-
vide useful insights into the influence of atmospheric trans-
port patterns on observed XCO2 seasonality. The higher cor-
relation coefficients obtained when comparing OCO-2 SCAs
to land and ocean tracers with 15 and 30 d lifetimes suggest
that accumulation of CO2 flux due to atmospheric transport
on roughly monthly timescales plays an important role in af-
fecting XCO2 SCA.

4.2 The role of CO2 fluxes in XCO2 SCA

Figure 11 shows maps of average annual fluxes and flux
SCAs for GC-CT2019 and CAMS, which show that flux
SCAs in panels (c) and (d) are distributed without the ap-
parent longitudinal gradient seen in XCO2 SCA in panels (a),
(c), (e), and (g) of Fig. 4. The weak correlations (R2 < 0.2)
between flux SCAs and XCO2 SCAs, shown in panels (a),
(c), (e), and (g) of Fig. 12 and quantified in Fig. 13, com-
bined with the relatively strong correlations (R2 > 0.6) be-
tween XCO2 and surface contract tracers with 15 and 30 d
lifetimes, suggest that accumulation of CO2 flux due to at-
mospheric transport on roughly monthly timescales is more
influential in determining XCO2 SCA than fluxes within a 5◦

latitude by 20◦ longitude zone. However, there are slightly
stronger correlations between average annual flux and XCO2

SCA, shown in panels (b), (d), (f), and (h) of Fig. 12 and
quantified in Fig. 13, which suggest some possible link be-
tween XCO2 SCA and the relative source or sink strength of
a given zone. Panels (a) and (b) of Fig. 11 show that both
models predict large negative average annual fluxes for Asian
boreal zones, designating the Asian boreal region as a major
sink for CO2 and suggesting that anomalously large XCO2

SCA in the Asian boreal region may be partially influenced
by enhancements in CO2 uptake within that region. In an-
other instance, the European temperate zone 3 and Bremen
TCCON site both have exceptionally large positive average
annual CO2 flux due to a significant contribution from fossil
fuel emissions (as shown in Sect. S5), but they did not yield
anomalously large flux SCA because the fossil fuel emis-
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Figure 12. Correlation plots of flux SCA and average annual fluxes from CAMS and GC-CT2019 versusXCO2 SCA from OCO-2 and NNG,
as well as model-derived XCO2 SCA from CAMS, CT2019B, and GC-CT2019.

sions do not exhibit significant seasonal variability. The Eu-
ropean temperate zone 3 and Bremen also yielded smaller
XCO2 SCAs and later HDDs than most of the other zones
and ground sites for both observed and model-derived sea-
sonal cycles. In this case, the large fossil fuel emissions may
be indirectly influencing the XCO2 SCA despite the fact that

these emissions are not directly contributing to the seasonal
variability in atmospheric CO2 in this zone or at this site.
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Figure 13. Correlation coefficients for the linear fits in Fig. 12, as
well as alternative correlation coefficients for average annual fluxes
versus XCO2 SCA with European temperate zone 3 and Bremen
removed.

5 Conclusions

Satellite-based instruments, such as OCO-2, open the pos-
sibility to study CO2 exchange and transport throughout
the vast and largely un-instrumented northern high lati-
tudes. Improvements in retrieval and quality control meth-
ods for satellite-based observations of atmospheric CO2 have
allowed for a data-driven investigation of XCO2 seasonal-
ity over regions, like Siberia, that have previously been
largely inaccessible and unobserved. Model-derived XCO2

SCAs from CAMS, CT2019B, and GC-CT2019 agree (R2 >

0.68) with observed SCA patterns from around the north-
ern high latitudes (see Fig. 5). Correlations in Fig. 5 show
that CAMS and CT2019B have near-unity slopes of model-
predicted SCA as compared to OCO-2, while GC-CT2019
has a higher-than-unity slope but is still strongly correlated.
Our results show that the Asian boreal forest region is dis-
tinct from other northern high-latitude regions with larger
seasonal cycle amplitude (SCA) and earlier half drawdown
day (HDD) (see Sect. 2.4), and gradients of increasing SCA
and earlier HDD span from west to east across the Eurasian
continent. Longitudinal gradients in SCA and HDD across
the North American continent are more subtle than longi-
tudinal gradients across the Eurasian continent. Discrepan-
cies between observed (OCO-2) and model-derived (CAMS
CT2019B and GC-CT2019) SCA and HDD in the eastern

zones of North America result in opposing longitudinal gra-
dients in SCA and HDD across the North American conti-
nent, such that OCO-2 observations yield increasing SCA
from east to west, while model estimates yield increasing
SCA from west to east. In order to assess the relative in-
fluences of the accumulation of CO2 exchanges during at-
mospheric transport or the magnitudes of fluxes within 5◦

latitude by 20◦ longitude zones, we compare GEOS-Chem
surface contact tracers with observed spatial distributions of
SCA and HDD from OCO-2. GEOS-Chem surface contact
tracers revealed that the largest XCO2 SCAs occur in areas
with the greatest influence from land tracers with 15 or 30
day lifetimes. The correlations of XCO2 SCAs with land con-
tact tracers are stronger than the correlations of observed
XCO2 SCAs with SCAs of CO2 fluxes or with the total an-
nual CO2 flux within a given 5◦ latitude by 20◦ longitude
zone. This indicates that accumulation of terrestrial CO2 flux
during atmospheric transport on roughly monthly timescales
is a major driver of regional variations in XCO2 SCA, which
is at least as important in shaping observed XCO2 season-
ality as the terrestrial flux magnitudes within zones. How-
ever, there is some correlation between the total average an-
nual fluxes used in the GC-CT2019 and XCO2 SCAs, and
the Asian boreal region was still determined to have by far
the largest negative fluxes of any of the regions in addition
to having the largest XCO2 SCA and earliest HDD. Three
important insights about the drivers influencing XCO2 sea-
sonality come out of this analysis. First, a combination of
fluxes within zones and the accumulation of CO2 flux during
atmospheric transport affects the observed spatial distribu-
tions of XCO2 seasonal cycle parameters. Second, a robust
understanding of atmospheric transport patterns on roughly
monthly timescales is essential for accurate interpretation
of XCO2 seasonality for northern high latitudes. Third, sea-
sonality in XCO2 in northern high-latitude regions is almost
completely dictated by seasonality in the exchange of CO2
with the terrestrial biosphere. In future work, it would be of
value to expand this analysis to assess both long-term tem-
poral trends in XCO2 seasonality and interannual anomalies
that may result from global weather patterns such as the polar
vortex or El Niño.

Code and data availability. OCO-2 data and quality control pa-
rameters used here are taken from OCO-2 Lite files (version 9,
“B9”), and quality filtering and bias corrections are applied fol-
lowing Jacobs et al. (2020), as described in Sect. 2.1. OCO-2
Lite files are produced by the NASA OCO-2 project at the Jet
Propulsion Laboratory, California Institute of Technology, and ob-
tained from the NASA Goddard Earth Science Data and Infor-
mation Services Center (https://daac.gsfc.nasa.gov/, NASA, 2020).
TCCON data are available from the TCCON data archive, hosted by
CaltechDATA: https://tccondata.org/ (TCCON, 2020). EM27/SUN
GGG2014 retrievals from Fairbanks, Alaska, are available on
the Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL DAAC): https://doi.org/10.3334/ORNLDAAC/1831

https://doi.org/10.5194/acp-21-16661-2021 Atmos. Chem. Phys., 21, 16661–16687, 2021

https://daac.gsfc.nasa.gov/
https://tccondata.org/
https://doi.org/10.3334/ORNLDAAC/1831


16682 N. Jacobs et al.: Spatial distributions of XCO2 seasonal cycle amplitude and phase

(Jacobs et al., 2021). Methods used to bias correct EM27/SUN data
to TCCON are described in the Supplement for Jacobs et al. (2020).
All ground-based datasets are also cited individually in Sect. 2.2.
The CAMS-optimized flux inversion model output is available
on the Copernicus website: https://ads.atmosphere.copernicus.eu/
cdsapp#!/dataset/cams-global-greenhouse-gas-inversion (Coperni-
cus, 2020). GEOS-Chem source code is publicly available
(https://doi.org/10.5281/zenodo.3701669, The International GEOS-
Chem Community, 2020). Model outputs analyzed in this work are
archived on Zenodo (https://doi.org/10.5281/zenodo.5640670, Gra-
ham et al., 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-16661-2021-supplement.
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