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Abstract. We present a climatology of trade cumulus cold
pools and their associated changes in surface weather, verti-
cal velocity and cloudiness based on more than 10 years of in
situ and remote sensing data from the Barbados Cloud Ob-
servatory. Cold pools are identified by abrupt drops in surface
temperature, and the mesoscale organization pattern is clas-
sified by a neural network algorithm based on Geostation-
ary Operational Environmental Satellite 16 (GOES-16) Ad-
vanced Baseline Imager (ABI) infrared images. We find cold
pools to be ubiquitous in the winter trades – they are present
about 7.8 % of the time and occur on 73 % of days. Cold
pools with stronger temperature drops (1T ) are associated
with deeper clouds, stronger precipitation, downdrafts and
humidity drops, stronger wind gusts and updrafts at the on-
set of their front, and larger cloud cover compared to weaker
cold pools, which agrees well with the conceptual picture of
cold pools. The rain duration in the front is the best predictor
of 1T and explains 36 % of its variability.

The mesoscale organization pattern has a strong influ-
ence on the occurrence frequency of cold pools. Fish has
the largest cold-pool fraction (12.8 % of the time), followed
by Flowers and Gravel (9.9 % and 7.2 %) and lastly Sugar
(1.6 %). Fish cold pools are also significantly stronger and
longer-lasting compared to the other patterns, while Gravel
cold pools are associated with significantly stronger updrafts
and deeper cloud-top height maxima. The diel cycle of the
occurrence frequency of Gravel, Flowers, and Fish can ex-
plain a large fraction of the diel cycle in the cold-pool occur-
rence as well as the pronounced extension of the diel cycle
of shallow convection into the early afternoon by cold pools.

Overall, we find cold-pool periods to be ∼ 90 % cloudier rel-
ative to the average winter trades. Also, the wake of cold
pools is characterized by above-average cloudiness, suggest-
ing that mesoscale arcs enclosing broad clear-sky areas are
an exception. A better understanding of how cold pools in-
teract with and shape their environment could therefore be
valuable to understand cloud cover variability in the trades.

1 Introduction

Satellite images in the trades usually show very beautiful and
diverse cloud structures over the dark blue ocean. Recurrent
features in these images are mesoscale arcs of cumuli that
encircle either clear-sky areas or extensive stratiform cloud
decks. The mesoscale arcs result from spreading cold pools
that have favourable conditions at their gust front for trigger-
ing new convection. Convective cold pools are generated by
the evaporation of precipitation into unsaturated downdrafts,
spreading out at the surface as a density current. Cold pools
are not only important for the triggering of new and often
deeper convection (Schlemmer and Hohenegger, 2014; Feng
et al., 2015; Rowe and Houze, 2015), but might also play a
role in regulating cloud cover in the trades – a regime re-
sponsible for much of the uncertainty in climate sensitivity
(Bony and Dufresne, 2005; Vial et al., 2013). Here we use
ground-based in situ and remote sensing data from the Bar-
bados Cloud Observatory (BCO) to study the climatology of
trade-wind cumulus cold pools and to investigate its link to
the pattern of mesoscale cloud organization.
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Many studies addressing oceanic cold pools have focused
on deep convection (Zuidema et al., 2017). In the trades, de-
tailed case studies for 2 weeks of the Rain in Cumulus over
the Ocean (RICO) campaign have advanced our understand-
ing of cold pools from shallow convection (Zuidema et al.,
2012). They showed that the deepest clouds and strongest
radar signals occurred in the moistest tercile of water vapour
paths and that precipitation-driven downdrafts can introduce
additional gradients in the thermodynamic structure. More
recently, analyses of data from the Elucidating the Role of
Clouds-Circulation Coupling in Climate (EUREC4A) field
campaign (Bony et al., 2017; Stevens et al., 2021), which
took place in January and February 2020 upstream Barba-
dos, revealed that cold pools are frequent in the winter trades
and can be well detected from soundings due to their very
shallow mixed layers (Touzè-Peiffer et al., 2021). What is
missing is a long-term climatology of trade cumulus cold
pools along with a description of the changes in cloud proper-
ties and sub-cloud layer dynamics associated with the cold-
pool passages. Such a climatology is particularly pertinent
given the need for a reference dataset for comparison against
increasingly available high-resolution simulations (Stevens
et al., 2019; Rochetin et al., 2021).

Renewed interest in trade cumulus cold pools is also
motivated by recent advances in characterizing patterns of
mesoscale cloud organization. Stevens et al. (2020) classi-
fied 900 satellite images in the North Atlantic trades and
identified four prominent patterns of mesoscale cloud orga-
nization – Sugar, Gravel, Flowers, and Fish. The horizon-
tal structure of the latter three patterns is intrinsically linked
to the occurrence of mesoscale arcs and hence cold pools.
The four patterns differ not only in their horizontal struc-
ture, but also in cloud cover, cloud depth, and precipitation
(Bony et al., 2020; Schulz et al., 2021; Vial et al., 2021).
These differences likely also manifest in different cold-pool
characteristics. Furthermore, cold pools might play differ-
ent roles in creating and maintaining these patterns. For the
Fish pattern with its very large-scale fish-bone structures that
are tightly linked to extratropical dry intrusions (Aemiseg-
ger et al., 2021; Schulz et al., 2021), cold pools are likely
to give the cloudy part its skeletal structure, while the over-
all system is forced by the large-scale dynamics into its lin-
ear alignment. Observations of drizzling stratocumulus of-
ten show cold pools being dragged along with a larger sys-
tem without initiating its mesoscale organization (Wilbanks
et al., 2015). Contrastingly, for the Gravel pattern, the large-
scale influence may be less important and also more homo-
geneous. Thus, cold pools likely play an important role in
creating and maintaining this pattern, similar to the strong
influence of rain (and indirectly also cold pools) on the tran-
sition from closed- to open-cell stratocumulus (Xue et al.,
2008; Wang and Feingold, 2009; Glassmeier and Feingold,
2017). Before we can understand the different roles that cold
pools play in these patterns, we need to understand whether
and how cold-pool characteristics differ among them.

This paper presents the first long-term climatology of
trade-wind cumulus cold pools and addresses the following
research questions.

1. How frequent are cold pools in the trade cumulus
regime, and with what changes in the surface meteo-
rology, cloudiness, and vertical velocity are they associ-
ated?

2. How do cold-pool characteristics covary with the pat-
tern of mesoscale organization?

We use more than 10 years of surface meteorology and
ground-based remote sensing data from 2011 to 2021 col-
lected at the BCO (Stevens et al., 2016). Clouds, their pre-
cipitation, and therefore likely also cold pools at the BCO
were shown to be representative across the trades (Medeiros
and Nuijens, 2016). Cold pools are identified by abrupt drops
in surface temperature, and the pattern of mesoscale organi-
zation is classified by a neural network algorithm based on
infrared satellite images (Schulz et al., 2021). To focus on
trade cumulus cold pools, we limit most of our analysis to
the winter regime from December to April, as in summer the
intertropical convergence zone is often close to Barbados and
convection is much deeper (Brueck et al., 2015).

Section 2.1 presents the data sources and explains the
cold-pool detection algorithm and the selection criteria. In
Sect. 3, we present the cold-pool climatology and analyse the
temporal structure of cold-pool passages and the associated
changes in meteorology and cloudiness. Section 4 discusses
differences between the cold-pool properties of the different
mesoscale organization patterns. Conclusions are presented
in Sect. 5.

2 Data and methods

2.1 BCO data

We use in situ and ground-based remote sensing data from
the BCO (Stevens et al., 2016), which has been operated
by the Max Planck Institute for Meteorology together with
the Caribbean Institute for Meteorology and Hydrology
since April 2010. The BCO is located atop a 17 m cliff on
an eastward promontory of Barbados called Deebles Point
(13.16◦ N, 59.43◦W) and samples nearly undisturbed At-
lantic trade-wind conditions. We have used surface meteo-
rology and micro-rain radar (MRR) data since January 2011,
cloud radar data since January 2012, and Doppler lidar data
from March 2016 until March 2021. All data are aggregated
into 1 min averages. The instruments used and meteorolog-
ical variables derived are explained in the following. More
details about the BCO and its instrumentation can be found
in Nuijens et al. (2014) and Stevens et al. (2016).
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2.1.1 Surface meteorology

A Vaisala WXT520 sensor mounted on a 5 m mast measures
temperature, relative humidity, barometric pressure, wind
speed, and wind direction. We discard temperature measure-
ments exceeding 35 ◦C and pressure measurements lower
than 980 hPa, as they are outside the expected range of vari-
ability at the BCO.

2.1.2 MRR

The MRR is a vertically pointing frequency-modulated
continuous-wave radar operating at 24 GHz (K band). The
MRR data have a temporal resolution of 1 min and a range
gate of 30 m up to a height of 3 km. Rain rates lower than
0.03 mm h−1 are below the noise level and set to zero. We
derive the mean rain rate (RR) and the rain intensity (Rint,
i.e. the instantaneous rain rate during periods of rain) for a
specified period from data at 325 m above ground (the low-
est level with reliable data). The MRR is also used to com-
pute the rain frequency (Rfreq), which is set to 1 when a
RR> 0.05 mm h−1 is measured in at least five range gates
in the lowest 3 km (following Nuijens et al., 2014). A few in-
stances with unrealistically large RR exceeding 200 mm h−1

are set to NA (not applicable).

2.1.3 Cloud radar

Vertical profiles of hydrometeors (including both cloud and
rain droplets) at 10 s temporal and 30 m vertical resolution
are derived from two 35.5 GHz (Ka-band) Doppler cloud
radars. Radar returns with an equivalent radar reflectivity
lower than −50 dBZ are removed to eliminate signal from
sea salt aerosol (Klingebiel et al., 2019). To identify con-
nected 2D cloud objects, a cloud segmentation algorithm
is applied (Konow, 2020). Radar reflectivity is converted to
a binary mask and morphological closing is applied to re-
move noise from measurement interruptions. The resulting
mask is used to identify cloud objects using connected com-
ponent analysis with 8-connectivity. A minimum cloud size
of 4 pixels is applied, and everything smaller than 4 pixels
is discarded as clutter. To focus on clouds connected to the
trade-wind layer, only cloud objects with a lowest cloud-base
height (CBHID) smaller than 4 km are considered in the anal-
ysis.

From the remaining clouds, we derive 1 min averaged
time series of the hydrometeor fraction (HF), cloud-base
height (CBH), cloud-top height (CTH), and projected cloud
cover (CC). Following Nuijens et al. (2014), CC is fur-
ther split up into contributions from cloud segments with
different CBH, which represent cloudiness near the lifting-
condensation level (CClcl; 300 m<CBH≤ 1 km) and cloudi-
ness aloft such as stratiform layers or edges of deeper cumuli
(CCaloft; 1 km<CBH≤ 4 km). We also introduce a third
category of precipitating cloud segments if CBH≤ 300 m

(CCprcp, the same threshold as in Klingebiel et al., 2021). A
given 1 min HF profile can only count to one of the three cat-
egories, such that e.g. a 2 km-deep cloud with CBH< 300 m
will only be counted in the CCprcp category. Note that the
above classification into the different CBH categories does
not consider the cloud objects, and subsequent HF profiles
are classified independently. A similar analysis accounting
for the cloud objects by classifying CC contributions of dif-
ferent cloud objects by their CBHID is shown in Appendix A.

2.1.4 Doppler lidar

The vertical velocity in the sub-cloud layer is measured by
two Halo Photonics Streamline Pro Doppler wind lidar sys-
tems (Päschke et al., 2015) at 30 m vertical resolution. The
Doppler lidars measure vertical velocities of up to±20 m s−1

with a 1500 nm laser at altitudes from about 50 m to 1 km, de-
pending on the atmospheric conditions and the aerosol load-
ing. The precision is < 20 cm s−1 for a signal-to-noise ratio
(SNR) of −17 dB. Measurements with a SNR smaller than
−18.3 dB are discarded. Data from the first system that was
operated in vertically pointing mode with a temporal reso-
lution of 1.3 s are used from March 2016 to October 2019.
A second system has been operated in horizontally scanning
mode since February 2019 and has a temporal resolution of
3 s, with two out of seven profiles measured in vertically
pointing mode. Vertical data from this second lidar are used
from November 2019 to March 2021.

We derive 1 min time series of both the average vertical
velocity in the sub-cloud layer (SCL) as the mean over 15
range gates from 75 to 495 m (wSCL) and the vertical veloc-
ity near the sub-cloud layer top at 450 m as the mean over
the four range gates from 405 to 495 m (w450). Doppler li-
dar vertical velocities are commonly considered reliable also
in rainy periods (see e.g. Zhu et al., 2021). We did not en-
counter problems with the Doppler lidar retrievals in rainy
periods, and Figs. 2 and 3h will show that the negative verti-
cal velocities associated with downdrafts are generally well
captured.

2.2 Machine learning classification of mesoscale cloud
organization patterns

The pattern of mesoscale cloud organization at the BCO for
the period January 2018 to March 2021 is classified by a
neural network algorithm applied to infrared satellite images
from the Geostationary Operational Environmental Satellite
16 (GOES-16). We use brightness temperature retrievals ev-
ery 30 min from the 10.35 µm channel at a spatial resolution
of 2 km from the Advanced Baseline Imager (ABI) Level-
1b data product (GOES-R Calibration Working Group and
GOES-R Series Program, 2017), over a large domain includ-
ing Barbados (45–66◦W, 9.3–23.3◦ N).

The neural network based on the RetinaNet algorithm (Lin
et al., 2017) was initially trained on and applied to visible
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images in Rasp et al. (2020) and later retrained and applied
to infrared images by Schulz et al. (2021). The use of in-
frared images also allows study of the diurnal cycle of the
mesoscale organization (Vial et al., 2021). The classifications
of the neural network are rectangles of various sizes that be-
long to either the Sugar, Gravel, Flowers, or Fish pattern.
We select every classified rectangle that overlaps with the
BCO location. Periods without a classification are labelled as
“No”. The BCO data at 1 min resolution are considered con-
temporaneous with the nearest 30 min neural network classi-
fication. If a given pattern is present for more than 75 % of
the duration of a cold pool, the cold pool is categorized by
this pattern.

At any given time, multiple rectangles of different sizes
of the same and different patterns can occur. Multiple rectan-
gles of the same pattern are combined and counted only once,
while multiple rectangles of different patterns are counted
separately. This leads to locations in the images, and hence
data in the meteorological time series, being classified e.g.
as both Gravel and Flowers. Excluding situations with mul-
tiple patterns only marginally influences the results but re-
duces the sample size considerably (as previously noted in
Vial et al., 2021). Ambiguities in the classification can be
physical – for example due to regime transitions or similar-
ities between patterns – or related to ambiguities introduced
to the neural network by disagreement in the human classifi-
cations. The occurrence of multiple patterns can be reduced
if a stricter threshold is used for the agreement score repre-
senting the confidence of the neural network prediction (here
set to 0.4 as in Schulz et al., 2021; Vial et al., 2021), but this
again reduces the sample size.

2.3 Cold-pool detection algorithm

We detect cold pools by identifying abrupt drops in the BCO
surface temperature time series following Vogel (2017). We
first filter the 1 min averaged temperature time series with an
11 min running average. We then classify all filtered 1 min
temperature drops δT = Tfil(t)− Tfil(t − 1) <−0.05 K (per
minute) as a cold-pool candidate (see Fig. 1 for an illustra-
tion). For every candidate cold pool, we detect the time of the
cold-pool front onset (tmax), the time of the minimum tem-
perature (tmin), and the end of the cold pool (tend) as follows.

1. tmax: the onset of the cold-pool front tmax is defined as
the last instance of δT > 0 K within 20 min before the
initial abrupt temperature drop with δT <−0.05 K. If
the temperature is falling continuously in this period,
tmax is chosen as the time of the maximum temperature
(that is, 20 min before the abrupt temperature drop). We
refer to the smoothed temperature at tmax as Tmax.

2. tmin: the time of the minimum filtered temperature Tmin
marks the end of the cold-pool front and is identified as
the minimum of contiguous temperature minima. Sub-
sequent candidate cold pools with δT <−0.05 K occur-

Figure 1. Illustration of the cold-pool detection algorithm.
(a) 11 min filtered Tfil (thick line) and 1 min raw surface temper-
ature (thin line), and (bottom) filtered temperature difference δT
along with the threshold of −0.05 K used (dashed). The detected
cold-pool fronts and wakes are indicated in dark grey (tmax to tmin)
and light grey (tmin to tend), with the corresponding 1T indicated
at the top. The dark red lines in (a) show the analysis periods used
for computing the diagnostics (see Sect. 2.5).

ring within 20 min of the previous minimum are com-
bined if the temperature does not rise by more than
0.5 K above the previous minimum in between.

3. tend: the end of a cold pool is defined either as the
minimum of (a) the time when the filtered tempera-
ture first exceeds its minimum by 1T/e, where 1T =
Tmax− Tmin is the total filtered temperature drop in the
cold pool and e is Euler’s number, or (b) the onset of
the next cold pool. If using condition (a) or (b) leads
to any temperature between tmin and tend being smaller
than Tmin− 0.15 K, then tend is defined as (c) the time
when the filtered temperature first decreases again af-
ter increasing for some time following tmin. Cold pools
with tend defined by (a) are referred to as recovered.

The period between tmax and tmin is referred to as the cold-
pool front and the period between tmin and tend as the cold-
pool wake.

Our cold-pool detection algorithm is similar to the one
used by de Szoeke et al. (2017) but with the important mod-
ification that we only identify cold pools for situations with
abrupt temperature drops exceeding our threshold of δT <
−0.05 K. With our algorithm we thus filter out both turbu-
lent fluctuations and advective or diurnal patterns of temper-
ature variability. The threshold of δT <−0.05 K is subjec-
tively chosen based on visual impression and represents dis-
tinct variations in temperature. For an 11 min averaging win-
dow, a δT of −0.05 K corresponds to about 2 % of the data.
Figure 2 shows example cold pools for all patterns and illus-
trates the algorithm. In the next subsection we briefly discuss
the strengths and weaknesses of the algorithm based on these
examples.
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2.4 Example cases

Time series of example cold-pool days along with corre-
sponding satellite images are shown for every pattern in
Fig. 2 and shed some light on the differences in the cold-pool
characteristics of the four patterns. The two Sugar cold pools
stem from isolated precipitating deeper cumuli. The satellite
image captures the deeper cloud over the BCO at the time of
the first cold pool and also indicates some organization of the
cumuli in lines upstream the BCO, while the canonical Sugar
fields of shallow cumuli pass further north. The textbook-
like Gravel example day is characterized by many short and
often weak cold pools quickly following each other, inter-
spersed by stronger cold pools. The stronger cold pools are
associated with the presence of strongly precipitating deeper
clouds (note that the radar did not work prior to 12:00 LT).
The many cold pools present on this day clearly imprint their
signature on the satellite image in the form of mesoscale arcs.

The cold pools on the Flowers day are associated with the
large cloud system whose stratiform layer reaches the BCO
at 10:00 LT. Three cold pools are directly associated with the
large system, with the first one starting at 11:00 LT, show-
ing a very strong 1T of −3.85 K. The large system has rain
rates up to 3.6 mm h−1 and is preceded by a weaker cold
pool at 09:30 LT associated with the very thin mesoscale arc
visible in the satellite image. This first weak cold pool goes
along with a strong increase in humidity of 1.3 g kg−1. The
Fish day features a 6 h-long cold pool associated with steady
and intense rain (maximum RR of 11.6 mm h−1), continued
strong downdrafts, and very high humidity throughout its en-
tire duration. The temperature fully recovers within about
20 min of the cold-pool end, and 3 h later two subsequent
pronounced cold pools follow that are again characterized
by continued precipitation and downdrafts. The satellite im-
age shows the fish-bone-like cloud band typically associated
with the Fish pattern, which is strongly connected to trailing
cold fronts of extratropical origins (Aemisegger et al., 2021;
Schulz et al., 2021). The more front-like character of the Fish
cold pools with steady showers and downdrafts is clearly ev-
ident. While most of the cooling is expected to stem from the
evaporating precipitation, we cannot rule out a small cooling
contribution related to a larger-scale temperature contrast be-
tween the south and north of the Fish cloud band (see also
Schulz et al., 2021).

The example cases highlight how well the detection algo-
rithm works in these diverse situations. Abrupt strong tem-
perature drops are reliably detected, successive fronts sensi-
bly combined into one single cold pool, and even the 6 h-long
cold pool with frontal character on the Fish day is correctly
identified.

The examples also indicate some challenges of the cold-
pool identification. Although they look like cold pools, some
temperature drops on the Gravel and Sugar days are not iden-
tified as cold pools because they are either not abrupt enough
(δT ≥−0.05 K) or not strong enough (1T ≥−0.4 K). The

difficulty in defining the end of the cold-pool wake is illus-
trated in the Fish case: the cold pool starting shortly before
16:00 LT lasts until well after 18:00 LT, but the temperature
drop near 17:00 LT causes a premature end of the cold pool.
A temperature drop of this magnitude could also be caused
by the diel cycle in temperature. The cold-pool end defini-
tion could be improved by an additional rain or downdraft
requirement to more robustly distinguish between cold-pool
activity and other processes. Because most analyses and di-
agnostics computed in this study focus entirely on the cold-
pool front (see next section), not fully representing the wake
of rare long-lasting cold pools is a minor issue that could
only influence the overall cold-pool fraction and the duration
statistics.

As mentioned in Sect. 2.2, the organization pattern def-
inition is somewhat ambiguous. Also among the example
days shown in Fig. 2, multiple cloud patterns pertain to some
cold pools. For the Flowers case, the 2 h at the beginning
and end of the period shown are also classified, respectively,
as Gravel and Fish. In the Sugar case, only the period be-
tween 09:00 and 16:00 LT is exclusively classified as Sugar,
while the periods before and after are also partly classified as
Gravel. Most surprisingly, the textbook Gravel day is also en-
tirely classified as Flowers, and also setting a stricter agree-
ment score of 0.5 leaves half of the day co-classified as Flow-
ers. This indicates that distinguishing Gravel from Flowers
can be particularly challenging (as also shown in Vial et al.,
2021). The Fish day is very confidently classified and no
other pattern is detected for the entire day.

2.5 Selection criteria and diagnostics

For the subsequent analyses, we apply a number of selection
criteria to make the comparison of cold pools more robust.
That is, we only consider cold pools with 1T <−0.4 K and
less than two missing values in the filtered temperature time
series during the entire cold-pool duration (set all with 9234
cold pools). For the analyses of the cold-pool properties we
further apply a criterion of no non-recovered cold pool in
the hour prior to the cold-pool onset (set noprev with 8772
cold pools), which selects cold pools moving into an initially
undisturbed atmosphere that is not modified by previous con-
vection. Except for Appendix B, we also focus on the dry
winter regime from December to April (set noprevWI with
3889 cold pools), which is characterized by steady easter-
lies, subsiding large-scale motion in the free troposphere and
the predominance of shallow trade-wind convection (Brueck
et al., 2015).

All these selection criteria reduce the cold-pool sample
size considerably. They represent a trade-off between ensur-
ing a robust and unbiased sample to address our research
questions while not being unnecessarily strict and remov-
ing too many cold pools. The selection criteria are thus
somewhat subjective and differ among studies. For example,
Chandra et al. (2018) used the criterion of no rain in the hour

https://doi.org/10.5194/acp-21-16609-2021 Atmos. Chem. Phys., 21, 16609–16630, 2021
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Figure 2. BCO time series and satellite images for 18 h of 4 cold-pool days representative of the four patterns. Shown are time series of filtered
surface temperature and specific humidity, MRR rain rate, and time–height plots of Doppler lidar vertical velocity and radar reflectivity. On
the Gravel day the radar did not work prior to 12:00 LT, and the first ceilometer cloud base (CBH1) is shown instead. The x axis shows
local time and the detected cold-pool fronts and wakes are indicated in grey and light grey, with 1T indicated at the bottom. Visible satellite
images from 10–15◦ N, 60–55◦W are from MODIS Aqua (Sugar day) and GOES-16 ABI (other days), with the respective recording times
indicated by the orange lines in the temperature panels. The BCO is located near the easternmost tip of Barbados (outlined in yellow).

Atmos. Chem. Phys., 21, 16609–16630, 2021 https://doi.org/10.5194/acp-21-16609-2021
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prior to the cold-pool onset to select cold pools unmodified
by previous convection, whereas we achieve the same goal
with the criterion of no non-recovered cold pool in the prior
hour, which excludes less cold pools in our case (i.e. about
2500 additional cold pools would be discarded with the cri-
terion of Chandra et al., 2018). Instead of focusing on the
winter regime, we could have also set a criterion based on
the cloud-top height to focus on trade cumulus cold pools.
However, as this would restrict the analysis to periods when
the radar is running and – as we are relying on single-site
measurements – the parent convection might not move over
the BCO in its entirety, we would likely exclude too many
cold pools with a CTH criterion without even being sure that
periods of deep convection are really excluded. Despite the
rather strict criteria applied here, the long time series leads to
a much larger number of cold pools analysed than in previous
studies.

Another potential sampling issue regarding the single-site
measurements is that it is not clear at which stage of its life
cycle we sample the cold pool and where we sample it with
respect to its centre. Assuming azimuthally symmetric wind
variations around the cold-pool centre, which in case of lit-
tle wind shear is a good approximation (Touzè-Peiffer et al.,
2021), the change in wind direction from the mean direction
prior to the cold-pool onset could give a hint as to the location
relative to the cold-pool centre. Due to our large sample size,
a potential random bias is likely to be small. The influence of
wind shear on the propagation direction and characteristics
of cold pools is an interesting topic for a future study.

If not mentioned differently, diagnostics for each cold pool
are computed either as the minimum difference (1Xmin) or
maximum difference (1Xmax) of a variable X across the
cold-pool duration, e.g.1Xmax =max(X((tmax+1) : tend)−

X(tmax)). If the cold-pool wake lasts longer than 20 min, the
diagnostics are computed only until 20 min after tmin (instead
of until tend) to prevent problems in case of a poorly de-
fined cold-pool end. Similarly, Xmean or Xmax are the mean
or maximum of variable X over the same analysis period (in-
dicated in dark red in Fig. 1). For the Doppler lidar vertical
velocities, we diagnose wmaxSCL (wmax450) as the maximum
wSCL (w450) in the first half of the front (including the last
10 min before tmax) and wminSCL as the minimum wSCL in
the second half of the front (including the first 10 min after
tmin). Unless otherwise stated, the surface meteorology diag-
nostics are computed from the 11 min filtered time series.

Along with most diagnostics and composites, we show the
standard error (SE), which measures how well the median
or mean of a given sample can be estimated. The SE of the
median is computed as IQR/

√
n, where IQR represents the

inter-quartile range and n the sample size, and the SE of the
mean as σ/

√
n, where σ is the standard deviation. As not all

instruments were running all the time, some diagnostics are
only available for a subset of the cold pools, and the sample
size is adjusted accordingly when computing the SE.

Table 1. Table showing median± IQR of various cold-pool proper-
ties for the noprevWI set of cold pools as well as the 25 % strongest
(1T <−1.39 K) and weakest (1T >−0.61 K) cold pools of this
set. The computation of the diagnostics is explained in Sect. 2.5.

noprevWI Strong Weak

# 3889 972 972
1T (K) −0.89± 0.78 −1.82± 0.67 −0.5± 0.1
1Tunfil (K) −1.2± 0.8 −2.16± 0.66 −0.79± 0.17
1qmin (g kg−1) −0.43± 0.65 −0.55± 0.81 −0.36± 0.54
1qmax (g kg−1) 0.2± 0.41 0.29± 0.51 0.12± 0.3
1θe,min (K) −2.05± 2.08 −3.3± 2.25 −1.35± 1.35
1θv,min (K) −0.96± 0.81 −1.92± 0.7 −0.55± 0.14
1pmax (hPa) 0.09± 0.29 0.2± 0.44 0.04± 0.19
1Umax (m s−1) 1.14± 1.55 2± 1.97 0.7± 0.99
1Umax.unfil (m s−1) 2.81± 2.36 4± 2.52 2.02± 1.69
1wdirmean (◦) 0.48± 12.57 3.33± 18.34 −0.32± 8.59
Rint (mm h−1) 0.9± 1.76 1.45± 2.42 0.41± 0.95
RRmean (mm h−1) 0.05± 0.38 0.39± 1.06 0± 0.04
CTHmax (km) 3.04± 1.11 3.56± 1.2 2.66± 0.96
CTHmean (km) 2.32± 0.88 2.74± 0.81 2.03± 0.89
wminSCL (m s−1) −0.55± 1.56 −1.89± 2.42 −0.27± 0.51
wmaxSCL (m s−1) 0.91± 0.62 1.1± 0.7 0.78± 0.54
wmax450 (m s−1) 0.98± 0.81 1.27± 0.99 0.79± 0.66
Length (km) 13.3± 9.5 18.6± 10.9 10± 6
1tnextcp (min) 117± 426 85± 245 158± 725
Dur (min) 33± 22 47± 29 25± 12
Front dur (min) 19± 12 29± 19 15± 4

3 Cold-pool climatology

In this section we present the climatology of trade cumulus
cold pools detected at the BCO for the winter seasons of
the years 2011–2021. The first subsection presents general
statistics, followed by a discussion of the composite tempo-
ral structure of the cold pools in Sect. 3.2. The diel cycle of
cold-pool statistics is shown in Sect. 3.3. While our focus lies
on the winter regime, Appendix B also briefly discusses the
seasonal cycle of the cold-pool statistics.

3.1 General statistics

In total we detect 3889 cold pools that meet the criteria of
1T <−0.4 K and less than two missing values in Tfil in the
winter seasons considered. We find that cold pools are very
frequent at the BCO, and on 73 % of days at least one cold
pool is detected. The BCO is on average affected by cold
pools during 7.8 % of the day (i.e. 112 min) and by a cold-
pool front during 4.4 % of the day. The median daily cold-
pool fractions are about one-third smaller than the means
mentioned, indicating that there are some days with a very
large cold-pool fraction. The mean daily cold-pool fraction
of 8.6 % for January and February 2011–2021 is also very
close to the 7 % found by Touzè-Peiffer et al. (2021) dur-
ing the EUREC4A campaign in January and February 2020,
despite their very different method defining cold pools in at-
mospheric soundings based on a mixed-layer depth criterion.
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Table 1 presents statistics of the most important cold-pool
properties for the set of winter cold pools with no non-
recovered cold pool in the prior hour (noprevWI). It shows
that 50 % of the cold pools have a temperature drop ex-
ceeding 0.9 K across the front (the unfiltered temperature
drop is 0.3 K stronger), a 1qmax exceeding 0.2 g kg−1 and
a 1qmin below −0.43 g kg−1, decreases in θe and θv exceed-
ing −2.1 K and −0.96 K, respectively, a 1pmax exceeding
9 Pa, and a 1Umax larger than 1.14 m s−1 (with the unfil-
tered anomaly being more than twice as large). The median
rain intensity measured by the MRR is 0.9 mm h−1. Further-
more, 50 % of the cold pools are associated with a maximum
cloud-top height exceeding 3 km and wmaxSCL and wminSCL
of 0.9 m s−1 and −0.55 m s−1 near the onset and end of the
front, respectively.

The average cold-pool duration is 33 min, of which a bit
more than half of the time pertains to the front. Multiply-
ing the duration by the surface wind speed yields a median
cold-pool length larger than 13.3 km. This median cold-pool
duration and length may seem small compared to satellite
imagery, in which mesoscale cold-pool arcs can easily span
100 km. Also, the largest 2 % of cold pools are hardly larger
than 40 km. The smaller cold-pool sizes found here are likely
due to the algorithm sampling mostly the edge of the cold
pools and due to the challenges of defining the cold-pool end
purely based on the surface temperature time series (see dis-
cussion in Sect. 2.4).

The IQR shows that all these medians are associated with
substantial variability, especially for the humidity and rain
variables. However, focusing on the winter regime generally
reduces the IQR of the diagnostics compared to all seasons
(not shown), suggesting that this criterion indeed results in
a more homogeneous cold-pool sample representative of the
trade cumulus regime.

Table 1 also compares the median± IQR of the 25 %
strongest and weakest cold pools in terms of 1T . The
strongest cold pools last longer, follow each other more
quickly (lower 1tnextcp), and are associated with deeper
clouds, more rain, stronger downdrafts, humidity drops and
wind gusts, and larger positive vertical velocities at the be-
ginning of the front compared to weaker cold pools. This
agrees well with the conceptual picture of deeper clouds pro-
ducing more rain and having a larger potential for rain evap-
oration, which drives stronger downdrafts that bring down
more dry air from further aloft and which induces a stronger
cooling and a stronger gust front that is associated with
stronger rising motion at its leading edge. Similar but slightly
smaller differences between stronger and weaker cold pools
are found when comparing cold pools associated with the
25 % strongest versus weakest downdrafts or the 25 % deep-
est versus shallowest CTHmax (not shown).

The rain duration in the front is the diagnostic that ex-
plains most variability in 1T (R2

= 0.364). Rain duration
is well correlated (R = 0.47) with the front duration, which
itself explains a comparable amount of variability in 1T

(R2
= 0.357). That the accumulated rain amount in the front

explains less variability in 1T (R2
= 0.21) than the rain du-

ration indicates that the rain intensity is of secondary im-
portance. Another important predictor of 1T is the down-
draft strength wminSCL (R2

= 0.23), which together with the
front duration explains 50 % of the variability in 1T for the
noprevWI set. The CTH usually scales with the precipita-
tion amount for trade cumuli (Byers and Hall, 1955; Kubar
et al., 2009; Nuijens et al., 2009), and CTHmax also explains
some variability in 1T (R2

= 0.10). That the rain duration,
the downdraft strength, and the maximum CTH also distin-
guish the cold-pool properties well indicates that the parent
convection triggering the cold pool is sampled well by the
single-point measurements.

3.2 Composite temporal structure

Figure 3 shows the composite mean temporal structure of the
perturbations associated with the cold-pool passages. To fa-
cilitate the comparison of different cold pools, we use a nor-
malized time coordinate within the cold-pool front with val-
ues after tmax and before tmin mapped onto 20 points (the me-
dian front duration), similar to previous studies (Young et al.,
1995; de Szoeke et al., 2017; Zuidema et al., 2017).

The temperature of the composite-mean cold pool, after
increasing slightly before tmax, decreases rapidly in the front
to −1.15 K and recovers by 1T/e within 16 min after tmin
(not shown). The temperature remains about 0.5 K below
Tmax in the hour after the frontal passage. The temperature
drop in the front of the 25 % strongest cold pools is by defi-
nition stronger but with a mean tendency of−0.070 K min−1

also more than twice as abrupt compared to the weakest cold
pools. The strongest cold pools also take longer to recover
than the weakest ones.

The temporal structure of the specific humidity response is
intriguing. The composite-mean humidity starts to increase
already 8 min before tmax and increases by about 0.2 g kg−1

until tmax. In the first quarter of the front, the humidity in-
creases by another 0.2 g kg−1 before it drops to its minimum
of −0.25 g kg−1 at tmin, which is hardly lower than the pre-
front value. The specific humidity response of the strongest
cold pools only differs significantly from the weakest cold
pools at tmin, with the humidity drop at tmin being about
−0.4 g kg−1 and thus about twice as strong as the drop for
the weakest cold pools. If the entire set of cold pools includ-
ing the summer season with deeper convection is used, the
strongest cold pools have a significantly weaker positive hu-
midity anomaly at the beginning of the front and a signif-
icantly faster and stronger humidity reduction at tmin com-
pared to the weakest cold pools (see Fig. B1c–d).

The humidity recovers much more quickly than the tem-
perature and remains slightly elevated compared to its pre-
front value in the hour after. The fast humidity recovery
might be due to the trapping of surface moisture fluxes in the
anomalously shallow mixed layer typically associated with
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Figure 3. Composite mean temporal structure of anomalies with respect to the cold-pool onset (tmax) for the surface properties (a) tempera-
ture, (b) specific humidity, (c) equivalent potential temperature, (d) relative humidity, and (e) wind speed as well as absolute values of (f) the
MRR rain frequency and (g) rain rate and (h) the vertical velocity at 450 m height. The black line shows the mean structure of all cold pools
matching the noprevWI criterion, and the red and blue lines show the mean for the 25 % strongest and weakest cold pools, respectively. The
dotted lines show the mean± 1 SE. Vertical and horizontal reference lines are added to indicate tmax, tmin, and 0.

cold pools (Touzè-Peiffer et al., 2021). Another reason in
cases of more strongly precipitating cold pools might be con-
tinued evaporation of precipitation, which would cool and
moisten the air in the cold-pool wake and thus speed up the
humidity recovery but slow down the temperature recovery.

The initial increase in humidity at the edge of the front
at the BCO might be explained by enhanced surface fluxes
due to the strengthening winds (Langhans and Romps, 2015;
Torri and Kuang, 2016), by moisture advection (Schlemmer
and Hohenegger, 2016), or by an accumulation of moisture
from evaporation of precipitation of the parent convection,
which was pushed to the edge of the front (Tompkins, 2001).
Analyses of the various isotope measurements made during
the EUREC4A field campaign (Stevens et al., 2021) might
help elucidate the origin of these moisture rings, as suggested
by idealized large-eddy simulations (Torri, 2021). This could
also help understand why cloud-resolving models seem to
have difficulties in representing the humidity structure in the
cold-pool front correctly (Chandra et al., 2018). As discussed
by de Szoeke et al. (2017), the humidity increase just before
tmax might be mostly due to the increasing saturation-specific
humidity associated with the increasing temperature before
tmax (as seen by the relative humidity anomaly in panel d be-
ing slightly below zero) and as such likely also related to the
way we identify Tmax. A potential dynamical reason for the

pre-front humidity increase could be moisture convergence
ahead of the front (Schlemmer and Hohenegger, 2016).

The temporal structure of the equivalent potential temper-
ature (Fig. 3c) is similar to the humidity structure but with a
stronger drop across the front and a stronger difference be-
tween the weaker and stronger cold pools governed by the
temperature drops. The relative humidity signal in the front
is mostly governed by the temperature decrease, with RH be-
ing 8 % larger at tmin for the strongest cold pools.

The in-front wind speed increase has a maximum in the
middle of the front, confirming that the interval between tmax
and tmin catches the front characterized by a vortical over-
turning internal circulation. After the frontal passage, the
wind speed decreases slightly below the pre-front level. As
the cold pools spread into a strong background easterly flow
(mean wind direction at tmax is 86◦, not shown), the wind
speed anomalies show that the cold pools on average push
forward into the wind until tmax, and backward after tmin. For
some cold pools, tmin might thus mark the center of the di-
vergent flow and indicate that the parent convection passed
over the BCO. The strengthening winds in the front and the
slackening winds in the wake are again significantly more
pronounced for the strongest cold pools, with a maximum
of 1.5 m s−1 and a minimum smaller than −0.5 m s−1 in the
front and wake compared to the value at tmax.

https://doi.org/10.5194/acp-21-16609-2021 Atmos. Chem. Phys., 21, 16609–16630, 2021



16618 R. Vogel et al.: Trade cumulus cold-pool climatology

Figure 3f–g show the composite mean Rfreq and RR mea-
sured by the MRR. Both rain variables increase rapidly after
the onset of the cold pool, peak towards the middle or end
of the front, and start to decrease shortly before tmin. The
strongest cold pools have much larger rain rates and rain fre-
quencies during the entire front compared to the weakest cold
pools, and the rain frequency of the strongest cold pools also
remains strongly elevated until more than an hour after tmin.

The last panel of Fig. 3h shows the Doppler lidar verti-
cal velocity averaged over four 30 m range gates with mean
height of 450 m (w450). The mean w450 peaks at the edge
of the front with about 0.25 m s−1 and decreases rapidly to
−0.3 m s−1 near the end of the front, reflecting updrafts trig-
gered at the cold-pool gust front and downdrafts driven by
the evaporating precipitation inside the front, respectively.
The median wmax450 at the gust front edge (see Table 1) is
at 1 m s−1 much larger than the averaged hourly in-cloud
vertical velocities near cloud base measured by the BCO
Doppler radar, which has a peak density at 0.2 m s−1 and
maxima of 0.6 m s−1 (Klingebiel et al., 2021). 1 m s−1 also
marks the upper tail of cloud-base averaged updraft vertical
velocities at the BCO (see Fig. 4b of Sakradzija and Klinge-
biel, 2020). This suggests that the gust-front vertical velocity
maxima are very relevant for triggering new convection in
the trade cumulus regime. The strongest cold pools have sig-
nificantly stronger downdrafts and also updrafts compared to
the weakest cold pools (see also Table 1), the latter highlight-
ing the potentially enhanced triggering of new convection by
stronger cold pools. For the vertical velocity averaged over
the entire sub-cloud layer (wSCL), the picture is similar, but
the peak wmaxSCL is slightly smaller for the strongest cold
pools and more similar compared to the weaker cold pools
(Table 1).

As already shown in Table 1, Fig. 3 shows that the
strongest cold pools are also the driest and the rainiest, and
have the strongest wind and vertical velocity anomalies in
the front. The relationships and timings discussed are mostly
the same when considering all cold pools meeting the no-
prev criterion (i.e. also including summer periods), just with
larger anomalies and the differences mentioned above for the
humidity structure. The mean temporal structure for all vari-
ables – except for the specific humidity and partly for the
wind speed – is also similar to previous observations of trop-
ical deep convective cold pools during the DYNAMO field
campaign (de Szoeke et al., 2017; Chandra et al., 2018),
just with slightly larger mean across-front temperature and
humidity decreases (−1.3 K and −0.6 g kg−1 during DY-
NAMO compared to−1.15 K and−0.25 g kg−1 at the BCO)
and larger mid-front wind speed increases (about 1.5 m s−1

compared to 1 m s−1) during DYNAMO due to the deeper
convection. Furthermore, during DYNAMO the increases in
specific humidity at the beginning of the front are hardly
present, and the wind speed remains elevated by 0.4 m s−1

in the wake of the DYNAMO cold pools (de Szoeke et al.,
2017), whereas at the BCO the wind speed decreases below

the value at tmax in the wake. We hypothesize that this dif-
ference can be explained by the stronger cold pools during
DYNAMO travelling further away from their parent convec-
tion, such that they continue to push forward into the mean
wind. What strengthens cold pools in the trades despite the
shallower parent convection is the drier cloud layer and free
troposphere compared to the deep convective regions, which
facilitates evaporation of precipitation and can strengthen
downdrafts (Chandra et al., 2018).

The cloud radars at the BCO also allow study of how
the cloud properties change across the cold-pool passage
(Fig. 4). The mean cloud-top height (CTH) increases rapidly
by ∼ 500 m after the cold-pool onset and peaks at the end
of the front. CTH remains elevated by about 300 m com-
pared to the pre-front value in the following hour. The 25 %
strongest cold pools are associated with significantly deeper
clouds throughout the entire period shown, especially so at
the end of the front, when the CTH is on average higher than
3300 m. The cloud-base height (CBH) starts to decrease al-
ready slightly before tmax and reaches its minimum near the
end of the front at ∼ 500 m. This decrease is due to the more
frequent precipitation with very low echo-base heights and is
most pronounced for the strongest cold pools.

The total hydrometeor cover (CC) increases rapidly at
the beginning of the cold-pool front, remains about 25 %
larger compared to the pre-front value inside the front, and
decreases slowly in the wake. The mean CC of the 25 %
strongest cold pools reaches nearly 100 % at the end of the
front and is significantly larger than the CC of the weakest
cold pools during the entire period shown, especially so in
the wake. In Fig. 4d–f the cloud cover is split into contri-
butions from cloud segments with different CBH by consid-
ering all 1 min hydrometeor fraction profiles independently.
This shows that the enhanced CC of the strongest cold pools
in the prior hour is entirely due to cloud segments with CBH
above 1 km (CCaloft), whereas the enhanced CC in the front
and wake of the strongest cold pools is mostly due to pre-
cipitating cloud segments with CBH below 300 m. The rapid
increase in CClcl up to its peak at tmax strongly contributes
to the CC increase at the edge of the front. This peak is
also larger for the strongest cold pools, consistent with their
larger w450 at tmax. CClcl and CCaloft are lower at the end of
the front for the strongest cold pools, as the lowest CBH is
mostly below 300 m and the cloud segments thus count to
the CCprcp category. (Note that a given time can only count
to one of the three categories.)

Overall, Fig. 4 indicates that clouds and rain are nearer
tmin in the strongest cold pools and nearer tmax for the weak-
est cold pools. A potential explanation for this observation
is that stronger cold pools are running further ahead of their
stronger parent convection, while the weaker parent convec-
tion of the weaker cold pools might have already dissipated.
However, drawing such conclusions from single-point ob-
servations is tricky, as the influence of the life-cycle stage
and the overall cold-pool strength on the observed cold-
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Figure 4. (a–f) Same as Fig. 3 but for (a) cloud-top height, (b) cloud-base height, (c) total cloud cover, and the contribution to total cloud
cover from (d) CCprcp, (e) CClcl, and (f) CCaloft. Also indicated is the climatological mean value for the winter periods of 2012–2020.
(g–i) Composite mean temporal structure of vertical hydrometeor fraction (HF) profiles for all noprevWI cold pools as well as the 25 %
strongest and weakest. The thin dashed line at 600 m height marks the typical base of the cumulus layer.

pool characteristics cannot be disentangled. Some informa-
tion about different cloud types populating the cold-pool
front or wake can be derived by analysing the CC contri-
butions grouped by the overall CBH of the segmented cloud
objects (CBHID; see Appendix A and Sect. 2.1). We find that
the peak in CClcl at tmax is mainly due to edges of precipitat-
ing clouds that have CBH> 300 m. Assuming that this cloud
population represents the clouds evident as mesoscale arcs
in satellite imagery, this suggests that the cloudiness at the
gust front is mostly characterized by well-developed precip-
itating clouds. The cloud-type analysis also shows that more
than half of the CCaloft in the cold-pool wake is part of large
precipitating clouds and is not from detached stratiform lay-
ers. This is also suggested by the time–height plots of the
composite-mean hydrometeor fraction shown in Fig. 4g–i.
These panels nicely summarize what was discussed in the
previous paragraphs and again highlight the differences be-
tween the 25 % strongest and weakest cold pools in terms of
the cloud response.

Figure 4a–f also indicate the respective mean CTH, CBH,
and CC for all the winter months of the period 2012–2021.

They show that cold-pool periods are much cloudier than the
average winter conditions at the BCO, with the average in-
front CC being twice as large as the 10-year climatological
mean. Cold-pool periods also have much deeper clouds than
the climatological mean of about 2 km, which is expected
as it needs deeper precipitating clouds to form cold pools.
The enhanced CC in the wake of cold pools compared to
the long-term mean is nevertheless surprising, as convection
might be expected to be suppressed in the cold-pool wake.
Mesoscale arcs encircling vast decks of deeper cumuli with
stratiform layers therefore seem more representative for pe-
riods of cold-pool activity than the more classical picture of
trade cumulus cold pools as mesoscale arcs enclosing broad
clear-sky areas.

Despite the various significant differences between the
strongest and weakest cold pools highlighted in the previ-
ous paragraphs, there is a lot of variability among individ-
ual cold pools. The variability is illustrated in Fig. 5, which
shows the temporal structure of the most important vari-
ables for individual cold pools ranked according to their1T .
Especially the individual differences in humidity and wind
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Figure 5. Temporal structure of individual cold pools ranked according to their 1T . Shown are all cold pools of noprevWI that have
all instruments running. The panels show anomalies relative to the cold-pool onset (tmax) for (a) temperature, (b) specific humidity, and
(c) wind speed as well as absolute values of (d) the MRR rain frequency, (e) the cloud-top height, and (f) the vertical velocity averaged over
the sub-cloud layer.

in the front and beginning of the wake can by far exceed
the mean differences among the strongest and weakest cold
pools shown in Fig. 3. Notable is again the occurrence of
pronounced negative values of the wind speed anomaly af-
ter tmin, which suggests that some cold pools push backward
into the mean wind. Tendencies of more frequent (and in-
tense) rain, deeper clouds, and stronger downdrafts near tmin
of the stronger cold pools are nevertheless clearly evident.
Especially the downdraft strength seems to be systematically
increasing for stronger temperature drops. Besides showing
the CTH, Fig. 5e also gives an indication of the CC, again
illustrating how cloudy the cold-pool periods are.

3.3 Diel cycle

The long time series also allows study of the variability
of the cold-pool frequency and characteristics at the daily
timescale. Figure 6 shows the diel variability of cold-pool
properties for the noprevWI set. There are clearly fewer cold
pools and a lower hourly cold-pool frequency between 16:00
and 22:00 LT compared to the rest of the day. Just before
midnight, the cold-pool frequency strongly increases in re-
sponse to the nighttime increase in cloud cover, cloud depth,
and rain rate (see green lines in panels e–i and Vial et al.,
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Figure 6. Daily cycles of important cold-pool diagnostics. (a) Mean± 1 SE of hourly cold-pool frequency as well as the number of cold pools
per hour, (b)1T , (c)1qmin, (d)1Umax, (e) CTHmax, (f) MRR RRmean, (g)wminSCL, (h)wmax450, and (i) CCtot, with cold pools associated
with a specific hour according to their tmax. In panels (b)–(i) the lines represent the 25 %, 50 %, and 75 % quartiles of the respective variables
and the shading represents the median± 1 SE. Also indicated in green is the median climatological background diel cycle of 30 min values of
(e) maximum CTH, (g) minimum wSCL, (h) maximum w450, and (i) mean CC, shifted by the mean difference of the climatological median
compared to the cold-pool median to ease reading. Due to the infrequent rain, the median climatological RRmean is always 0 and omitted in
panel (f).

2019). The cold-pool occurrence remains strongly elevated
between 02:00 and 15:00 LT, with a peak at 14:00 LT.

Also, most cold-pool diagnostics show a pronounced diel
variability. During nighttime between about midnight and
04:00 LT, cold pools are associated with significantly deeper
clouds, stronger mean rain rates, stronger downdrafts and up-
drafts, larger CC, and slightly stronger humidity drops and
weaker wind gusts compared to daytime cold pools between
about 08:00 and 16:00 LT. There is also a hint of slightly
stronger 1T during nighttime compared to daytime, but nei-
ther in the median nor in the 25 % quartiles is this diel cy-
cle significant. It is somewhat surprising that we find no
pronounced diel cycle in 1T , despite the diel cycle of e.g.
wminSCL and CTHmax. There is a climatological background
diel cycle in temperature of about 1.2 K due to the daytime
solar heating of the ground at the BCO (minimum and maxi-

mum temperatures near 05:00 and 12:00 LT, respectively, not
shown), but this should not affect the cloudy cold-pool peri-
ods much and would contribute to lower 1T in the morning.
Other diagnostics like 1qmax and Rint do not show a pro-
nounced diel variability (not shown).

The pronounced diel variability in the cold-pool frequency
and most diagnostics is not surprising given the distinct diel
cycle in trade cumulus cloudiness discussed in detail in Vial
et al. (2019) based on realistic high-resolution simulations
and both BCO and satellite observations. The diel cycle of
trade cumuli is characterized by larger CC and deeper clouds
at the end of the night and smaller CC and shallower clouds
in the afternoon. This is evident in the background clima-
tological diel cycles indicated in Fig. 6e–i. The diel cycles
of most cold-pool diagnostics have a similar phase and also
amplitude to their background diel cycles but are shifted to
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much larger values (as indicated in the respective legends).
For the vertical velocity diagnostics, the amplitude of the diel
cycle is also much larger compared to the background clima-
tology.

The period of enhanced cold-pool occurrence between
23:00 and 15:00 LT and its peak at 14:00 LT extends much
further into the day compared to the period of enhanced mean
background rain rate between about 03:00 and 06:00 LT typ-
ical for the trades (Nuijens et al., 2009; Vial et al., 2019),
suggesting that cold pools help extend the diel cycle of shal-
low convection into the early afternoon. Also, the diel cycle
of cloud cover seems to be slightly extended in cold-pool pe-
riods, with CCtot decreasing below the diel mean about 4 h
later compared to the climatological CC. The likely reason
for the extension of convection into the afternoon is that the
cold pools are successful in triggering new convection, which
can again induce new cold pools that trigger further con-
vection. Thereby, cold pools reinforce each other, which is
supported by the shorter median interval between subsequent
cold pools of 121 min between 07:00 and 14:00 LT compared
to 182 min between 22:00 and 04:00 LT.

The importance of cold pools in triggering new convection
is well established in the literature and can occur through me-
chanic lifting or moisture accumulations, both of which are
favoured when multiple cold pools collide (Rotunno et al.,
1988; Tompkins, 2001; Feng et al., 2015; Torri and Kuang,
2019; Meyer and Haerter, 2020). Rochetin et al. (2021) also
found a diel cycle of cold-pool occurrence near Barbados
in realistic simulations with the ICON model at 2.5 km grid
spacing, however, without the pronounced extension into the
afternoon observed at the BCO (see their Fig. 16d). This
might be due to gust front vertical velocities being poorly
resolved at kilometre-scale resolutions, which leads to too
little convective triggering and deficits in rain and convective
organization, as simulations over Germany showed (Hirt and
Craig, 2021).

Vial et al. (2021) also find the diel cycle of trade cumuli
to be strongly linked to the diel cycle in the occurrence fre-
quency of the mesoscale organization patterns. Whether the
cold-pool characteristics and their diel cycles are related to
the pattern of mesoscale organization will be discussed in
the next section.

4 Relationship of cold-pool characteristics with
mesoscale organization patterns

In this section we investigate whether the cold-pool
frequency and characteristics depend on the pattern of
mesoscale cloud organization. For this we condition the cold
pools on the organization pattern present at the BCO. As ex-
plained in Sect. 2.2, a cold pool is attributed to a pattern if it
is present during > 75 % of the cold-pool duration. As mul-
tiple patterns can be present at the same time, two (or rarely
even three) patterns can be attributed to one cold pool. Pat-

tern labels are available from January 2018 to March 2021,
and using the noprevWI criterion leaves 1332 cold pools to
be analysed.

The discussion of the 4 example cold-pool days in Fig. 2
already shed some light on the differences in the cold-pool
characteristics of the four patterns. For a statistical compari-
son, Fig. 7 shows distributions of several cold-pool properties
for the different patterns, including the “No” category and the
union of the five categories (“tot”). The most pronounced dif-
ference among the patterns lies in the occurrence frequency
of cold pools. Most cold pools detected at the BCO pertain to
the Gravel pattern, followed by Fish and Flowers (Fig. 7a).
As expected, only a few cold pools are detected during Sugar
periods. Many cold pools are also associated with the No cat-
egory.

When we look at the fraction of time a cold pool is ob-
served in a given pattern (Fig. 7b), the picture changes and
the Fish pattern is associated with the largest cold-pool frac-
tion (12.8 % of the time), followed by Flowers and Gravel
(9.9 % and 7.2 %, respectively). Again, Sugar has clearly the
lowest cold-pool fraction (1.6 %). The cold-pool fraction of
the No category in winter is at 6.4 % also substantial. Fig-
ure 7b also shows the cold-pool fractions using different se-
lection criteria, namely that cold pools attributed to multiple
patterns are excluded (“.only”) and that all noprev cold pools
from all seasons are used (“all”). The four patterns remain
distinct in their cold-pool fractions independent of the cri-
teria considered. Only for Sugar (and to a small extent also
Flowers) do these criteria change the cold-pool fraction. The
No category is particularly sensitive to the inclusion of all
seasons, as in summer with more frequent deep convection
most cold pools pertain to the No category (not shown).

That Gravel has the largest number of cold pools but only
the third largest cold-pool fraction is partly because Gravel
is the most frequent pattern at the BCO (a total of 178 d out
of the 18 winter months considered, compared to 113 Fish,
78 Flowers, and 72 Sugar days) and partly because Gravel
cold pools on average last 6 min shorter than Fish cold pools
(Fig. 7c). Fish has the significantly longest-lasting cold pools
of all patterns, which is tightly linked to frequent long-lasting
rain events. Cold pools in the Fish pattern also follow each
other most rapidly, with a median of 124 min separating in-
dividual cold pool fronts (Fig. 7d). Also for Flowers and
Gravel, cold pools follow each other quickly, whereas much
more time passes between cold pools for Sugar and No. The
same picture emerges when considering the cold-pool length
(i.e. the duration multiplied by the surface wind speed): Fish
cold pools are with a median size of 13.8 km slightly larger
than Gravel and Flowers cold pools (both about 12.6 km, not
shown).

Figure 7e–i show the differences in the surface meteorol-
ogy, rain, and cloud response associated with cold pools for
the different patterns. Fish has the strongest median 1T and
the strongest downdrafts of all patterns (Fig. 7e, l) and also a
stronger 1Umax compared to Gravel and Flowers (Fig. 7h).
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Figure 7. Distributions of various cold-pool diagnostics conditioned on the organization patterns. (a) Number of cold pools, (b) cold-pool
fraction, (c) cold-pool duration, (d) time since tmin of the last cold pool, (e)1T , (f)1qmin, (g)1qmax, (h)1Umax, (i) MRRRint, (j) CTHmax,
(k)wmax450, and (l)wminSCL. The different symbols in panels (c)–(l) represent the 25 %, 50 %, and 75 % quartiles of the respective variables,
the solid lines represent the median± 1 SE, and the dotted horizontal reference lines show the median of the entire set (“tot”). Besides the
cold pools matching the noprevWI criterion, panel (b) also shows the fraction of cold pools for all seasons (“all”) and excluding periods with
multiple organization patterns (“WI.only” and “all.only”).

Gravel cold pools are associated with significantly larger
CTHmax and stronger updrafts compared to the other patterns
(Fig. 7j, k). For the humidity and rain diagnostics (Fig. 7f, g,
i), the differences between Gravel, Flowers, and Fish cold
pools are minor. Sugar cold pools generally have the weakest
cold-pool signatures. Contrastingly, the cold pools of the No
category show no significant differences compared to Gravel,
Fish, and Flowers for most statistics. These results are largely
insensitive to both an increase in the neural network agree-
ment score (i.e. using 0.5 compared to 0.4; see Sect. 2.2) and
to the exclusion of multiple patterns (except for Sugar and to
some degree also Flowers, whose sample sizes become very
small, not shown).

Figure 8 shows the differences in the temporal structures
of cloud properties associated with the cold-pool passages
for the four patterns. Fish and Flowers have the largest CC
(Fig. 8a) due to larger contributions of CCaloft (Fig. 8c),
which are associated with frequent stratiform layers near
1.5–2 km (Fig. 8f, h). CClcl (Fig. 8b) and CCprcp (not shown)
instead are fairly similar among the patterns. The CC of
Fish cold pools hardly changes across the cold-pool passage,

whereas the onset of the cold-pool front is much more clearly
evident for the Gravel and even more for the Sugar CC (see
also the time–height composites in Fig. 8e–h). The CC in the
wake of Sugar cold pools also decreases most rapidly back
to its pre-front value. Fish tends to have the deepest mean
CTH associated with the cold-pool periods, closely followed
by Gravel and Flowers. Again, the mean CTH of Gravel and
Sugar cold pools increase most rapidly in the front compared
to the other patterns.

For all patterns, the cold-pool periods are characterized
by significantly deeper clouds and larger CC compared to
the pattern average (indicated by the dashed lines on the
far left of Fig. 8a–d). Nevertheless, the climatological dif-
ferences in CC, CCaloft, and CTH among the different pat-
terns (Schulz et al., 2021; Vial et al., 2021; Bony et al., 2020)
also remain during cold-pool periods, indicating the robust-
ness of the pattern-specific cloud macrophysical properties.
The climatological differences in CTH of the patterns cor-
respond very well to their differences in the cold-pool frac-
tion (Fig. 7b), with Sugar having clearly the shallowest mean
CTH and the lowest cold-pool fraction, separated by a step
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Figure 8. Composite mean temporal structure of the four organization patterns and the No category. Shown are (a) total CC, the contribution
to total CC from (b) CClcl and (c) CCaloft, and (d) the CTH. The dotted lines show the mean± 1 SE. Also indicated on the far left of panels
(a)–(d) are the climatological mean values per pattern for the corresponding winter periods of 2018–2021. Panels (e)–(h) show the mean
temporal structure of the vertical hydrometeor fraction profiles for the four patterns.

change from Gravel, followed closely by Flowers and Fish.
The two patterns with the largest cold-pool fraction, Fish and
Flowers, also have the largest mean cloud object sizes (Bony
et al., 2020), suggesting that cloud size and cold-pool occur-
rence are positively correlated (Schlemmer and Hohenegger,
2014).

As mentioned before, Vial et al. (2021) find the diel cycle
of trade cumuli to be strongly linked to the diel cycle in the
occurrence frequency of the mesoscale organization patterns.
Figure 9a shows strong diel variations of the number of cold
pools associated with the different patterns. These variations
are strongly connected to the diel cycles in the occurrence
frequency of the patterns (Fig. 9b and Vial et al., 2021). The
maximum number of Gravel cold pools occurs just after mid-
night, followed by Flowers around 07:00 LT and Fish cold
pools at 10:00 LT. The number of Sugar cold pools is very
low throughout the day.

Figure 9a suggests that the extension of the diel cycle of
convection into the early afternoon due to cold pools may
largely be explained by the Fish pattern, together with a
substantial contribution of the No category to the peak at
14:00 LT. Despite the strong connection between the diel
phasings of Fig. 9a–b, especially the Fish pattern also shows

a diel cycle of the cold-pool fraction with a peak in the after-
noon (Fig. 9c), which is broadly in phase with the occurrence
frequency. The diel cycle in the cold-pool fraction might be
due to cold pools lasting a while once they are formed, which
is supported by the much weaker diel cycles of the cold-pool
front fraction (dashed lines in Fig. 9c). Once present, cold
pools often trigger new cold pools, as suggested by the 33 %
shorter interval between subsequent fronts during daytime
compared to nighttime (see discussion in Sect. 3.3). From
the present analyses, it is difficult to disentangle causal rela-
tionships between the pattern occurrence, cold pools, and the
diel cycle. It is also difficult to pin down the evolution from
one pattern to another and the role of cold pools therein. As
the number of cold pools per pattern and hour is quite low
(especially in the case of Flowers), more data are needed to
draw robust conclusions on this.

The pattern-associated diel phasing of the cold-pool num-
ber might give a clue about why 1T varies little on the daily
timescale (Fig. 6c), although the diel cycle of most cold-
pool properties would suggest that 1T should be stronger at
night compared to day. The daytime Fish pattern has signifi-
cantly stronger1T compared to the nighttime Gravel pattern
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Figure 9. Daily cycles of (a) number of cold pools, (b) hours of data for the different organization patterns, and (c) hourly fraction in cold
pool (solid) and in cold-pool front (dashed). A 5-hourly running mean is applied to smooth the data. The diel means are indicated on the
left-hand side of each panel.

(Fig. 7e), which might compensate for the opposite expecta-
tion due to the diel phasing of CTHmax and wminSCL.

5 Conclusions

This paper presents a long-term climatology of trade cumulus
cold pools based on more than 10 years of in situ and ground-
based remote sensing data from the Barbados Cloud Obser-
vatory (BCO; Stevens et al., 2016). Cold pools are detected
by abrupt drops in low-pass-filtered temperature time series,
and their associated changes in surface meteorology, cloudi-
ness, and sub-cloud layer dynamics are extracted. The cold-
pool climatology is combined with a neural network classi-
fication of the four mesoscale organization patterns Sugar,
Gravel, Flowers, and Fish (Stevens et al., 2020) based on
GOES-16 ABI infrared images (Schulz et al., 2021). To fo-
cus on trade cumulus cold pools, most analyses are restricted
to the set of 3889 cold pools detected in the dry winter regime
from December to April that have no non-recovered cold
pool in the hour prior to their onset.

We find cold pools to be ubiquitous in the winter trades –
they are present about 7.8 % of the time, and on more than
73 % of days at least one cold pool is detected. The aver-
age cold-pool passage is characterized by a 0.9 K tempera-
ture drop, a 0.2 g kg−1 humidity increase just before and an-
other 0.2 g kg−1 humidity increase right after the front onset,
followed by a −0.4 g kg−1 humidity decrease at the end of
the front, wind speed and pressure increases of 1.15 m s−1

and 9 Pa, and rain intensities of 0.9 mm h−1. The vertical
velocity at the sub-cloud layer top shows pronounced max-
ima of 1 m s−1 near the cold-pool onset, which lies in the
upper tail of cloud-base averaged updraft velocities at the
BCO (Sakradzija and Klingebiel, 2020) and thus is very
relevant for triggering new convection. The second half of
the front is marked by sub-cloud layer averaged downdrafts
of −0.55 m s−1. Strong signals of cold-pool passages are
also found for all cloud macrophysical properties analysed:

cloud-top height increases, cloud-base height decreases (due
to the very frequent precipitation), and cloud cover increases
with the cold-pool onset. Cloudiness at the gust front is
mostly due to cloud segments near the lifting-condensation
level that pertain to larger precipitating cloud objects. Simi-
larly, cloud segments with bases above 1 km in the cold-pool
wake are mostly part of large precipitating clouds and are not
from detached stratiform layers.

The strength of the cold-pool signature depends strongly
on the intensity of the temperature drops (1T ). The rain du-
ration in the front is the best predictor of 1T and explains
36 % of its variability. We find that the minimum vertical ve-
locity averaged over the sub-cloud layer and the maximum
cloud-top height also distinguish stronger and weaker cold
pools very well. Cold pools with stronger 1T are associ-
ated with deeper clouds, stronger precipitation, downdrafts,
and humidity drops, stronger wind gusts and updrafts at the
edge of the front, and larger cloud cover compared to cold
pools with weaker 1T . Stronger cold pools also last sig-
nificantly longer and follow each other more quickly than
weaker cold pools, indicating that they are likely more suc-
cessful in triggering new convection than weaker cold pools.
We find clouds and rain to be nearer to the temperature min-
imum in the strongest cold pools, whereas they tend to be
nearer the onset of the front in weaker cold pools. This sug-
gests that stronger cold pools are running further ahead of
their stronger parent convection, while the clouds forming
the weaker cold pools might have already dissipated.

The cold-pool frequency and characteristics show pro-
nounced diel variability. There are significantly fewer cold
pools and a lower cold-pool frequency between 16:00 and
22:00 LT compared to the rest of the day. We find that cold
pools extend the diel cycle of convection into the early after-
noon, with a peak in both the cold-pool number and fraction
at 14:00 LT. Also, most cold-pool diagnostics show a pro-
nounced diel cycle, with significantly deeper clouds, stronger
mean rain rates, stronger downdrafts and updrafts, larger
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cloud cover, slightly stronger humidity drops, and weaker
wind gusts associated with nighttime compared to daytime
cold pools. The phase of these diel signatures is consistent
with their background climatological diel cycle but shifted
to much larger values. The diel amplitude of the vertical ve-
locity maxima and minima is also greater during cold-pool
periods.

In the wet summer regime, cold pools are about 30 % more
frequent relative to the average winter regime. Summer cold
pools are also associated with significantly stronger temper-
ature and humidity drops, deeper clouds, and stronger down-
drafts – consistent with the frequent deep convection and
stronger precipitation of this season (Brueck et al., 2015). On
the other hand, the summer cold pools have weaker updrafts
and humidity maxima at the beginning of the front, suggest-
ing that they might be less effective in triggering new con-
vection. While the temporal structures of cold-pool passages
for most meteorological variables in both seasons resemble
those of previous observations of tropical deep convective
cold pools (de Szoeke et al., 2017; Chandra et al., 2018;
Zuidema et al., 2017), especially the humidity structure and
also the generally larger anomalies render the summer cold
pools more similar to the deep convective cold pools from
previous studies.

We also analysed whether the cold-pool frequency and
characteristics depend on the pattern of mesoscale cloud or-
ganization. The most pronounced difference among the pat-
terns lies in the occurrence frequency of cold pools, with Fish
having the largest cold-pool fraction (12.8 % of the time),
followed by Flowers and Gravel (9.9 % and 7.2 %, respec-
tively). As expected, the cold-pool fraction of Sugar is neg-
ligible (1.6 %). Fish cold pools last significantly longer than
cold pools from all the other patterns, and they are also asso-
ciated with the strongest temperature drops and downdrafts.
Gravel cold pools are associated with the strongest updrafts
at the cold-pool onset and the deepest cloud-top height max-
ima.

Given the distinct diel cycle in the occurrence frequency
of the four patterns found in Vial et al. (2021), it is not sur-
prising that we find strong diel variations of the number of
cold pools associated with the different patterns. The maxi-
mum number of Gravel cold pools occurs around midnight,
followed by Flowers around 07:00 LT and Fish cold pools
around 10:00 LT, in line with the diel cycles in the occurrence
frequency of the patterns. The Gravel, Flowers, and Fish cold
pools can thus explain a large fraction of the diel cycle in the
cold-pool occurrence as well as their extension into the early
afternoon. Note also that the unclassified cold pools have a
non-negligible contribution to the peak at 14:00 LT. Interest-
ingly, the climatological differences in the cloud cover and
cloud-top height among the different patterns are also present
during cold-pool periods – the overall cloud cover and cloud-
top height for all patterns are just enhanced compared to their
respective climatological values.

This study paves the way for more in-depth analyses of the
cold-pool properties and their relation to the environment in
the trades. Especially the complex humidity signals deserve
a more detailed investigation, also using data from the recent
EUREC4A field campaign (Stevens et al., 2021) and from re-
alistic large-eddy simulations. Together with the vertical ve-
locity statistics, the humidity anomalies can help shed light
on the triggering of new convection at the cold-pool front.
Additional measurements of the mixed-layer depth from ra-
diosondes and the Raman or Doppler lidar could help re-
fine the cold-pool end definition, which is only poorly con-
strained by the surface temperature data. Such additional data
could also provide interesting insight into the cold-pool re-
covery process. A systematic matching with satellite imagery
would also help collocate the clouds sampled at the BCO
with the broader view of the entire cold pool seen from space.

Overall, we find that the cold-pool periods are about 90 %
cloudier relative to the average winter trades. The larger
cloudiness is mostly due to larger cloud cover from precipi-
tating and stratiform cloud segments. Also, the wake of cold
pools is characterized by above-average cloudiness, indicat-
ing that the classical image of trade cumulus cold pools as
mesoscale arcs enclosing broad clear-sky areas is rather the
exception than the rule. Our study suggests that a better un-
derstanding of how trade cumulus cold pools interact with
and shape their environment is important for understanding
the variability in cloud cover and cloud organization in the
trade-wind regime.

Appendix A: Cloud cover contributions from different
types of cloud objects

The contributions to total cloud cover from clouds at dif-
ferent height levels can either be computed by classify-
ing every radar profile independently based on its CBH
(see Fig. 4d–f) or – if a cloud segmentation mask is avail-
able – by classifying the entire cloud objects according to
their CBHID (i.e. their overall lowest CBH). As both ap-
proaches can provide valuable insights, Fig. A1 also shows
the temporal structure of the cold-pool signatures for the
latter classification method. For this, the cloud cover is
again split up into contributions from precipitating clouds
with CBHID≤ 300 m (CCID.prcp), LCL clouds (CCID.lcl;
300 m<CBHID≤ 1 km), and stratiform clouds (CCID.aloft;
1 km<CBHID≤ 4 km). The difference between CCID.prcp
and CCprcp is that edges or slanted sides of precipitating
clouds that have a CBH> 300 m are counted in their entirety
to the CCID.prcp category, while they would be counted in the
CClcl or CCaloft category if the cloud ID was not considered.
Due to the potential presence of cloud objects at different
heights, the sum of the three height categories (CCID.tot) can
be larger than 1.

CCID.prcp already starts to increase before tmax and contin-
ues to increase until the middle of the front for all the cold-
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Figure A1. Same as Fig. 3 but for (a) CCID.tot, (b) CCID.prcp, (c) CCID.lcl, and (d) CCID.aloft for all cold pools of noprevWI and the 25 %
strongest and weakest cold pools.

pool sets shown. For the 25 % strongest cold pools, the end of
the front is entirely covered by precipitating clouds. CCID.lcl
in Fig. A1c for all sets is relatively stable at about 17.5 %
before the cold-pool onset, decreases abruptly after tmax to
a minimum near tmin, and then slowly recovers back to the
pre-front value. CCID.lcl shows the strongest impact when
the cloud objects are considered through the CBHID and thus
the strongest difference to the structure of CClcl (Fig. 4e).
The absence of a peak in CCID.lcl near tmax indicates that the
CClcl peak there is almost entirely due to edges of precipitat-
ing clouds with a CBH> 300 m and not due to (not-yet or)
non-precipitating trade cumuli.

The temporal structure of CCID.aloft resembles the struc-
ture of CCaloft (Fig. 4f) yet with substantially lower coverage,
as most cloud segments with CBH> 1 km are connected to a
precipitating core. This shows that nearly half of the CCaloft
in the cold-pool wake is part of large precipitating clouds and
not from detached stratiform layers.

Appendix B: Seasonal cycle of cold-pool characteristics

While this study focuses on the cold-pool climatology of the
winter regime, it is also interesting to look at the seasonal
cycle of the cold-pool characteristics at the BCO. Using all
cold pools of the noprev category, we find the largest median
daily cold-pool frequency in the summer months from July
to November and another peak in January (Fig. B1a). Only
13 % of days have no cold pool at all in summer, compared to
27 % in winter. The same monthly variability is found for the
cold-pool front frequency but with 45 % lower values due to
the shorter duration of the front compared to the entire cold
pool (not shown).

Figure B1b–i show the monthly distributions of various
cold-pool properties as well as averages over the 5 win-
ter and summer months, respectively. They show that the
summer cold pools are on average characterized by signifi-
cantly stronger 1qmin, CTHmax, and Rint as well as slightly
stronger 1T and wminSCL, consistent with the relationships

discussed in Sect. 3. However, wmax450 is significantly lower
by 0.2 m s−1 and 1qmax by 0.1 g kg−1 in summer compared
to winter, indicating that cold pools in summer might be
less successful in triggering new convection. Furthermore,
CCtot of summer cold pools is also significantly smaller com-
pared to winter cold pools by about 10 %. The differences in
the cold-pool characteristics between the summer and win-
ter regimes are not surprising, as the summer regime is re-
ferred to as the wet season in Barbados and characterized
by frequent deep convection and much larger precipitation
(Brueck et al., 2015). When excluding periods of deep con-
vection (defined by the presence of a radar signal between
4.5 and 8 km), the number of cold pools detected in summer
strongly decreases compared to winter, and the median sum-
mer cold pool also becomes weaker compared to the median
winter cold pool (not shown).

Code and data availability. The BCO data used in the analysis and
other Supplement information that may be useful for reproduc-
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quest. The GOES-16 ABI data are publicly available online at
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ages in Fig. 2 are retrieved from the imagery of the Earth Ob-
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view application (https://wvs.earthdata.nasa.gov, NASA, 2021)
and from the NASA ATOMIC-EUREC4A GOES-16 ABI im-
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Figure B1. Monthly and seasonal distribution of important cold-pool diagnostics. (a) Daily cold-pool frequency, (b) 1T , (c) 1qmin,
(d) 1qmax, (e) CTHmax, (f) MRR Rint, (g) wminSCL and (h) wmax450, and (i) CCtot. The lines represent the 25 %, 50 %, and 75 % quar-
tiles of the respective variables, the shading represents the median± 1 SE, and the points show the average distribution for the 5 winter (w;
December–April) and summer months (s; July–November).
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