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Abstract. Observations of aerosol and trace gases in the re-
mote troposphere are vital to quantify background concen-
trations and identify long-term trends in atmospheric com-
position on large spatial scales. Measurements made at high
altitude are often used to study free-tropospheric air; however
such high-altitude sites can be influenced by boundary layer
air masses. Thus, accurate information on air mass origin and
transport pathways to high-altitude sites is required. Here we
present a new method, based on the source-receptor rela-
tionship (SRR) obtained from backwards WRF-FLEXPART
simulations and a k-means clustering approach, to identify
source regions of air masses arriving at measurement sites.
Our method is tailored to areas of complex terrain and to sta-
tions influenced by both local and long-range sources. We
have applied this method to the Chacaltaya (CHC) GAW sta-
tion (5240ma.s.l.; 16.35° S, 68.13° W) for the 6-month du-
ration of the “Southern Hemisphere high-altitude experiment
on particle nucleation and growth” (SALTENA) to identify
where sampled air masses originate and to quantify the in-
fluence of the surface and the free troposphere. A key aspect

of our method is that it is probabilistic, and for each obser-
vation time, more than one air mass (cluster) can influence
the station, and the percentage influence of each air mass can
be quantified. This is in contrast to binary methods, which
label each observation time as influenced by either boundary
layer or free-troposphere air masses. Air sampled at CHC is
a mix of different provenance. We find that on average 9 %
of the air, at any given observation time, has been in contact
with the surface within 4 d prior to arriving at CHC. Further-
more, 24 % of the air has been located within the first 1.5 km
above ground level (surface included). Consequently, 76 % of
the air sampled at CHC originates from the free troposphere.
However, pure free-tropospheric influences are rare, and of-
ten samples are concurrently influenced by both boundary
layer and free-tropospheric air masses. A clear diurnal cycle
is present, with very few air masses that have been in con-
tact with the surface being detected at night. The 6-month
analysis also shows that the most dominant air mass (clus-
ter) originates in the Amazon and is responsible for 29 %
of the sampled air. Furthermore, short-range clusters (ori-
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gins within 100 km of CHC) have high temporal frequency
modulated by local meteorology driven by the diurnal cycle,
whereas the mid- and long-range clusters’ (> 200 km) vari-
ability occurs on timescales governed by synoptic-scale dy-
namics. To verify the reliability of our method, in situ sulfate
observations from CHC are combined with the SRR clusters
to correctly identify the (pre-known) source of the sulfate:
the Sabancaya volcano located 400 km north-west from the
station.

1 Introduction

Traditionally, high-altitude measurement sites are used to
study the remote atmosphere and the interactions between
the free troposphere (FT) and the planetary boundary layer
(PBL). These sites provide the opportunity to have long-
term in situ observations of the free troposphere with high
time resolution (Collaud Coen et al., 2018) as opposed to
the short duration and inherent transient nature of airborne
measurement campaigns. Observations of aerosol and trace
gases in the FT are of great scientific value in terms of
understanding long-range transport and atmospheric chem-
istry, quantifying background concentrations, and observing
long-term changes in the composition of the atmosphere (Laj
et al., 2009). Nevertheless, it is well known that high-altitude
mountain sites can be influenced by boundary layer air.

The planetary boundary layer is the lowest part of the
atmosphere and is in direct contact with the Earth’s sur-
face. The majority of natural and especially anthropogenic
aerosols and pollutants are emitted at the surface and thus
directly released into the PBL. The concentrations of gases
and aerosols and their residence times depend on the struc-
ture of the PBL. Over land the PBL has a pronounced di-
urnal cycle with deep, well-mixed boundary layers typically
observed during the day and shallow, stable boundary lay-
ers occurring at night. In complex terrain, thermally driven
winds develop (e.g. slope and valley winds; De Wekker and
Kossmann, 2015) during the day and can transport aerosols
and pollutants from valley bottoms to high-altitude sites. Ad-
ditionally, complex mountain meteorological processes such
as orographic lifting can also transport PBL air to high alti-
tude.

Therefore, high-altitude sites can be influenced by local
boundary layer air and free-tropospheric air where the lat-
ter may have undergone long-range transport due to stronger
upper-level winds. This means that observations must be
carefully screened and analysed in synergy with many pa-
rameters to understand the dynamics and diurnal cycle of in-
dividual sites. Consequently, understanding the history of air
masses sampled at mountain-top sites and related chemical
composition is not an easy exercise. Since the chemical and
physical composition of the sampled air masses is, in general,
inherently related to its path through the atmosphere (Flem-
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ing et al., 2012), having good methods to describe the history
of the sampled air masses increases the value of measure-
ments. Under these circumstances, the observations can then
be treated as samples from different parts of the atmosphere
in both the vertical (PBL vs. FT) and the horizontal (short-
range vs. long-range contributions) domain.

Much of the analysis of ground-based atmospheric com-
position observations is accompanied by studies of what is
known as “climatological pathways” with the aim of map-
ping the probability of certain air masses reaching the station
and identifying the sources and processes influencing spe-
cific types of air masses (Fleming et al., 2012). There are
various ways of identifying air mass source regions. A popu-
lar and easy-to-apply approach to identify whether the mea-
sured air mass originates from the PBL or FT is to consider
the presence of specific tracers such as Radon-222 (Grif-
fiths et al., 2014) or the ratio of carbon monoxide to oxi-
dized nitrogen species (CO/NO,; Herrmann et al., 2015).
This tracer-based approach has the limitation that it cannot
easily resolve horizontal source areas and only resolves two
layers in the vertical. Alternative methods to identify source
regions which utilize meteorological observations or numer-
ical models range from simply looking at the local wind di-
rection to single-trajectory analysis, Lagrangian dispersion
models and even chemical transport models. The choice of
method to link the atmospheric composition to the air mass
history largely depends on where the expected sources are.

If the sources are predominately local, using local wind
observations as a proxy for air mass history may suffice, and
this approach has been taken by, for example, de Foy et al.
(2008) and Salisbury et al. (2002). The major weakness of
using in situ wind measurements as an indicator of air mass
history is that we cannot assume that the local measurements
are representative of a larger region or of the synoptic-scale
flow. This is particularly important for regions with complex
topography in which the wind speed and direction at the sur-
face may differ drastically to the wind aloft. Alternatively,
if sources are remote, a low-resolution modelling approach
may be more appropriate to identify air mass history. Such
approaches have been applied by Brattich et al. (2020) at Mt.
Cimone in Italy and by Sturm et al. (2013) at Jungfraujoch in
Switzerland.

Single-back-trajectory models, often driven by low-
resolution meteorological input data, have been widely used
to gain insight into the sampled air mass history at high-
altitude sites (Keresztesi et al., 2020, eastern Carpathians,
Romania; Brattich et al., 2020, Mt. Cimone, Italy; Ghasemi-
fard et al., 2019, Schneefernerhaus, Germany; Bolafio-Ortiz
et al., 2019, central Andes, Chile; Qie et al., 2018, Mount
Tai, China; Ou-Yang et al., 2017, Mt. Fuji, Japan; Chau-
vigné et al., 2016, Mt. Chacaltaya, Bolivia; Brattich et al.,
2015, Mt. Cimone, Italy; Gratz et al., 2015, Mt. Bachelor,
USA; Ou-Yang et al., 2014, Mt. Lulin, Taiwan; Putero et al.,
2014, Askole, Pakistan; Tositti et al., 2013, Mt. Cimone,
Italy; Cheng et al., 2013, Mt. Lulin, Taiwan; and references
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in Fleming et al., 2012). Advantages of this method are that it
is computationally efficient and easy to perform, and for in-
dividual case studies the output is simple to interpret. These
studies primarily consider the horizontal, large-scale flow ob-
tained by the single-trajectory model. This becomes prob-
lematic at high-altitude sites where the influence of the com-
plex topography is known to have a clear effect on the in-
teraction with the convective boundary layer (Serafin et al.,
2018). Another disadvantage of single back trajectories, as
shown by Stohl et al. (2002), is that they do not account for
the filamentation and backward volume growth of the finite
sampled air masses.

Lagrangian dispersion models have also been used to iden-
tify source areas at high-altitude sites (Ubl et al., 2017,
Zeppelinfjellet, Norway; Cécé et al., 2016, Guadeloupe
archipelago, Caribbean; Lopez et al., 2015, Puy de Dome,
France; Sturm et al., 2013, Jungfraujoch, Switzerland; Brun-
ner et al., 2012, Jungfraujoch, Switzerland; Conen et al.,
2012, Jungfraujoch, Switzerland; Hirdman et al., 2010, Alert,
Barrow and Zeppelin; Arctic; and de Foy et al., 2009, Mex-
ico City metropolitan area, Mexico). They differ from single-
back-trajectory models by accounting for the deformation
and stochastic dispersion of air masses due to turbulent mix-
ing and convection (Stohl et al., 2002). A notable downside
of dispersion models, particularly when applied to studies
covering many months, is that they produce a large amount
of output which is quite complicated to understand and in-
terpret. Therefore, additional post-processing and automated,
objective analysis methods need to be applied to this output
to extract the maximum amount of information while ensur-
ing the resulting dataset is user-friendly. One way of post-
processing dispersion model output is to perform a cluster
analysis, where statistical methods can be used to differenti-
ate different source regions.

Cluster analysis is a multivariate technique used to classify
elements into groups in a way that maximizes the similarity
(by a predefined metric) within members of a group while
also maximizing the dissimilarity across groups. Clustering
has been extensively used in studies that aim to classify air
mass history. In the case of single-trajectory studies, the goal
is to group trajectories into ensembles that follow a similar
pathway (Kassomenos et al., 2010, and references therein).
In dispersion models, clustering analysis has been applied
both to classify the retroplume of the particles (e.g. Stohl
et al., 2002) and also to classify the regional footprint of the
particles (e.g. Sturm et al., 2013, and Paris et al., 2010). How-
ever, these studies mostly assume that high-altitude sites are
also background sites and therefore are mostly interested in
the contribution of long-range transport sources. This means
that the meteorological data used to drive the dispersion mod-
els may have low spatial resolution since the local sources
are assumed to be negligible. However, there is still a lack of
classification in the vertical dimension and accountability for
the influence of short- and long-range transport simultane-
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ously, which is of special relevance for locations where short-
range sources are equally relevant to more distant sources.

One such high-altitude site is the GAW (Global Atmo-
spheric Watch) Chacaltaya (CHC) atmospheric research sta-
tion (5240 ma.s.l.; 16.35° S, 68.13° W), located 20 km from
the metropolitan area of La Paz—El Alto but ~ 1.6 km higher
in altitude than the centre of La Paz. For a detailed descrip-
tion of the site see Chauvigné et al. (2019) and Wiedensohler
etal. (2018). Measurements of reactive and greenhouse gases
as well as aerosol optical, chemical and physical properties
are routinely monitored at the station following the GAW-
recommended procedures (Laj et al., 2020). At this station,
in the context of the SALTENA (Southern Hemisphere high-
altitude experiment on particle nucleation and growth) cam-
paign (Bianchi et al., 2021), state-of-the-art instruments that
measure aerosol chemical and physical properties were de-
ployed to complement ongoing long-term observations. The
intensive measurements took place between December 2017
and June 2018 (covering both wet and dry seasons). The
unique location of the station in the under-sampled South-
ern Hemisphere enabled us to study a mixture of pristine air
masses from the Amazon Basin loaded with biogenic emis-
sions, regional background air masses from the Altiplano
perturbed by volcanic activity and marine air masses from
the Pacific Ocean. In addition, strong anthropogenic influ-
ence from the La Paz—El Alto metropolitan area was sam-
pled. This wide range of potential source areas, along with
complex mountain meteorology and highly detailed obser-
vations of the physical and chemical properties of aerosol
and trace gases, means that a comprehensive meteorologi-
cal analysis, beyond what is typically performed for aerosol
measurement campaigns, is required.

The overall objective of this study is to develop and ap-
ply to CHC a new method to identify air mass source re-
gions which is valid for high-altitude stations that are influ-
enced both by local and long-range sources and where the
vertical classification of sources is as relevant as horizon-
tal segregation. An outline and overview of the method is
given in Fig. 1. The first aim of this study is to use a regional
meteorological model (Weather Research and Forecasting —
WRF — model) in combination with a Lagrangian dispersion
model (FLEXible PARTicle dispersion model — FLEXPART)
to create a high-resolution dataset of source areas for CHC at
hourly resolution (steps 1 and 2 in Fig. 1). The second aim is
to develop a new method, based on cluster analysis, to trans-
form the complex, very large and multi-dimensional dataset
into a user-friendly dataset of air mass source regions (steps
3 to 7). The third aim is to document the characteristics of
the identified source areas (clusters), which will enable the
dataset produced here to be applied in forthcoming studies
on the chemical composition measurements made during the
unique high-altitude SALTENA campaign. The fourth and fi-
nal aim is to demonstrate the strength and simplicity of the
classification results from our method, which we do by using
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input: coarse meteo data (CFSv2)

Step 1 WRF high-res. meteo data

Step 2 FLEXPART source receptor
relationship (SRR,.¢)

Step 3 Log-polar  SRR,,..

grid transforma-

tion
SRRG:‘zt

. - gaussian filter
Step 4 Grid cell

pre_processing —quantile transform

- remove low influence cells

Step 5 Iterative
k-means clustering
algorithm

Step 6 Silhouette
scoring

Step 7 Selecting
the optimal
number of clusters

Figure 1. Flowchart describing the method’s steps. The steps are
divided into three groups: modelling, pre-processing and clustering.
SRR refers to the source—receptor relationship (explained more in
Sect. 3).

them to confirm a well-known source of sulfate emissions
that were measured at the CHC station.

The remainder of this study is structured as follows. In
Sect. 2, the meteorological model and the Lagrangian disper-
sion model are described (Fig. 1, steps 1 and 2). The newly
developed clustering method is described in Sect. 3 (steps 3
to 7 in Fig. 1). Additional diagnostics are presented in Sect. 4.
The spatial distribution of dispersion model output is pre-
sented in Sect. 5.1. The relative contributions of the surface,
the PBL and the FT to CHC are described in Sect. 5.2. The
characteristics of the identified source regions are discussed
in Sect. 5.3 and 5.4. An example indicating that the method
works well is shown in Sect. 5.5. A discussion on the re-
sults and recommendations is presented in Sect. 6. Finally,
the conclusions are presented in Sect. 7.
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2 High-resolution meteorological modelling and
backward dispersion simulations

2.1 High-resolution meteorological modelling (step 1)

To generate a high-resolution, gridded dataset of meteoro-
logical variables that can be used to drive a Lagrangian dis-
persion model, we used the Advanced Research WRF model
version 4.0.3 (Skamarock et al., 2019). WRF is a state-of-the-
art, non-hydrostatic, regional numerical weather prediction
model that is used operationally and for research. Here we
perform one 6-month-long continuous simulation starting on
6 December 2017 and ending on 31 May 2018. As the sim-
ulation and subsequent analysis is only 6 months long, this
study provides detailed air mass information for the duration
of the intensive period rather than a climatological descrip-
tion which would require a multiple-year study. Four nested
domains are used (D01-D04), and their locations are shown
in Fig. 2a and c. The outermost and largest domain (D01) has
a grid spacing of 38 km, whereas the innermost and smallest
domain (D04) has a grid spacing of 1 km. Full details of the
domains are given in Table S1 in the Supplement. One-way
nesting is used: the outer domain provides boundary data for
the inner nest, but the inner nest does not provide any feed-
back to the outer domain. To ensure that the long simulation
remains close to reality throughout the 6-month period, the
outer domain is nudged (i.e. analysis nudging) to the bound-
ary conditions every 6 h.

The initial and boundary conditions were taken from the
National Centers for Environmental Prediction (NCEP) Cli-
mate Forecast System Version 2 (Saha et al., 2011, 2014)
with a temporal resolution of 6 h, a horizontal resolution of
0.5° and 64 sigma-pressure hybrid layers. The model topog-
raphy was obtained from the global multi-resolution terrain
elevation data model (Danielson and Gesch, 2011) with a res-
olution of ~ 1 km. We use the following parameterizations:
microphysics is parameterized by the Goddard scheme, cu-
mulus convection is parameterized by the Grell-Freitas en-
semble scheme in DO1 and D02, no cumulus parameteri-
zation is used for D03 and D04, the short- and long-wave
radiation is parameterized by the new Goddard short-wave
and long-wave schemes, the planetary boundary layer (PBL)
physics are represented by the Mellor—Yamada—Janji¢ (MYJ)
scheme, and the land surface model is the Unified Noah Land
Surface Model.

The surface temperature of Lake Titicaca was manually
prescribed to monthly means obtained from Pillco Zol4 et al.
(2019) since values prescribed by WRF were unrealistically
low. This is most likely due to the height of the lake (around
3.8 kma.s.l.) and the assumptions made by WRF when inter-
polating surface temperature of lakes from adjacent sea sur-
face temperature (a similar lake temperature issue is reported
by Valerio et al., 2017).

There are some limitations to the WRF simulation, pri-
marily related to the complexity of the terrain. The 1 km res-
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Figure 2. Overview of the studied region and the WRF model domains. Panel (a) shows the location of the four nested domains (DO1-DO4);
(b) shows the topography in kilometres above sea level (kma.s.l.) of the whole domain; (c) is a zoomed-in version of (a) and also shows the
location of the Chacaltaya station (CHC; 5.2 km a.s.1., blue dot), La Paz—El Alto metropolitan area (LPB; 3.6 km a.s.1., orange dot) and Lake
Titicaca (TCC; 3.9 km a.s.1., blue outline). Panel (d) shows the topography (km a.s.1.) in the area closest to CHC.

olution inevitably smooths the topography in comparison to
reality, which can affect the slope angles and furthermore af-
fect the simulated thermally driven winds. However, temper-
ature and precipitation comparisons with in situ observations
at CHC show reasonable agreement. Figure S1 in the Sup-
plement shows the 6-month time series of the modelled and
observed hourly temperature, daily mean temperature and
daily accumulated precipitation. Using these data, basic error
metrics were computed. For the hourly temperature data, the
mean bias, mean absolute error and root mean square error
are —0.42, 1.35 and 1.73 °C, respectively. For the daily accu-
mulated precipitation, we compiled contingency tables with
different precipitation thresholds and computed the accuracy
(see the Supplement for details of these calculations). For a
threshold of 1 mm, the accuracy (i.e. fraction of correct fore-
casts) is 0.65. Additional evaluation using O and 5 mm thresh-
olds, along with the number of hits, misses, false alarms and
correct negatives, is shown in Table S2. Furthermore, an eval-
uation of the WRF-simulated monthly accumulated precipi-
tation for December and May at a number of stations near
CHC is presented by Bianchi et al. (2021).

2.2 Backward dispersion simulations (step 2)

The FLEXible PARTicle dispersion model (FLEXPART) is
a Lagrangian transport and dispersion model which can be
used for both forward and backward simulations. We used
version FLEXPART-WRF_v3.3.2 (Brioude et al., 2013) to
perform backward simulations and thus to determine the
source regions of air masses arriving at CHC. The FLEX-
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PART simulations were driven using the meteorological out-
put from the 6-month WRF simulation. Output from all four
of the WRF output domains was used, and this was available
at a temporal resolution of 15 min. This high temporal reso-
lution is a clear advantage over using reanalysis data, which
at best are only available once per hour.

In the FLEXPART simulations, we continuously release
20000 particles per hour from CHC from 6 December 2017
until 31 May 2018 and compute their back trajectories for
4d. The particles, passive air tracers, are released in a 10 m
deep layer which extends from 0 to 10 ma.g.1. and over a 2 x
2km square centred around CHC. With the choice of 4d as
the (backwards) simulation time, the average median particle
spends 94 % of its residence time within the domain DO1.

When FLEXPART is run in backward mode, it calculates
the emission sensitivity response function, also referred to as
the source—receptor relationship (SRR), on a user-specified
three-dimensional longitude—latitude—height grid. The out-
put of FLEXPART can be in different units, and here we con-
figure the model so that the source (IND_SOURCE=2) and
the receptor (IND_RECEPTOR=2) are in mass mixing ratio
mode, and therefore the output (SRR) is in units of seconds
(see Table 1 in Eckhardt et al., 2017). We choose mass mix-
ing ratios so that the SRR matrix is not affected by pressure
variations in the 3D domain.

FLEXPART also permits two user-specified nested output
domains with the inner domain closest to the release site (i.e.
the receptor), having a higher resolution than the outer do-
main. We make use of this functionality and specify the first
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FLEXPART output domain to have the same geographic ex-
tent as D03 in the WRF simulation but with the same spatial
resolution (1 km) as D04 in the WRF simulation. Our sec-
ond, outer FLEXPART output domain covers the same region
as DO1 in the WRF simulation and has the same resolution
(9.5km) as D02 in WREF. In the vertical direction, we spec-
ify the FLEXPART output grid to have 30 uniform levels,
each 500 m deep, extending from the surface to 15kma.g.l.
The rationale for using uniform level spacing is explained in
Appendix Al.

FLEXPART also contains options for how turbulence
and convection are included in the simulations. We take
the values of the PBL height, surface sensible heat
flux and the friction velocity directly from the WRF
simulation (SCF_OPTION=1). Turbulence is parameter-
ized using the Hanna scheme (Hanna, 1984) as used in
FLEXPART-ECMWF/GFS (TURB_OPTION=1), and we
assume skewed rather than Gaussian turbulence in the con-
vective boundary layer (CBL=1). Deep convection is also
parameterized (LCONVECTION=1).

3 Pre-processing and clustering of the FLEXPART
output

Here we describe the core of our new method, namely the
log-polar grid transformation (Fig. 1, step 3), the grid cell
pre-processing (step 4), the iterative k-means clustering algo-
rithm (step 5), the silhouette scoring (step 6) and finally the
selection of the optimal number of clusters (step 7). Addi-
tional complementary technical details are presented in Ap-
pendix A.

3.1 Log-polar grid transformation (step 3)

The output from FLEXPART is the source—receptor relation-
ship (SRR), which is related to the particles’ residence time
in the output 3D grid cells. These cells are defined by a reg-
ular longitude (x), latitude (y) and height (z) grid. In addi-
tion to the three spatial dimensions, the SRR has two time
dimensions: the release-time (¢; the time when the particles
arrive at the release location) and the backwards-time (7 ; the
amount of time before the release time, which varies from
0 to 96 h in our case). Thus, the SRR can be written as the
five-dimensional matrix SRRy ;z. The SRR is processed to
remove the t time dimension. This is achieved by summing
over T:

96h

SRR,y; =) SRR, (1)
=0

where the outcome of this step, SRRyy;, is a four-
dimensional array. The t dimension is removed as we pri-
marily want to determine where the particles spent time 4 d
prior to arriving at CHC and not when (during the past 4 d)
they spent it in each location.

Atmos. Chem. Phys., 21, 16453-16477, 2021
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Furthermore, the output SRR is on two nested grids
(Fig. 3a), which means we obtain high-resolution infor-
mation for regions that are near the receptor and lower-
resolution information for more distant locations. The ra-
tionale is that, on one hand, near the receptor, the higher
resolution provides better detail on potential high-influence
sources, for example, in our case, the nearby metropolitan
area of La Paz—El Alto 20 km away. On the other hand, far
away, a low-resolution grid cell suffices since localized po-
tential source influences are diffused. However, specifying
two output grids with different resolution introduces chal-
lenges such as the step change in resolution in SRRy,
(Fig. 3a): as the SRR is related to the residence time and
the number of each particle in a grid cell, smaller cells have
fewer particles than larger cells, and typically particles move
faster through smaller grid cells than larger grid cells, result-
ing in a smaller residence time and SRR, and thus a sharp
boundary in the SRR field exists.

To overcome these limitations and more importantly to
dramatically reduce the number of grid cells and thus the data
volume, we propose the use of a log-polar transform (Sar-
vaiya et al., 2012) of the coordinate system (Fig. 1, step 3).
The new log-polar grid has grid cells which gradually in-
crease in size as the distance from the receptor increases with
no sudden step changes to the resolution. This is also why in
Fig. 3b, the SRR does not decrease significantly as the dis-
tance from the station is increased (as it does in Fig. 3c).
Furthermore, this also implies that the underlying transport
patterns are more readily distinguished using the SRR on the
log-polar grid than on the equirectangular grid. The regrid-
ding process is complex as we had to devise a method that
was both computationally efficient and accurate. A detailed
explanation of this regridding procedure is given in Sect. A2
of the Appendix and visually illustrated in Fig. Al. The re-
sults of the regridding process are shown in Fig. 3b, which
shows a smooth evolution of the SRR with no boundaries evi-
dent at the intersection between the two original nested grids.
As aresult of the grid transformation, we are left with 33 480
log-polar grid cells defined by 36 6 wedges, 31 r cylinders
and 30 z levels: SRRy, ;. This is 328 times smaller than
the original number of grid cells. In terms of data volume,
this dramatically reduces the data volume from 186.6 GB
(SRR,,;;) t0 0.6 GB (SRRy,; see Table S3).

3.2 Grid cell pre-processing (step 4)

In general, clustering algorithms benefit from pre-processing
of the input dataset, which here is the SRRy, ;; matrix. This
pre-processing modifies the dataset for the sake of group-
ing the grid cells into clusters — that is assigning each grid
cell to a group. In our case, we apply three pre-processing
procedures (Fig. 1, step 4): Gaussian filter smoothing, quan-
tile transform and filtering out non-relevant elements. In this
pre-processing the four-dimensional SRRy, ;; matrix is also
stacked into a two-dimensional SRR, matrix. Specific de-
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tails about and additional justification for using the Gaus-
sian filter smoothing, quantile transform and filtering are pre-
sented in the Appendix, Sect. A3. As a side note, it is impor-
tant to highlight that the processed SRR values (SRR:O,) are
only used to group the grid cells and not to determine the
statistics of each resulting cluster. Instead we combined the
cluster numbers with original, non-processed data (SRR, ;)
to obtain the results that we present in Sect. 5.

3.3 The k-means clustering (steps 5, 6 and 7)

The next step (Fig. 1, step 5) consists of clustering the
SRR,; i.e. the goal is to divide the SRR/, matrix into k
number of groups (clusters), whose individual grid cell SRR
values have a similar evolution in the ¢ dimension. To be
clear, the overall objective is to cluster 3D grid cells in the
domain based on the SRR contribution that they have over
time (#) as opposed to clustering the spatial patterns (snap-
shots), which is the approach taken by Sturm et al. (2013).

In order to perform a cluster analysis on this dataset, we
need to define the elements that will be clustered or grouped,
the number of clusters, and the features of each element used
to determine the group identification. The 33 480 log-polar
grid cells are taken to be the elements to be clustered. The el-
ement’s features are the SRR intensities at each release time
(although called the release time, it is indeed the arrival time
at the destination, i.e. the receptor). There are 4248 features
for each element, one for each of the hourly releases from
6 December 2017 to 31 May 2018.

We use the k-means (Lloyd, 1982) clustering algorithm
due to its generalized use, speed and adequate performance
with a large number of elements and medium-sized number
of clusters. Additional details on how the k-means algorithm
is applied are presented in Appendix A4. The result of the
k-means clustering is that each grid cell in the 3D log-polar
grid is allocated a cluster number.
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Figure 4. Average silhouette score for the iterative k-means clus-
tering algorithm as a function of number of clusters (from k =2 to
24). Vertical red bars and points show the selected number (6 and
18) of clusters.

However, the k-means algorithm does not automatically
select the number of clusters k, and there is not a right an-
swer for the number of clusters. Too few clusters (e.g. 2)
means that no meaningful information is obtained, whereas
too many clusters (e.g. 100) is impractical and risks overfit-
ting. The optimal number of clusters is usually determined by
trying a variety of options and calculating quantitative mea-
sures of how similar an element is to its own cluster com-
pared to other clusters.

Here we try 2 to 24 clusters and use the silhouette
score (Rousseeuw, 1987), which ranges from —1 to +1, to
determine the optimal number (Fig. 1 step 6). Large posi-
tive values of the silhouette score indicate that the element is
well matched within its clusters and poorly matched to other
clusters, while a low or negative value implies possible mis-
classification. The overall silhouette score is obtained by av-
eraging over the scores for each individual element, and in
our case we do a weighted average based on the total SRR of
each element so that cells with a high density have a bigger
influence on the overall score. The resulting silhouette scores
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for 2 to 24 clusters are shown in Fig. 4. We select the num-
ber of clusters based on three considerations: firstly and pri-
marily by identifying localized maximums in the silhouette
score, secondly by considering the applicability to our scien-
tific question, and lastly by accounting for practical aspects
(e.g. very large number of clusters are not easy to analyse
and visualize).

Based on the silhouette score (Fig. 4), we first select six
clusters as this is a clear local maximum and a suitable num-
ber to identify the direction from which air masses approach
CHC. In addition it is easy to analyse and interpret. However,
this likely lacks details, and in our case, we are interested in
the air mass footprint in terms of not only their direction from
CHC but also the distance from the station and the vertical
heights. Therefore we are also interested in a solution with
more descriptive clusters. Therefore, in addition to k = 6, we
also chose the next local maximum in the silhouette score,
which is k = 18 clusters. The 18-cluster solution adequately
describes the data while maintaining a straightforward inter-
pretation. Localized maximums in the silhouette score also
exist for k =21 and k =23 clusters. However, we perform
our detailed analysis using 18 clusters rather than 21 or 23
clusters as it is more practical to work with a smaller number
of clusters. To ensure the 6 clusters can be directly related
to the set of 18 clusters (i.e. share the same boundaries), we
first create the 18 clusters and then perform a second round
of clustering (starting from the 18 clusters) to obtain the 6
clusters. The 6 clusters are subsequently referred to as the 6
main pathways following the terminology used by Fleming
et al. (2012).

4 Additional diagnostics and data

In order to understand and categorize air masses that have
been in contact with the surface (where the emissions occur),
we define the surface SRR percentage influence:

SRRurface
SsRR = —————— % 100, 2
SRRtotal

where the SRR is equal to the theoretical total residence
time of the simulation expressed in seconds (4 d =345 600 s).

In addition to air masses which have been influenced by
the surface, we are also interested free-tropospheric (“clean’)
air masses, which are those that originate and remain above
the boundary layer (BL). For this reason we also calculate
the pseudo-BL influence:

SRR 5km
PBLY,p = 12K o 10, 3)
SRR SRRtotal
where
1.5km
SRR.i5km= Y SRRg.. )
z=0
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Using the pseudo-BL influence allows us to calculate the
free-tropospheric influence simply as FTsgr = 1 — PBLggg.
Thus the percentage of air not influenced by the lowest
1.5km is assumed to represent the free troposphere (FT).
A pseudo-boundary layer with a constant depth of 1.5km
also means that we neglect the diurnal variation in the PBL
height. We make this approximation as due to our com-
putational procedure, the specific depth of the PBL is lost
when transforming the SRR output into log-polar coordi-
nates. The choice of 1.5 km is motivated by previous studies
that have quantified PBL depth in nearby regions. For ex-
ample, Carneiro and Fisch (2020) analysed radiosonde and
remote sensing data from the GoAmazon project (Martin
et al., 2016) and show that the typical minimum PBL height
is 250m, and the deepest PBLs occur during daytime in
the dry season and are 1.5km deep on average. The global
study by von Engeln and Teixeira (2013), based on reanaly-
sis data, shows that PBL heights are somewhat deeper near
CHC than in the Amazon and typically range between 500 m
and 1.5 km. Therefore, the real PBL will usually be similar
in depth or shallower than our value of 1.5km. This means
using the pseudo-BL depth will likely over-estimate the influ-
ence of PBL air masses and underestimate the FT influence.

When referring to the SRR percentage influence of a clus-

ter, for simplicity we use
SRR
SRR [%] = — x 100. (5)
SRR otal

This means that for every time step of the FLEXPART
simulation, the sum of all the SRR cluster values adds up
to SRRya1- In practice this theoretical value is not always
achieved since inevitably a very small fraction of the parti-
cles leave the outer domain (DO01) before the end of the 4d
simulation. This also implies that for some time periods, the
sum of the entire cluster might not add up to 100 %.

In order to describe the land use characteristics of the ge-
ographical areas that the resulting clusters and main path-
ways originate from, we make use of the World Wildlife
Fund (WWF) terrestrial ecoregions (TERs; Dinerstein et al.,
2017); WWF marine ecoregions (MERs; Spalding et al.,
2007) classification scheme; and two extra regions (EXRs),
namely the Lake Titicaca and the South Atlantic ocean re-
gions, that we add to fulfil the domain. In total, 37 differ-
ent ecoregions exist in the area covered by the largest WRF
model domain. The advantage of using these regions is that
they are well defined and described in the literature, do not
depend on arbitrary political borders, and are defined con-
sidering regions that have similar ecosystems and therefore
similar potential emission signatures. Furthermore, the re-
gions are also nested within biomes that provide a more gen-
eral picture. Within our outermost domain (DO1), 13 different
biomes are present.

Sulfate mass concentrations measured at the CHC station
from March to May 2018 are used in this study to illustrate an
example application of our clustering methodology. The aim
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of this example is to show that our new method can identify
the main source of the high sulfate concentrations measured
at CHC. A very likely source of this is degassing from nearby
volcanoes, which was observed at the same time. The sul-
fate dataset is obtained using the quadrupole aerosol chemi-
cal speciation monitor (Q-ACSM, Aerodyne Research Inc.),
which is able to routinely characterize non-refractory submi-
cron aerosol species such as organics, nitrate, sulfate, ammo-
nium and chloride (Ng et al., 2011). Because of the low atmo-
spheric pressure, a 130 pm diameter critical orifice was used
in order to retain the normal sample mass flow rate (Frohlich
et al., 2013). In addition, inlet flow and mass calibration (us-
ing ammonium nitrate and ammonium sulfate as standards)
were accomplished to guarantee optimal instrumental perfor-
mance and mass quantification. The instrument’s time reso-
lution was 30 min. This sulfate time series was then corre-
lated to the SRR time series of both the 18 clusters and the 6
main pathways.

5 Results

We now present the results. First in Sect. 5.1 we present
an overview of the mean SRR horizontal distribution. In
Sect. 5.2 we quantify the contribution of the surface, pseudo-
PBL and FT sources to the air masses measured at CHC. In
Sect. 5.3 the characteristics of the 6 main pathways are pre-
sented before the more detailed analysis of the 18 clusters
is shown in Sect. 5.4. Finally, in Sect. 5.5 we show one ex-
ample of how our clustering results can be combined with
measurements to identify source areas.

5.1 Mean SRR spatial distribution

Before the clustering results are presented, we first give a
brief overview of the 6-month average, vertically integrated
SRR on the log-polar grid and its spatial distribution (Fig. 3).
The average SRR is not uniformly distributed, even when
similar horizontal ranges are considered. Two distinct large-
scale areas exist with high SRR values. The first of these is
the lowlands of Bolivia to the south-east and east of CHC,
and the second is the lowlands of Peru to the north-west
as well as parts of the Pacific. These two distinct areas
are divided by the Andes (see Fig. 2b), which run approxi-
mately north—south and act as a barrier. The presence of the
steep topography is also why areas of low SRR are identi-
fied in northern Bolivia; the easterly winds in this region are
blocked and deflected by the topographic barrier, preventing
air masses from these regions from easily reaching CHC.
The inset in Fig. 3b also shows the average influence that
La Paz—El Alto has on CHC. The average, vertically inte-
grated SRR values in this area are surprisingly low and much
lower than other areas at a similar radial distance from CHC
(~ 20 km). For example, the region 20 km north-east of CHC
has average, vertically integrated SRR values that are more
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than double those found in the La Paz—FEl Alto area. Figure 3b
only gives a very basic overview of where air masses that af-
fect CHC originate from. At this point, before having clus-
tered the SRR, the vertical distribution and temporal evolu-
tion of air masses influencing CHC cannot easily be deter-
mined or visualized.

5.2 Relative contribution of the surface, PBL and FT to
air sampled at CHC

As stated in the introduction, high-altitude mountaintop sites
are often used in an attempt to sample free-tropospheric air.
In this section, we use the SRR output from FLEXPART
to determine the relative influence of the surface, PBL and
FT air on the total sampled air mass at CHC over the 6-
month period and the diurnal pattern of this influence. Our
method is probabilistic and, for each observation time, de-
termines the percentage of the sampled air mass influenced
by the PBL or FT. Figure 5a shows frequency histograms of
the percentage influence of the “surface” and of a pseudo-
PBL (see Egs. 2 and 3 for definitions) for each hour. There
is a strong linear correlation between the surface and PBL
influence (slope =2.38 and % = 0.9), which implies that the
1.5km deep pseudo-boundary layer is in general within the
well-mixed boundary layer.

The median influence of the surface is 9 %, meaning that
on average 9 % of the air sampled at CHC has been in contact
with the surface in the last 4 d. In terms of the pseudo-PBL,
on average 24 % of the sampled air masses represent PBL air.
Indirectly this means that approximately 76 % of the air sam-
pled at CHC can be considered representative of the FT. Note
that this does not mean 76 % of observation times are repre-
sentative of the FT; it should be interpreted as, in an average
simulation hour, 24 % of the measured air mass represent the
PBL and the remainder the FT. This is a key strength of our
method; it can determine at any given time what percentage
of the sampled air mass arrives from different locations. An
additional interpretation of the results shown in Fig. 5a is
to consider the percentage of time when there is no influence
(0 % on the x axis) from the surface or pseudo-BL, i.e. where
there is purely free-tropospheric air masses. This situation is
never detected, which indicates that CHC is rarely represen-
tative of purely FT air. However, this is partly an artefact of
the method employed here as all particles are forced to arrive
at the surface (10 ma.g.1.) at the station.

Figure 5b shows the diurnal cycle of the surface influence
for each day of the 6-month study period, whereas Fig. 5c
shows the average diurnal cycle. The largest positive values,
indicative of a large surface influence, occur during daytime.
The peak emerges at 10:00 local time (panel c) and hap-
pens almost every day (panel b). The duration of the high
surface influence increases throughout the campaign, with
higher values of surface influence extending later in the af-
ternoon in April and May. This gradual increase in the sur-
face influence during the campaign might be explained by the
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Figure 5. Panel (a) is a frequency histogram showing the percentage (and residence time in hours — upper x axis) of air sampled at CHC
during each modelled hour that was in contact with the surface (SgrR, blue; Eq. 2) or located within the pseudo-PBL (PBLéRR, orange;
Eq. 3). Panel (b) shows the surface influence (as a residence time) for every day of the modelled period as a function of local time. Panel (c¢)
shows the diurnal mean and median as well as the 5th, 25th, 75th and 95th percentile ranges of the SRR surface influence. The left y axis is

the residence time, and the right y axis is the percentage influence.

transition towards the dry season, when clear-sky conditions
become more frequent, increasing insolation periods, which
in turn favour deep well-mixed PBL structures.

5.3 The six main pathways

In this section we describe the results from clustering the
SRR log-polar cells into six groups. We call these six groups
the main pathways (PWs) since they tend to start near the sta-
tion and reach far away from it as opposed to the 18 clusters
that occupy more localized regions. Also, the limits of many
of these are delimited by the Andean plateau. Furthermore,
we label each cluster based on their “clock direction” from
CHC and append them with the abbreviation PW to distin-
guish them from the 18 clusters. For example, cluster label
“03_PW?” refers to the cluster whose centroid position is lo-
cated east from the station.

In Fig. 6a and b we show the 6 main PWs along with the
18 cluster centroids. The pathways are the shaded coloured
regions and contain 2 to 4 clusters from the 18-cluster group-
ing. The 03_PW is located geographically in the lowlands to
the east of the station, occupying the biomes 1, 2, 6 and 9,
which in general are tropical forests and grasslands (Fig. 6e
and f).
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Cluster 05_PW originates from the south of the station
in the altiplanic (montane grass and shrubland, biome 4)
and lowland (subtropical dry broadleaf, biome 6) regions.
Horizontally, it follows the Altiplano plateau and its east-
ern slopes to the station. The cluster 07_PW comes from
the south-west, and most of its area is located above the
Pacific Ocean and coast (biomes 3, 5, 7 and 8). Cluster
09_PW comes from a relatively short distance, and it occu-
pies the altiplanic biome 4, Lake Titicaca (13) and two Pa-
cific biomes (5, 8). The cluster 11_PW comes from the north
and north-west. It occupies the lowlands, Altiplano and the
Pacific coast, i.e. biomes 1, 4 and 11. As it gets closer to
CHC, cluster 11_PW is located higher than 12_PW and thus
goes above 12_PW. Finally, 12_PW comes from the low-
lands north of the station and is contained within biome 1
(tropical broadleaf forest). Additional information contain-
ing the pathway boundaries and their spatial SRR distribution
at different z levels is shown in Fig. S9.

In Fig. 7a to d, we respectively describe the pathways’ cen-
troids in terms of their height above ground, height above sea
level, surface influence (Ssrr; Eq. 2) and SRR percentage in-
fluence. In general, the farther the centroid is from CHC, the
higher above ground level its centroid location is. The same
pattern is observed for their height above sea level; however,
if the location of the centroid is not too far away and above a
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Figure 6. The shading in (a) and (b) shows the horizontal extent of the six main PWs. For easier visualization we only shade grid cells which
have SRR values in the top 80 % for each cluster. Each cluster centroid is marked with a disk (short range), square (short-medium range),
triangle (medium range) or pentagon (long range) locator. The colour of each region is related to the main pathway they belong to (03_PW:
yellow; 05_PW: purple; 07_PW: green; 08_PW: orange; 11_PW: pink; and 12_PW: teal). The dashed black line corresponds to a height of
3.9kma.s.l. and encircles the Altiplano plateau. Panel (b) corresponds to the region inside the red rectangle in (a). Panels (c¢) and (d) show
the horizontal location of the 18 clusters. The colour is related to their distance range from CHC, and the hatch distinguishes each cluster
independently. Panel (d) corresponds to the region inside the red rectangle in (c). The colours, both for the centroid markers and the shaded
areas, differentiate the distance range from CHC (SR — short range, SM — short-medium range, MR — medium range and LR — long range).
The hatch patterns distinguish the area of each of the 18 clusters. Panels (e) and (f) show the biomes as described in Sect. 4 and are shown
to compare the area of the clusters and pathways to the underlying biome. The resulting area overlaps between each cluster and biome are
shown in Fig. 9. Figure S3 is similar but shows the ecoregions rather than the biomes.
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location where the ground height is considerably lower than
CHC, then the centroid location is located below the lin-
ear trend, e.g. 03_PW and 12_PW. In terms of their Ssgrg,
a decreasing trend is observed; in other words, the farther
the centroid, the lower the influence from the surface. There-
fore, 12_PW is highly influenced by its contact with ground
(62 %; Figs. 7 and S2), while 07_PW is almost unperturbed
by the surface (8 %). Finally, the SRR influence of each path-
way seems to be uncorrelated with the distance from CHC.
Pathway 03_PW has the highest influence over CHC with a
share of 29 %. This is in agreement with previous studies at
CHC (Chauvigné et al., 2019), where air masses from the
Amazon were identified as the major contributors during the
wet season (DJFM; our modelling period covers DIFMAM).

Finally, in Fig. 8, we show the temporal influence of
each of the pathways. We quantify the influence in percent-
age of each pathway by dividing the pathway’s SRR val-
ues by the theoretical total residence time of the simulation,
96 h x 3600s. Note again that the sum of the influence for
all six pathways shown in Fig. 8 does not always sum to
exactly 100, which is due to particles leaving the domain.
A clear change in the influence pattern at the beginning of
May is seen: on one hand, the influence of pathways 03_PW
and 05_PW and to a lesser extent 12_PW becomes almost
negligible. On the other hand, pathways 07_PW and 08_PW
increase their influence. This is consistent with Chauvigné
et al. (2019), where it was shown that during the wet season
(DJFMA) air masses from the lowlands and the east-south-
east tend to have a bigger influence on CHC. In our case,
12_PW and 03_PW are clearly lowland pathways, while
05_PW has a mixture of Altiplano and lowland influence
that, nonetheless, comes from the south-west and therefore is
mostly favoured during the wet season. The pathway 11_PW
does not present a clear change during the 6-month period.
Finally, visual inspection shows that the influence of each
pathway varies on a timescale of 1 to 2 weeks. We will fur-
ther develop this point when focusing on the detailed 18 clus-
ters (Sect. 5.4).

5.4 The 18 clusters

In the previous section, we provided a general picture of the
air masses that influence CHC by using the six pathways.
However, for an in-depth description, we now focus on the
more detailed 18 clusters. We have subdivided these 18 clus-
ters into 4 subgroups based on their horizontal distance from
CHC: short range (SR), short-medium range (SM), medium
range (MR) and long range (LR) for distances ranging from
0 to 100, 100 to 300, 300 to 800 and > 800km, respec-
tively. Furthermore, we have labelled each cluster based on
their distance range along with their “clock direction” from
CHC. For example, cluster label “09_MR” refers to the clus-
ter whose centroid position is located west from the station
at a distance between 300 and 800 km. As done before, we
first describe the clusters in terms of their horizontal loca-
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tion, then their vertical centroid properties and finally their
temporal evolution. In Fig. 6¢ and d, we show the clusters’
geographical location along with a reference to the biomes
that they occupy in space (Fig. 6e and f). Additional infor-
mation containing the clusters’ boundaries and their spatial
SRR distribution at different z levels is shown in Fig. S1.

To further quantify the superposition of clusters and
biomes presented in Fig. 6e and f, in Fig. 9 we show a heat
map of the percentage of area that each cluster and biome
share. For example, the geographical area of cluster 02_MR
is split between the tropical and subtropical moist broadleaf
forests (biome 1, 56 %), the tropical and subtropical grass-
lands, savannas and shrublands (biome 2, 28 %), the tropical
and subtropical dry broadleaf forests (biome 6, 10 %), and
the flooded grasslands and savannas (biome 9, 6 %). In gen-
eral, there is a clear split between clusters located north-east
(i.e. clock direction of 11 to 05) and south-west (clock direc-
tion of 05 to 11) from the station. The first are located in the
generally more tropical and humid lowland biomes (1, 2, 6,
9), while the latter are located in drier altiplanic biomes (4,
13) and pacific biomes (3, 5, 7, 8, 10, 11, 8).

In Fig. 10a to d, we respectively describe the clusters’ cen-
troids in terms of their height above ground, height above
sea level, surface influence (Ssgr; Eq. 2) and SRR per-
centage influence. In general, they follow the same patterns
that we described for the six pathways with the exception
that there are more clusters below the CHC station’s height
a.s.l. (Fig. 10b). These clusters, namely 02_SR, 12_SM and
03_SM, are located close to CHC in the lowlands located
north and north-east from the station.

Specifically, all of the short-range clusters’ centroids are
below 2kma.g.l. and below 5.2kma.s.l. (Fig. 10a and b),
which is below the CHC station height (5.2kma.s.l.). Fur-
thermore, these clusters are in close contact with the surface
since their Ssrr (Eq. 2) is greater than 50 % (Fig. 10c).

The short-medium-range clusters’ centroids are between
2.4 and 2.6 kma.g.l. However, their height a.s.l. varies from
4.1 to 6.1 km. This is due to clusters coming from both the
Altiplano to the south-west and the lowlands to the north-east
of the station. In general, only one-third of these clusters’ air
masses are below 1.5 km (Ssrr), and thus these clusters in-
clude notably more influence from the free troposphere than
the SR clusters.

The medium-range centroids are between 3.2 and
6.8 kma.g.1l. This variance is mostly proportional to the dis-
tance from CHC (Fig. 10a), with clusters 04_MR and 05_MR
being slightly below the rest due to their location in the
lowlands. Their height above sea level varies from 6.1 to
7.1km (Fig. 10b). In terms of their Ssrgr, these clusters
vary from 7 % to 20 %. These values are approximately in-
versely proportional to their centroid distance from the sta-
tion (Fig. 10c).

Finally, for the long-range subgroup, the far distance of
their clusters’ centroid from CHC is reflected in their mean
height a.g.1. of 8.0 km, mean height a.s.l. of 8.4 km and their
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Figure 7. Centroid properties for each of the main PWs. Panel (a) shows the median height above ground level of each cluster, while (b)
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Figure 8. Time series of the SRR [%] influence for each of the six main PWs from 6 December 2017 until 31 May 2018.

low mean Ssgr of 0.7 %. Furthermore, due to this high al-
titude and low influence from the surface, air masses arriv-
ing from these clusters are likely to present free-troposphere
characteristics. These clusters are all located west of the sta-
tion (clock direction 07-10).

The temporal evolution of the clusters is shown in Figs. 11
and 12. All clusters within the short-range subgroup show a
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high degree of temporal variability (Fig. 11a and b). Cluster
02_SR presents a high variability in frequency, which upon
further analysis (via Fourier transform; Fig. S4) is shown to
be a clear diurnal pattern. However, this pattern does not hap-
pen every day (Fig. S5) but in 81 out of the 176 modelled
days (46 %). During these days, the peak happens in the early
afternoon (13:00 local time).

Atmos. Chem. Phys., 21, 16453-16477, 2021
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The cluster 04_SR is highly variable as well; however it
does not present a diurnal pattern (Fig. S4), and its variation
is similar to that of 05_MR, probably due to the fact that both
clusters belong to the same pathway. Cluster 07_SR does
present a sharp diurnal pattern in 41 (23 %) out of 176 mod-
elled days (Fig. S6), peaking at 11:00 local time. We con-
jecture that the peak time difference between 02_SR (13:00

Atmos. Chem. Phys., 21, 16453-16477, 2021

local time) and 07_SR (11:00 local time) is due to the dif-
ferent land type; 02_SR originates from the high-humidity
biome 1 (tropical and subtropical forest; Fig. 6f), whereas
07_SR originates from the less humid biome 4 (montane
grasslands). This difference would entail different thermal
inertia, different diurnal cycles, and partitioning of the sensi-
ble and latent heat fluxes and thus a different boundary layer
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evolution. Cluster 07_SR is of particular interest since in-
tense anthropogenic emission sampled at CHC would most
likely be generated in this highly populated area. Further-
more, the close contact of cluster 07_SR with the surface and
its diurnal variability favour transport of emissions to the sta-
tion during the day, when PBL air from La Paz and El Alto
is advected upslope by thermally driven winds. The cluster
10_SR, which originates close to Lake Titicaca, presents a
diurnal pattern in 63 (36 %) out of 176d, peaking at 08:00
local time (Fig. S7). We conjecture that this early-morning
peak is related to the lake breeze circulation that devel-
ops due to the temperature difference between land and the
lake. The average surface temperature of the lake, obtained
from Pillco Zola et al. (2019), is 10 °C and does not have a
diurnal cycle. At 08:00 local time, the lake’s surface tempera-
ture is higher than the surroundings, favouring a land breeze
(airflow from land to the lake) near the surface and ascent
over the lake. The return flow, near the top of the BL, poten-
tially advects air masses from the lake to CHC.

The cluster 11_SR does not present a diurnal variation
(Fig. S4), and its influence seems to be mostly driven by the
medium-range cluster 11_MR (Fig. 12). Cluster 12_SR does
present a diurnal pattern (Fig. S8) in 48 d out of the 176 mod-
elled days (27 %), with a peak around 10:00 local time. This
earlier peak, in comparison to 07_SR, is most likely due to its
close location to CHC (the closest one, 14 km) so that early-
morning irradiation would create favourable conditions for
up-slope winds.

The SM, MR and LR clusters’ temporal variability is
shown in Figs. 11c and d and 12a to d. The power spectra of
the SRR intensity for these clusters are shown in Fig. S4 and

https://doi.org/10.5194/acp-21-16453-2021

are between 1 and 2 weeks except for 08_SM and 12_SM,
which, in addition, also show a small diurnal variability.

The prevalence of some short-medium-range clusters
changes during the 6-month period. Clusters 03_SM,
12_SM, 02_MR, 04_MR and 05_MR occur regularly from
December (wet season) to April (transition season) but cease
influencing in May (dry season). In contrast, the influence of
clusters 06_SM, 11_MR and 10_LR do not change substan-
tially during the 6 months, whereas the influence of clusters
08_SM, 09_MR, 07_LR and 08_LR increases in May.

Finally, in Fig. 13 we present a quantitative summary of
the 18 clusters’ centroid properties along with their average
SRR influence. Furthermore, we also link each of the 18 clus-
ters to their main pathway. On average, there are three clus-
ters per pathway and at least two distinct distance ranges.
Furthermore, the clusters within each pathway are heteroge-
neous in position, surface influence and age, which supports
the idea that further insight into the air mass transport pat-
terns can be attained by further subdividing the pathways.

5.5 An example application: sulfate from volcanic
degassing

This section presents a proof of concept for our newly de-
veloped method to identify source regions of air sampled
at CHC. We use in situ observations of particulate sulfate
at CHC taken with a Q-ACSM instrument together with the
results of our air mass history clustering analysis presented
above to identify the source of the emissions. During March
and April, satellite imagery showed that while the Ubinas
volcano was not degassing, the Sabancaya volcano, located
400 km WNW from CHC, was emitting, and thus there was
a clear, known, almost point source of particulate sulfate. As
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Figure 12. Time series of the SRR [%] cluster influence (similar to Fig. 11). Panels (a) and (b) show the MR clusters. Panels (¢) and (d)
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Figure 13. Properties of the 18 clusters (nc = 18). The short name’s digits refer to the clockwise direction of the centre of mass of each
cluster. The letters refer to the range: SR — short range, SM — short-medium range, MR — medium range and LR — long range. The SRR [%]
column describes the average contribution of each cluster. We also show the distance from CHC, height above ground and height above sea
level of each cluster’s centre of mass. Furthermore, Sl;ﬁﬁ& [%] shows the ratio between the SRR below 1.5 km and the SRR summed
over the full vertical column (SRRq,1). The age column shows the weighted median time (in hours) required by the air masses to arrive from
the respective cluster to CHC. The last two columns describe the results of clustering the 18 clusters into 6 clusters (main pathways, nc = 6).
The digits also refer to the clockwise direction. The last column adds up the SRR [%] of the cluster belonging to each main pathway. The

colours in the first column correspond to the six pathways and associated colours shown in Figs. 6a and b, 7, and 8.
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there are no other comparable strong point sources of partic-
ulate sulfate in the domain of interest, we assume that when
high levels of particulate sulfate were measured at CHC, the
air mass passed through the area near the volcano. Therefore,
there should be a high correlation between the time series of
sulfate and the SRR time series for clusters originating near
the volcano.

To determine if this is the case, we calculated the “Pear-
son” correlation coefficients for all available measurements
of sulfate from the Q-ACSM to the SRR time series of each
of the 18 clusters and all of the 6 pathways which are shown
in Fig. 14a.

The cluster and pathway with the highest coefficients are
09_MR (0.40) and 08_PW (0.42), and both correlations have
a pvalue < 0.001. The horizontal locations of this cluster and
pathway are shown in Fig. 14b, and their corresponding time
series are shown in Fig. 14d. The time series for the sul-
fate measurements is shown in Fig. 14c. The correlation in
combination with either the simplified (6 pathways) or the
specific (18 clusters) clustering scheme correctly assigns the
source region to the location of the degassing Sabancaya vol-
cano.

The coefficients from the pathways are quite clear; the
highest value of 0.42 is at least twice as high as the next can-
didate, 07_PW. This clearly distinguishes 08_PW as the best
candidate for the source of measured sulfate. The 18 clusters
also assign the highest coefficient value correctly to 09_MR.
However, 10_SR, 11_SR and 08_LR all have similarly high
correlation coefficients. Therefore, while the results from 18
clusters are better at pinpointing the source region of sulfate,
other regions also appear as plausible candidates, so there is
a risk of overfitting when too many regions are considered.
This may be a result of these source regions being entan-
gled in terms of their temporal influence over the station.
For example, in this particular case, the high correlation of
10_SR, 11_SR and 08_LR could be attributed to the fact that
air masses that travel through the region of the volcano also
have a time residence in the regions where 10_SR, 11_SR
and 08_LR are located.

This example shows that the clustering scheme is success-
ful in identifying regions in its simplified version (6 path-
ways) and also in its more detailed version (18 clusters), al-
though care must be taken when drawing conclusions so that
we do not overfit to the source regions. Finally, it should be
noted that only one example is presented here. Future work
will include the extension to additional case studies, for ex-
ample, comparing the clusters to measurements of black car-
bon.

6 Discussion and recommendations
Previously, we described the characteristics and location of

the 6 pathways and 18 clusters and related this to the surface
type (biomes). It is also relevant to consider how the pathway
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positions and time series relate to typical meteorological pat-
terns.

During the austral summer, the Intertropical Convergence
Zone (ITCZ) migrates south, coinciding with the decrease
in the meridional gradient temperature and the associated
southward shift of the westerly subtropical jet stream. At the
same time, deep convection starts to develop especially in
the central part of the continent. This favours the expansion
of the equatorial easterly winds, and thus a weak mean east-
to-west flow in the middle and upper troposphere is estab-
lished (Garreaud et al., 2003). This east-to-west flow is well
captured by 03_PW (03_SM, 02_MR and 04_MR), which is
strong in DJFMA.

At the same time, the expansion of the trade winds also
generates the South American low-level jet (SALLJ), which
brings moisture from the Atlantic and the Amazon basin first
to the eastern slopes of the Andes and then turns in a north-
to-south fashion towards the southern part of the continent.
It is known that the SALLJ is also responsible for bring-
ing moisture to the Altiplano plateau since part of this flow
is channelled into/goes over the plateau (Insel et al., 2010).
This pattern correlates well with 12_PW (12_SR, 02_SR and
12_SM), which brings low-altitude air masses from the east-
ern slopes of the station. The pathway is also strong during
DJFMA, and its influence is diminished in May. It is impor-
tant to note that 03_PW and 12_PW do not necessarily influ-
ence the station synchronously.

During the austral winter, the ITCZ migrates north, and
the subtropical westerly jet stream moves north, reaching up
to 20° S (Garreaud et al., 2003). This creates an upper-level,
large-scale westerly flow that favours air masses from the
Pacific—Altiplano region. This coincides with the increment
of the influence of both 07_PW (06_SM, 07_LR and 08_LR)
and 08_PW (specially 08_SM and 09_MR). The first brings
long-range subsiding air masses from high up in the tropo-
sphere (7.7kma.s.l.), while the second advects dry air from
Altiplano at a low level (2.5kma.g.l.). Both of these clus-
ters are present during the dry season and reach maximum
intensity in May.

The connections of pathways 05 and 11 to the general
atmospheric dynamics are not immediately evident. Path-
way 05_PW comes from the south and is strongest between
December and March and has a low centroid height a.g.l.
(3km). This could be linked to the development of a strong
South Atlantic Convergence Zone starting in the eastern
slopes of the Altiplano at latitudes of around 20° that would
pull surface air from the south. On the other hand, 11_PW,
which consists of three clusters, originates from both from
the Amazon and the Pacific (Fig. 9). These multiple sources
areas, spanning both east and west, indicate that 11_PW is a
“hybrid” pathway and therefore likely occurs in both the wet
and dry seasons.

This study builds upon a previous source region analy-
sis performed by Chauvigné et al. (2019) at the CHC sta-
tion, where a similar WRF set-up was used in combination
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Figure 14. In (a), we show the Pearson correlation coefficient between sulfate concentrations sampled at CHC and both the 18 clusters and
the 6 PWs. In (b), the regions covered by the pathway 08_PW and the clusters 09_MR, 08_SM, 10_SR and 07_SR are shown along with
Sabancaya and Ubinas volcanoes (both are located within 09_MR). All of the aforementioned clusters are contained by 08_PW. Panels (c¢)
and (d) show the time series of sulfate sampled at CHC and the normalized SRR time series of 08_PW and 09_MR, respectively.

with back trajectories. Our methodological approach is no-
tably different from this earlier study primarily as we use
a Lagrangian dispersion transport model rather than a back
trajectory model, meaning that turbulent mixing and convec-
tion processes that air parcels experience during transport are
better represented in this study. Additionally, our WRF simu-
lations and hence meteorological data have a higher vertical
resolution (61 levels compared to 28), and our 18 clusters
provide more detail than the 6 clusters presented by Chauvi-
gné et al. (2019). Our pathway results are largely in agree-
ment with this previous study: similar source regions are ob-
served for similar seasons, and both studies show that source
regions from the west start influencing the station in the tran-
sition month of May. However, key additions of this study
are that (1) the vertical distribution of the air masses’ sources
is more accurately captured, (2) the influence of the surface
and the pseudo-PBL on air sampled at CHC is more accu-
rately quantified, and (3) the diurnal cycle is captured by the
analysis.

The type of analysis performed here is applicable to many
other stations worldwide both in mountainous regions and
also for stations in non-mountainous areas which are equally
influenced by local and remote sources. Therefore, based on
the experience and knowledge gained here, we make the fol-
lowing recommendations for future studies:

Atmos. Chem. Phys., 21, 16453-16477, 2021

— For source identification in regions with complex ter-

rain we strongly recommend the use of Lagrangian
dispersion models over simple, limited-number back-
trajectory-based approaches. This has been previously
noted also by Stohl et al. (2002).

The accuracy of the meteorological input data is cru-
cial for reliable results and therefore should be verified
before performing the FLEXPART simulations. In our
case, this step revealed large biases in the temperature
of Lake Titicaca which affected local wind patterns.

Selecting the optimal number of clusters is challeng-
ing, particularly in situations like this, where there is a
continuum rather than a clear number of clusters. Con-
sequently, in addition to quantitative scores, the scien-
tific applications and practical aspects should be consid-
ered when selecting the number of clusters. We recom-
mend that both pathways (smaller number) and clusters
(larger number) are computed and their centroid char-
acteristics analysed. Both are useful and have notably
different applications.

Due to computational limitations and given that the
campaign only lasted for 6 months, we only simulated
6 months. For a more complete physical understanding,
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if computational resources allow, we recommend that a
full annual cycle is always simulated even if the obser-
vational campaigns the model simulations support are
shorter in duration.

7 Summary and conclusions

In this study we successfully developed a new method to
identify air mass source regions in sites of complex topog-
raphy. We then applied this methodology to the GAW station
CHC, located near La Paz—El Alto at 5240 m a.s.1. In order to
accomplish this, we started with a WRF simulation in com-
bination with FLEXPART to create a high-resolution dataset
of source areas for CHC. Then we applied our new method,
based on cluster analysis, to transform the complex and large
output dataset into a user-friendly time series dataset of air
mass source regions. We documented the characteristics of
the identified source areas and demonstrated the strength and
simplicity of the method’s classification results by applying
our method to confirm that the Sabancaya volcano is the
source of sulfate measurements at the CHC station. The main
conclusions of our analysis are as follows.

— On average, 9 % of the air sampled at CHC has been in
contact with the surface and 24 % with the pseudo-PBL
within the previous 4 d. Therefore we can conclude that
on average, at any given time 76 % of the measured air
mass at CHC represents free-tropospheric air. Thus, the
air masses sampled at CHC are very rarely purely free-
tropospheric air masses (Fig. 5a).

— The surface influence has a clear diurnal cycle, with low
contributions during the night and higher contributions
starting at 10:00 local time and continuing during the
day. The duration of the high surface influence during
daytime is longer in the dry season (May) compared to
the wet season (December—March; Fig. 5b and c).

— Air masses arriving at CHC have a wide range of
sources covering many different biomes and altitudes,
and it is common for any one specific sample time to
have more than one source region (Figs. 6, 8, 11, 12 and
S3).

— The most dominant pathway to emerge in our 6-month
study is 03_PW, which is responsible for 29 % of the
SRR and originates in the Amazon. However, as we de-
tected that this PW does not occur in May, we hypothe-
size, based on Chauvigné et al. (2019), that if our anal-
ysis extended over all of the dry season (May—August),
the overall prevalence of this PW would decrease, and
others (e.g. 07_PW and 08_PW) would increase (Figs. 7
and S2).

— For the clusters’ centroid positions, a linear relationship
exists between the horizontal distance from CHC and
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the height above ground, with those farther away also
being located higher in the atmosphere (Figs. 7 and 10).

— Clusters located closest to CHC have the highest
pseudo-PBL influence, and rather than a linear decrease,
the influence of the pseudo-PBL decreases almost expo-
nentially with increasing distance from CHC (Fig. 10).

— The contribution to the SRR is largest for the medium-
range clusters and smallest for the short-range clusters,
thus showing no linear relationship with the distance
from CHC (Fig. 10).

— The short-range clusters have high temporal frequency
modulated by local meteorology driven by the diurnal
cycle, whereas the mid- and long-range clusters’ vari-
ability occurs on timescales governed by synoptic-scale
dynamics (Figs. 11, 12, S4, S5, S6, S7 and S8).

To conclude, firstly, the method developed here can be
applied to many other long-term monitoring stations. Sec-
ondly, the datasets produced here that provide detailed in-
formation about the sources of air masses sampled at CHC
will be applied in forthcoming studies on the chemical com-
position measurements made at CHC during the SALTENA
campaign.

Appendix A: Additional FLEXPART output
pre-processing and clustering details

The purpose of this appendix is to give additional technical
details concerning how the raw FLEXPART output was pro-
cessed and subsequently clustered. In addition, more detailed
justification for the choices made in this process is also given
here.

Al Vertical (Az) FLEXPART output levels

The two nested output grids of FLEXPART were defined as
described in Sect. 2.2. The vertical grid was selected to have
a constant Az of 500 m instead of the customary varying res-
olution a.g.l. (usually the vertical resolution is higher close
to the surface than aloft). However, as we are in an area of
complex terrain the constant Az was chosen so that compari-
son of vertical grids for locations with considerably different
ground height a.s.l. is easier. For example consider the grid
cells above CHC (5kma.s.l.) and La Paz (3.6 km a.s.1.). If we
were to use varying vertical resolution a.g.l. then an air mass
moving along the same pressure level as CHC would move
from a high-resolution vertical grid to a low-resolution ver-
tical level in less than 20km (the horizontal distance from
CHC to La Paz). We selected a Az of 500 m as a compro-
mise; ideally we want as small as Az as possible near the
surface, but to minimize computational cost we want a Az as
large as possible and thus fewer vertical levels. The constant
Az also makes the conversion between a.s.l. and a.g.l. seam-
less.
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A2 Rectangular to log-polar regridding of the SRR
matrix (step 3)

Since we are in the tropics, it is reasonable to use an equirect-
angular projection to a Cartesian coordinate system defined
by longitude (long), latitude (lat) and height above ground
level (z). Any point (lat, long, z) can be represented in polar
cylindrical coordinates and is given by

r= \/(long —long,)? + (lat — lat)?
_ long —long,
lat — lat,

6 =tan
=2,

where r is the radial distance to the receptor location (long,,
lat.), and 6 is the clockwise angle starting north from the
receptor. Notice that r is the Euclidean distance of lat and
long. The relation between r and the geodesic distance d in
kilometres is given by the approximation

d[km] =108.6km/° r (£3 %)

and is valid for the whole region covered by the WRF D01
domain. The radial boundaries of the log-polar grid are sep-
arated by a distance A9 = 10°. The radial length Ar of the
log-polar cells is Ar =rj41 —r;j, where riy| =r;e’, and e
is Euler’s number (2.71). The value of a = 0.18 is chosen
so that the log-polar cells approximate a square with sides
Ar ~r; - A6. The ring radii of the log-polar grid are de-
termined by starting with an initial ring ro of radius 0.08°
(=~ 8.7km). The choice of the value for ro should be large
enough to allow the first ring of radial cells to have an area
larger than the grid cells in the highest-resolution output from
FLEXPART so that at least one original FLEXPART out-
put grid falls on each radial cell (with this configuration, the
550 km? urban area of La Paz—El Alto is covered by 37 log-
polar grid cells). The following 30 ring radii are obtained
iteratively using r; 11 = r; e“.

Once the new log-polar grid is defined, the SRR must be
regridded from the original longitude—latitude grid to this
new grid. For each log-polar grid cell, the SRR is obtained
by adding the SRR values of the rectangular grid cells whose
centre of mass is contained within the log-polar grid cell.

Given the considerable number of data, the regridding
procedure needs to be very computationally efficient. The
straightforward way to regrid the dataset would have been to
find the volume that each rectangular grid shares with each
log-polar grid cell and then distribute the SRR value accord-
ingly. However this method proved to be computationally
too demanding, and an alternative computationally efficient
method with similar logic was devised and is shown schemat-
ically in Fig. Al. The alternative method is performed in a
procedural manner starting with a log-polar grid cell in the
outermost ring. The log-polar cell’s SRR value is obtained
by adding all the rectangular grid cells (yellow squares in
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Fig. Al) from the coarse-resolution rectangular grid (L1)
whose centre falls within the log-polar grid cell. Then we
proceed to obtain the SRR value of all other log-polar grid
cells in the same ring and then continue with the next ring
until we reach the innermost ring. As a rule of thumb, at least
50 rectangular grid cells are required per log-polar grid cell.
If this condition is not met, then the rectangular grid resolu-
tion is increased by splitting each cell into four equal-sized
rectangular cells with 1/4 of the original SRR value (for ex-
ample, that is the case for L2, H2, H3 and H4) or, if avail-
able, by choosing a rectangular grid with higher resolution
(for example H1). In this manner we ensure that each log-
polar grid cell is obtained from the most resolved rectangular
grid available, and in the case that the log-polar grid cell size
starts to be comparable to that of the collocated rectangu-
lar grid, then the rectangular grid is subdivided so that the
SRR values of the rectangular grid cells are proportionally
mapped onto the log-polar cells. The output of the regridding
is a four-dimensional array: SRRy, ;.

A3 Pre-processing of the SRR matrix (step 4):
smoothing, normalization and filtering

The SRRy, ;; matrix is smoothed in all four dimensions us-
ing SciPy’s Gaussian filter function (Virtanen et al., 2019).
The standard deviations of the Gaussian filter are given for
each dimension and are r =3,z =0.25,r = 1,6 =0.5. The
purpose of smoothing the data is solely to improve the ac-
curacy of the clustering. Clustering without smoothing pro-
duces very similar results except that when smoothing is
not used, very-low- and intermittent-influence cells are as-
signed clusters randomly rather than matching their neigh-
bours. The smoothing forces these few “problematic” cells
to be assigned to the neighbouring group. Once the clustering
has been performed and each grid cell allocated to a cluster,
the subsequent analysis is performed using the non-smoothed
SRRy, ;¢

We are interested in grouping elements depending on
their variation over time rather than their absolute values;
therefore we need to normalize the dataset. We use scikit-
learn’s (Pedregosa et al., 2011) quantile transform function
to normalize our elements to a uniform distribution. This
procedure has the advantage of being robust to outliers and
also performs quite well with sparse arrays or semi-sparse
arrays like ours. After this function is applied, the distribu-
tion of each element resembles a uniform distribution with
a value range from O to 1. In order to accomplish the nor-
malization, the smoothed SRRy, ;; is then transformed from
a four-dimensional array to a two-dimensional array, which
as one dimension has the arrival time ¢ and as the second
dimension has all of the grid cells (p): SRR ;. This transfor-
mation means that the clustering scheme will not know which
cells are neighbours — hence the need to smooth SRRy,
while still in four-dimensional space. The transformation
step (a.k.a. stacking) into a two-dimensional array is normal
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Figure A1. Schematic of the rectangular-to-log-polar regridding. See Sect. A2 for a full description.

in k-means clustering as it is a requirement of the algorithm.
Quantile mapping is then applied along the time dimension
of the 2D array, SRR ,;, using scikit-learn’s quantile mapping
function (QuantileTransformer, default options). The output
of this step is a 2D array with the same dimensions as SRR ,;;
however instead of the SRR values, the values now range
from O to 1. This is denoted SRR,

The last step before clustering is to remove the grid points
from SRR, whose SRR values are either zero or have very
little influence, and including them adds computational bur-
den to the clustering algorithm and does not improve the re-
sults. However, this also makes scientific sense — we do not
want to include grid cells into any cluster if air from those
grid cells never (or very rarely) arrives in CHC. In order to
decide which elements are not beneficial based on the above
definition, we define a threshold 7 in the following way.
First, we sum all the SRR values for each of the elements
over the time period. Then, we sort the element based on their
total SRR value and compute the cumulative SRR values. Fi-
nally, we split this dataset at the point where 85 % of the total
SRR value is reached and discard the remaining 15 %. This
procedure leaves us with 8580 cells out of the total 33 480 in
the grid. Out of the excluded cells, 24.8 % had a zero SRR
total value, and the total median for the non-zero left-out
cells is 2060 s. The total median for the included 8580 cells
is 112 190s. The output of this step is SRRfot, where p rep-
resents the retained grid points.

A4 The clustering algorithm
SRR;), is then used as input to the k-means clustering algo-
rithm. The aim of k-means clustering is to minimize a dis-

tance metric between each cluster member and the cluster
centroid. Mathematically this is achieved by minimizing the

https://doi.org/10.5194/acp-21-16453-2021

function

kP
I=) ) li—cjl?, (A1)

j=li=1
where k is the number of clusters, p is the number of grid
points, x; is the ith grid cell, and ¢; is the cluster centroid.
lxi —c; |? is the Euclidean distance, which is the distance
metric used here.

The number of clusters, k, is first defined, and their cen-
troids’ positions (i.e. cluster centre points) are initially ran-
domly specified. Each grid cell (element) is then assigned
to the cluster to which it is closest based on the Euclidean
distance. Once each element is assigned to a cluster, new
centroid positions are computed. An iterative procedure then
takes place, with the elements re-assigned to clusters based
on the newly computed centroids. This iteration continues
until either convergence is achieved or the maximum num-
ber of iterations is completed. Convergence is determined by
considering the residual of the sum of each individual Eu-
clidean distance. The final output of the k-means clustering
is that each grid cell (element) is assigned a cluster number.

Code and data availability.

— The SRR cluster time series are publicly available at
https://doi.org/10.5281/zenodo.4539590 (Aliaga, 2021a).

— Both the WRF and FLEXPART raw output datasets are avail-
able upon request.

— The source code for the FLEXPART-WRF model 3.3.2 used
in this study can be downloaded from https://www.flexpart.
eu/downloads (last access: 12 September 2021). We modified
parts of the original code to adapt it to the complex topography
of the domain. The modified source code can be downloaded
from https://doi.org/10.5281/zenodo.5516295 (Aliaga, 2021b).
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— The source code for the Advanced Research WRF model ver-
sion 4.03 (Skamarock et al., 2019) used in this study can be
downloaded from https://www2.mmm.ucar.edu/wrf/users/.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-16453-2021-supplement.
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