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Abstract. A thorough understanding of the relationship be-
tween urbanization and PM2.5 (fine particulate matter with
aerodynamic diameter less than 2.5 µm) variation is crucial
for researchers and policymakers to study health effects and
improve air quality. In this study, we selected a rapidly de-
veloping Chinese megacity, Chengdu, as the study area to
investigate the spatiotemporal and policy-related variations
of PM2.5 composition and sources based on long-term ob-
servation at multiple sites. A total of 836 samples were col-
lected from 19 sites in winter 2015–2019. According to the
specific characteristics, 19 sampling sites were assigned to
three layers. Layer 1 was the most urbanized area and re-
ferred to the core zone of Chengdu, layer 2 was located in
the outer circle of layer 1, and layer 3 belonged to the out-
ermost zone with the lowest urbanization level. The average
PM2.5 concentrations for 5 years were in the order of layer 2
(133 µg m−3) > layer 1 (126 µg m−3) > layer 3 (121 µg m−3).
Spatial clustering of the chemical composition at the sam-
pling sites was conducted for each year. The PM2.5 compo-
sition of layer 3 in 2019 was found to be similar to that of
the other layers 2 or 3 years ago, implying that urbanization
levels had a strong effect on air quality. During the sampling
period, a decreasing trend was observed for the annual av-
erage concentration of PM2.5, especially at sampling sites in
layer 1, where the stricter control policies were implemented.
The SO2−

4 /NO−3 mass ratio at most sites exceeded 1 in 2015
but dropped to less than 1 since 2016, reflecting decreasing

coal combustion and increasing traffic impacts in Chengdu,
and these values can be further supported by temporal vari-
ations of the SO2−

4 and NO−3 concentrations. The positive
matrix factorization (PMF) model was applied to quantify
PM2.5 sources. A total of five sources were identified, with
average contributions of 15.5 % (traffic emissions), 19.7 %
(coal and biomass combustion), 8.8 % (industrial emissions),
39.7 % (secondary particles), and 16.2 % (resuspended dust).
From 2015 to 2019, a dramatic decline was observed in the
average percentage contributions of coal and biomass com-
bustion, but the traffic emission source showed an increas-
ing trend. For spatial variations, the high coefficient of vari-
ation (CV) values of coal and biomass combustion and in-
dustrial emissions indicated their higher spatial difference in
Chengdu. High contributions of resuspended dust occurred
at sites with intensive construction activities, such as sub-
way and airport construction. Combining the PMF results,
we developed the source-weighted potential source contri-
bution function (SWPSCF) method for source localization.
This new method highlighted the influences of spatial distri-
bution for source contributions, and the effectiveness of the
SWPSCF method was evaluated.
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1 Introduction

PM2.5, fine particulate matter with aerodynamic diameter
less than 2.5 µm, is a complex heterogeneous mixture of
chemical constituents originating from a variety of sources
(Bressi et al., 2013; He et al., 2019; Kelly and Fussell, 2012).
Numerous epidemiological studies have reported associa-
tions between PM2.5 and adverse human health effects (Bell
et al., 2007; Y. Yang et al., 2018; Ostro et al., 2010; Philip et
al., 2014) and have attracted broad attention to PM2.5 in pub-
lic in the past decades. The link between urbanization and the
spatiotemporal variability of PM2.5 has been studied (Zhang
et al., 2015; Li et al., 2016). PM2.5 generally presents an in-
creasing trend with urbanization (D. Yang et al., 2018). In
addition, multiple policies were conducted by governments
to alleviate the pollution (Yan et al., 2018; Cai et al., 2017).
The urbanization stage and emphasis on pollution preven-
tion policies vary greatly in both time and space (N. Wang
et al., 2018; Gurjar et al., 2016; Seto et al., 2017), causing
significant spatiotemporal heterogeneity in the distribution
of PM2.5. Thus, a thorough understanding of the spatiotem-
poral and policy-related variations of PM2.5 is necessary to
investigate the relationship between urbanization and PM2.5.
The spatiotemporal variability of PM2.5 with the impact of
urbanization has been reported in previous studies (Li et al.,
2016; Timmermans et al., 2017; Zhang et al., 2019; Yang et
al., 2020; Seto et al., 2017), among which a small number of
publications focused on the analysis of PM2.5 composition
and sources (Lin et al., 2014; Yan et al., 2018). However,
there is a lack of research on multiple sites and long-term
sampling of PM2.5 composition over a city-sized area (Dai et
al., 2020; G. Xu et al., 2020; Fang et al., 2020). Systematic
measurements based on multiple sites and long-term obser-
vations can provide valuable data for a comprehensive un-
derstanding of PM2.5 characteristics and variations. Related
studies are critical for promulgating targeted control policies
from the perspective of urbanization.

In a city-sized area, there exist a large number of natural
and anthropogenic sources of particulate matter, such as soil
or road dust, vehicle exhaust, biomass combustion, sea salt,
and smoke from forest fires, all of which show large spa-
tiotemporal variations (Zhang et al., 2015, 2013; Mirowsky
et al., 2013; Y. Yang et al., 2018). It is essential to iden-
tify and apportion PM2.5 sources to provide targeted con-
trol policies. To date, receptor models have been applied in
a number of source apportionment studies of PM2.5, includ-
ing factor analysis models (such as PCA-MLR, PMF, UN-
MIX, and ME2) and chemical mass balance (CMB) tech-
niques (Shi et al., 2009; Choi et al., 2015; Hasheminassab
et al., 2014; Liu et al., 2015). These receptor models have
proven to be effective methods for identifying and appor-
tioning sources. Furthermore, to identify the likely source
regions for a receptor site, a number of trajectory statistical
methods have been widely applied, including concentration
field (CF), concentration-weighted trajectory (CWT), and

potential source contribution function (PSCF) (Chen et al.,
2011; Gebhart et al., 2011; Riuttanen et al., 2013; U. C. Kul-
shrestha et al., 2009). In the traditional PSCF method, the
source localization is mainly based on the number of tra-
jectory endpoints that fall in the targeted grid cell. How-
ever, the fact that the sources showed discrepant spatial dis-
tribution patterns over the studied region should not be ig-
nored. When trajectories pass over the grid cell in which a
source category shows high local contributions, the probabil-
ity of potential contribution for this grid cell should theoreti-
cally be relatively high. Accordingly, we developed a source-
weighted PSCF (SWPSCF) method that combines PMF with
PSCF and considers the spatial distribution of contributions
for each source category. The SWPSCF can be employed as
a valuable tool to obtain more precise estimates of potential
source areas.

In China, megacities have experienced frequent air pol-
lution events in response to rapid economic growth and ur-
banization (Li et al., 2016; Luo et al., 2018), which has
prompted governments to take various measures to improve
air quality. Chengdu, typical megacity in China, can repre-
sent an illustrative example of urbanization in a metropoli-
tan region. Since the implementation of pollution preven-
tion policies, namely the Air Pollution Prevention and Con-
trol Action Plan (APPCAP), Blue Sky Protection Campaign,
and the 13th Five-Year Plan (Cai et al., 2017), air quality in
Chengdu has been markedly improved; thus, Chengdu serves
as a useful case study in which we can investigate the spa-
tiotemporal and policy-related variations of PM2.5. In this
study, we investigated the spatiotemporal and policy-related
variations of PM2.5 composition and sources in Chengdu at
multiple sites based on a long-term observation. The positive
matrix factorization (PMF) model was applied to estimate
PM2.5 source contributions. The SWPSCF method was then
applied to identify the potential source locations. The main
objectives of this study were (i) to analyse the long-term spa-
tiotemporal variations of PM2.5 composition among multiple
zones in different urbanization levels; (ii) to determine PM2.5
sources and their contributions, as well as to evaluate the ef-
fectiveness of the SWPSCF method in potential source lo-
calization; and (iii) to explore the spatiotemporal evolution of
sources along with changes in urbanization and related policy
orientation. We propose the findings of this research will be
helpful for a comprehensive understanding of the impact of
the urbanization process and control policy on variations in
PM2.5 composition and sources in different zones, which can
provide basic information for future epidemiological studies.
It is of vital importance for further formulating emission re-
duction policies in China and other developing and polluting
countries.
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2 Method and materials

2.1 Sampling sites and sampling

We collected PM2.5 from Chengdu (102 to 104◦ E and 30 to
31◦ N), a city in the south-west of China with a population
of 16.33 million and an area of 14 605 km2. As an impor-
tant metropolitan region in western China, Chengdu is un-
dergoing rapid urbanization and is attracting an increasing
number of residents. At the same time, PM pollution has re-
ceived much attention. To improve air quality, the Chengdu
government adopted several measures, including limiting the
driving area of highly polluting vehicles and setting spe-
cific hours for driving in adjoining industrial structures, and
implementing energy substitution. Considering the hetero-
geneous spatial distribution of population, economy, indus-
try, and construction activities, the degree of urbanization
as well as air quality varies greatly in different sections of
Chengdu, and the emphasis on corresponding policies also
varies across the city. As shown in Fig. 1, sampling was
conducted at 19 sites in Chengdu (detailed information is
shown in Table S1 in the Supplement). Based on the spe-
cific characteristics, 19 sampling sites were clustered in dif-
ferent zones for the purpose of comparison. The following
sites – being located in the core zone of Chengdu and hav-
ing developed earlier in the urbanization process – have high
population and high traffic levels: Environment Protection
Building (QY1), Chengdu University of Technology (CH1),
and botanical garden (JN1). Combining the city structure
and urbanization levels, Chengdu residents are accustomed
to defining regions surrounded by the third circle road as
“layer 1”, and the locations of QY1, CH1, and JN1 are in ac-
cordance with the extent of layer 1. The following sampling
sites are included in the outer circle of layer 1: Qingbaijiang
(QBJ2), Xindu (XD2), Pidu (PD2), Wenjiang (WJ2), Shuan-
gliu (SL2), Tianfu (TF2), and Longquanyi (LQY2). This
outer circle developed later than the area corresponding to
layer 1. Accordingly, these sites are grouped together as the
second zone and correspond to layer 2. Among the sampling
sites in layer 2, QBJ2, XD2, WJ2, and SL2 are characterized
by intensive industrial factories, and TF2 has frequent con-
struction activities. The coordinates of factories in some key
industrial sectors are presented in Fig. S1 in the Supplement.
The remaining nine sites are located in the outermost zone of
Chengdu and correspond to layer 3: Jintang (JT3), Pengzhou
(PZ3), Dujiangyan (DJY3), Chongzhou (CZ3), Dayi (DY3),
Qionglai (QL3), Pujiang (PJ3), Xinjin (XJ3), and Jianyang
(JY3). The urbanization level of layer 3 was lower than that
of layers 1 and 2. In addition, because air pollution is usually
heavy in winter, the sampling campaign was conducted in
winter from 2015 to 2019, lasting approximately 15 d each
year. The detailed sampling periods for the sampling sites
in 2015–2019 are listed in Table S2. Although several se-
lected sampling sites may not be fully consistent each year,
this small difference does not influence the reflection of spa-

tiotemporal variations in Chengdu. A total of 836 PM2.5 sam-
ples were collected from 19 sites for analysis.

The sampling campaign was simultaneously conducted
using two medium-volume air samplers (TH-150C; Wuhan
Tianhong Ltd., China) with an airflow rate of 100 L min−1

at each site. One sampler had quartz filters to collect PM2.5
for analysing organic carbon (OC), elemental carbon (EC),
and ions. The other sampler had polypropylene filters to anal-
yse elements in PM2.5. Samples were collected daily for 22 h
(from approximately 11:00 to 09:00 LT (local time, GMT+8)
at 19 sites. Average temperature (◦ C), cumulative volume
(L), and standard volume (L), were recorded. When it rained,
we stopped the sampling campaign. The air flow rate was
corrected by a flowmeter before each sampling period. Col-
lected samples were stored in a layer of aluminium foil in a
freezer at −20 ◦C until weighing and analysis. The mass of
PM2.5 was determined by the difference in weight of the filter
before and after sampling. Before sampling, blank quartz fil-
ters and blank polypropylene filters were baked at 600 ◦C for
4 h and 60 ◦C for 3 h, respectively. For the process of weigh-
ing, filters were weighed at a temperature of 20±1 ◦C and hu-
midity of 40± 5 % for 48 h. The weights of the filters can be
obtained using a microbalance (Mettler Toledo UMX) with
a sensitivity level of 0.01 mg. Each filter was weighed twice,
and the final weight was equal to the average of the two val-
ues (the difference was less than 0.05 mg).

2.2 Chemical analysis and quality assurance and
quality control (QA/QC)

The OC, EC, ions, and elements were detected using the
thermal/optical carbon aerosol analyser (DRI model 2001A;
Desert Research Institute, USA), an ion chromatograph
system (ICS-900; Dionex, USA), and inductively coupled
plasma atomic emission spectrometer (ICAP 7400 ICP-AES;
Thermo Fisher Scientific, USA), respectively. The following
is a brief description of the pre-treatment procedure, chemi-
cal analysis, and QA/QC; more detailed information is pro-
vided in our previous works (Tian et al., 2016, 2014; Bi et
al., 2007; Kong et al., 2010; Xue et al., 2010).

2.2.1 Organic carbon (OC) and elemental carbon (EC)
analyses

OC and EC were analysed based on a hole with a quartz fil-
ter of 0.588 cm2. The thermal/optical carbon aerosol anal-
yser detected OC1, OC2, OC3, and OC4 in a pure helium
atmosphere at temperatures of 140, 280, 480, and 580 ◦C,
respectively. Similarly, the oven temperature was increased
to 540, 780, and 840 ◦C for EC1, EC2, and EC3 analyses,
respectively, in a 2 % O2 atmosphere. Organic pyrolysed car-
bon (OPC) was also detected after adding oxygen. Finally,
the OC and EC concentrations were calculated using Eqs. (1)
and (2), respectively. QA/QC was conducted using a calibra-
tion process. The method detection limit was 0.82 µg C cm−2
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Figure 1. The locations of 19 sampling sites in Chengdu from 2015 to 2019.

for OC, and 0.20 µg C cm−2 for EC.

OC= OC1+OC2+OC3+OC4+OPC, (1)
EC= EC1+EC2+EC3−OPC. (2)

For QA/QC, a system stability test (three-peak detection)
is required before and after detecting samples and the relative
standard deviation (RSD) should not exceed 5 %. The sample
was reanalysed for every 10 samples.

2.2.2 Ions analysis

Ions including Cl−, SO2−
4 , NO−3 , and NH+4 were measured

on a one-eighth piece of sample. The portion was cut into
small pieces directly into tubes and ultrasonically extracted
with 8 mL deionized water for 20 min. The tubes used dur-
ing extraction were cleaned three times using an ultrasonic
cleaner. After extraction, the solution was stored in a re-
frigerator for 24 h. The supernatant was sucked by needle
tubing and injected into a vial through two 0.22 µm filters.
The obtained solution was analysed using ion chromatog-
raphy to determine the ions. Anions were analysed using
Dionex IonPac CS12A (4 mm) analytical column equipped
with Dionex IonPac CG12A (4 mm) guard column, Dionex
CSRS-500 (4 mm) was used as the suppressor, and methane
sulfonic acid (20 mL of 99 % methane sulfonic acid solution
diluted to 2000 mL) was applied as the eluent. Cation anal-
ysis was conducted using Dionex IonPac AS22 (4 mm) as
the analytical column, Dionex IonPac AG22 (4 mm) as the
guard column, Dionex ASR-500 (4 mm) as the suppressor,
and NaHCO3 (0.14 mol L−1) and Na2CO3 (0.45 mol L−1) as
the eluent. A conductivity detector was equipped for both
anion and cation analysis with an injection volume of 0.5–
0.8 mL and an eluent flow rate of 1.2 mL min−1.

For QA/QC, the RSD was calculated more than three
times to hold the value at a lower value (<5 %). A standard
sample test was performed using certified reference materials

(CRMs, produced by National Research Center for Certified
Reference Materials, China) to ensure QA/QC. The spiked
recoveries of ions ranged from 96.0 % to 110.0 %, as reported
in Table S3.

2.2.3 Elements analysis

The microwave acid digestion method was applied to de-
tect the following elements: Al, Fe, Mg, Ca, Na, K, V, Cd,
Pb, Si, Zn, Cu, Cr, As, Ni, Co, Mn, and Ti. A 10 mL mixed
digestion solution (2 mL HNO3, 6 mL HCl, and 2 mL H2O2)

was added to digest one-eighth sample pieces, and the diges-
tion process was conducted by a four-stage microwave diges-
tion procedure of the microwave-accelerated reaction system
(MARS; CEM Corporation, USA): the temperature was in-
creased to 120 ◦C in 10 min, held for 8 min, reached 150 ◦C
in 3 min, held for 8 min, reached 180 ◦C in 3 min, held for
8 min, and then reached 200 ◦C in 3 min and held for 10 min.
Subsequently, the digestion solution was transferred into a
PET (polyethylene terephthalate) bottle, and the solution was
diluted to 25 mL with deionized water for further analysis
using an inductively coupled plasma atomic emission spec-
trometer. During analysis, the target element can radiate the
characteristic spectral lines, the intensity of which is directly
proportional to the concentration of the element.

For QA/QC, a single-point calibration and blank tests
were conducted for every 10 samples. Single-element stan-
dards purchased from CRMs were used for the calibration of
each element. The determined RSD was below 10 %, and the
spiked recoveries for all elements varied between 85.5 % and
113.1 %, as listed in Table S3.

2.3 Positive matrix factorization (PMF)

The PMF model is a widely used bilinear receptor model.
The goal of this model is to identify and quantify the source
contribution of contaminants by solving the following equa-
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tion (Eq. 3):

xij =

p∑
k=1

gikfkj + eij (3)

where i, j , and p are the number of samples, chemical
species, and factors, respectively; xij is the concentration of
the j th species in the ith sample; gik is the contribution of
the kth source to the ith sample; fkj is the concentration of
the j th species from the kth source; and eij is the residual
for each sample/species (Paatero, 1997; Paatero and Tapper,
1994).

We input the measured speciated data as the matrix X of
i by j dimensions; then, the PMF model can divide it into
two matrices: factor contributions (G) and factor profiles (F).
The non-negativity constraint was also introduced to ensure a
positive value for each source contribution. In the decompo-
sition process, the model is run several times by applying the
least-squares method to minimize the objective function Q

(Eq. 4), and in this case, the obtained solutions of G and F
are considered optimal:

Q=

n∑
i=1

m∑
j=1

(
eij

uij

)2

, (4)

where uij is the uncertainty of the j th chemical species in the
ith sample. The model required both concentration data and
the uncertainty of the species in each sample. The equation-
based uncertainty is calculated as follows (Eq. 5):

uij =

{ 5
6 ×MDL cij ≤MDL√(

Error Fraction× cij

)2
+ (0.5×MDL)2 cij>MDL

(5)

where cij is the concentration of chemical species in each
sample, and MDL is the method detection limit for each com-
ponent.

In this study, the EPA PMF 5.0 was applied for the source
apportionment of PM2.5. Because many concentrations of Cr
and Co were under the MDL, they were not input for the ap-
portionment, and a total of 22 chemical species of 836 sam-
ples at 19 sites from 2015 to 2019 were simulated. The de-
tailed source apportionment results are reported in Sect. 3.3,
and more information on the PMF model is described in the
PMF 5.0 user guide.

2.4 Source-weighted potential source contribution
function (SWPSCF)

The PSCF model is a conditional probability that was applied
to identify the source regions of PM2.5 masses to the recep-
tor site. In this study, the backward trajectories were mod-
elled using MeteoInfo, a GIS (geographic information sys-
tem) application which enables the user to visualize and anal-
yse the spatial and meteorological data with multiple data

formats, which is available at http://www.meteothinker.com/
(last access: 5 September 2021). The required meteorological
data were obtained from the National Centers for Environ-
mental Prediction (NCEP) global reanalysis data, which are
available from the National Oceanic and Atmospheric Ad-
ministration (NOAA’s) Air Resources Laboratory (ARL) in
a format suitable for transport and dispersion calculations.
A detailed dataset can be obtained from the NOAA ARL
FTP server (https://ready.arl.noaa.gov/archives.php, last ac-
cess: 20 August 2021). Using MeteoInfo modelling, 12 h
backward trajectories starting from the receptor site at 500 m
above ground level were generated with 6 h time intervals
during all sampling periods. The 24 and 72 h backward tra-
jectories were also simulated in the process of parameter se-
lection. The results suggested that regions passed over by
24 and 72 h backward trajectories were far more widespread
than those in our study area. The 12 h backward trajectories
covered the most suitable range. In addition, it is possible to
apply 24 and 72 h trajectories when future studies refer to
larger regions. In addition, the selection of the time interval
showed little influence on the results.

The PSCF model divided the region where trajectories
passed over into 0.1◦× 0.1◦ grid cells and computed the
PSCF values of all grid cells in the domain. For the recep-
tor site, the daily concentrations were assigned to the grid
cells along related trajectories, and a certain threshold crite-
rion value was selected. When the concentration in one grid
cell was above the threshold value, there exists a probability
that sources located in this grid cell have an influence on the
receptor PM2.5. A higher PSCF value indicates higher prob-
ability. The PSCF values are defined by Eq. (6) (Han et al.,
2007):

PSCFij =

(
mij

nij

)
Wij , (6)

where nij is the total number of trajectory endpoints that fall
into the grid cell (i,j ), and mij is the number of trajectory
endpoints when their corresponding contributions exceed the
criteria value. Wij is a weight function (Eq. 7) used to reduce
uncertainty when specific grid cells have a small number of
trajectory endpoints (Polissar et al., 2001; Lee and Hopke,
2006):

Wij =


1.0 3nave < nij ,

0.7 1.5nave < nij < 3nave,

0.4 nave < nij < 1.5nave,

0.2 nij < nave,

(7)

where nave is the average number of endpoints in each grid
cell.

When trajectories passed over a grid cell in which a certain
source category showed a high local contribution, the proba-
bility of the potential contribution of this grid cell should be
relatively high. Thus, we introduced another weighted func-
tion SWij that represents the ratio of the source contribu-
tion in grid cell (i,j ) to the average contribution in the whole
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study area. The SWij is calculated using Eq. (8). The SWP-
SCF value is expressed in Eq. (9).

SWij = cij/cave, (8)
SWPSCF= SWij ×PSCF, (9)

where cij is the source contribution of each source category
in the grid cell (i,j ) and is available using the Kriging inter-
polation algorithm; cave is the average source contribution of
this source category of all sampling sites in the entire study
area.

2.5 Hierarchical cluster analysis (HCA)

The similarity analysis of PM2.5 composition among the
19 sampling sites from 2015 to 2019 was conducted using
hierarchical cluster analysis. Cluster analysis, a technique
used to identify groups that have similar characteristics, can
be broadly classified as hierarchical and non-hierarchical
(Govender and Sivakumar, 2020; Saxena et al., 2017). By re-
cursively finding nested clusters, hierarchical clustering re-
peatedly combines the two closest groups into one larger
group (Q. Xu et al., 2020) and finally generates a dendro-
gram. The algorithm is implemented mainly by the following
steps (Govender and Sivakumar, 2020):

Step 1 – Determine each observation as the initial clus-
ter.

Step 2 – Measure the distance between clusters for
quantifying the similarity between objects.

Step 3 – Merge the closest pairs of clusters into a single
cluster, and recalculate the distance matrix.

Step 4 – Repeat steps 2 and 3 until all observations are
integrated into a single cluster.

To guarantee the effectiveness of the algorithm, appropri-
ate methods should be selected according to the properties
of specific objects. An introduction on the specific choice of
the distance metric and linkage function is added in the Sup-
plement. In this study, the HCA was conducted using IBM
SPSS Statistics 25, and the results were confirmed to be sim-
ilar by using different distance metrics and linkage methods.
Based on the comprehensive consideration, the HCA based
on the cosine distance and average linkage method was se-
lected. By cutting the dendrogram at an appropriate distance,
PM2.5 samples that have similarities in chemical species can
be grouped into the same cluster.

3 Results and discussion

3.1 Spatiotemporal variations of PM2.5 concentrations

The spatiotemporal variations in PM2.5 concentrations for
layers and sites in 2015–2019 are depicted in Fig. 2. The de-
tailed PM2.5 concentrations are summarized in Table S4. Due

to the slight difference in the selected sampling sites in lay-
ers 2 and 3 in each year, both layers and sites were discussed
for a better understanding of the PM2.5 variability. For spatial
distribution, the average PM2.5 concentrations over 5 years
were 126, 133, and 121 µg m−3 for layers 1, 2, and 3, respec-
tively. Layer 1, the most urbanized area in Chengdu, suf-
fered severe traffic pollution; however, stricter control poli-
cies were implemented by local governments in this area.
The high PM2.5 concentration in layer 2 may be caused by
strong industrial activities and extensive construction activi-
ties at QBJ2, XD2, WJ2, SL2, and TF2. Layer 3 was char-
acterized by the lowest urbanization level in Chengdu, al-
though weak emissions of old chemical industries and small
coal-fired boilers were observed at XJ3, PZ3, CZ3, and DY3;
there were fewer vehicles than layer 1 and fewer factories
than layer 2, explaining the relatively low levels of PM2.5 in
the area.

PM2.5 concentrations in the three layers showed sim-
ilar temporal variation, which averagely declined from
174 µg m−3 in 2015 to 95 µg m−3 in 2019, except for a small
increase in 2017 (134 µg m−3), indicating the effective con-
trol measures in Chengdu in recent years. Fig. S2 shows the
temporal variation of daily PM2.5 concentrations and annual
average PM2.5 concentrations for each site. The large num-
ber of sampling data from all filters further demonstrates the
temporal changes in PM2.5 concentrations over time, as de-
scribed above. The results of the statistical analysis, using
the two-tailed matched t tests for PM2.5 concentrations at
sampling sites between 2015 and 2019, are summarized in
Table S5. As seen in the table, there was a significant de-
creasing trend in the level of PM2.5 in the period 2015–2019.
A more obvious decline was observed at the sites in layer 1.
In 2015, the PM2.5 concentration was the highest in layer 1;
however, since 2016, the highest PM2.5 level has been trans-
ferred from layer 1 to layer 2. This may be influenced by the
fact that the coal-burning ban was promulgated the earliest in
layer 1. The government published Chengdu’s Air Pollution
Prevention and Control Regulation in each year and intro-
duced a number of specific measures, including the substi-
tution of clean energy boilers for existing coal-fired boilers,
which was accelerated in 2016 in layer 1. PM2.5 concentra-
tions at several sites in layer 2 exhibited a minor elevation:
for example, PM2.5 levels at WJ2 and SL2 increased in 2018.
This may be associated with construction and industrial ac-
tivities in this region. Temporal variations of sites in layer 3
are not discussed due to the deficiency of PM2.5 concentra-
tions in many studied years.

3.2 Spatiotemporal variations of chemical composition

Research on the chemical composition of PM2.5 can be help-
ful in identifying the source changes and the effectiveness of
related policies. In Fig. 3 we present the fractions of the main
chemical species (%) in PM2.5 at each site during the winter
in the period 2015–2019, reflecting the relative importance
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Figure 2. Spatiotemporal variations of PM2.5 concentrations for layers and sampling sites in 2015–2019.

of species under different PM2.5. The average fractions of
PM2.5, in the order of OC>NO−3 >SO2−

4 > crustal elements
(the sum of Al, Si, Ca, Ti, and Fe) > NH+4 > EC > Cl−, consti-
tuting 17.2 %, 13.5 %, 11.0 %, 8.3 %, 5.7 %, 5.4 %, and 2.3 %
of the PM2.5 mass, respectively.

To identify the similarity and diversity of PM2.5 compo-
sition among the sampling sites and years, hierarchical clus-
ter analysis (HCA) (based on cosine distances) of chemical
composition (%) was carried out at each sampling site for
5 years (2015–2019). The results are shown in Fig. 4. Four
clusters were identified, and the results showed a strong cor-
relation with years: cluster 1 (C1) consisted of most sites in
2018 and 2019; sites in 2016 and 2017 were classified as
cluster 2 (C2); cluster 3 (C3) included all the sites in 2015;
and 2016DJY3, the only site far from the other sites, was sep-
arated as cluster 4 (C4). A total of 13 samples were collected
at 2016DJY3, and both the sampling number and duration
were similar to samples collected at other sites in 2016. As a
typical background site in Chengdu, DJY3 is surrounded by
plants and agricultural activities, so it is featured by the dis-
tinctive PM2.5 compositions with markedly high NH+4 and
crustal elements. This explains the particular HCA result of
the C4 well. The meteorological data (https://rp5.ru/, last ac-
cess: 7 June 2021) during the sampling period from 2015 to
2019 are shown in Table S6, reflecting the similar meteoro-
logical conditions in the studied years, which highlighted the
importance of the source variations for the clustering results.
There was a special case where the sites of layer 3 in 2019 be-
longed to C2 rather than C1, indicating that the PM2.5 com-
position for layer 3 in 2019 was more similar to that for other
layers 2 or 3 years ago. This can be explained by the fact that
urbanization levels varied between the layers in Chengdu. As
the outermost zone of Chengdu, layer 3 lagged behind layer 1
and layer 2 in the urbanization, which contributed to the sim-
ilar characteristics in air quality between current layer 3 and
previous other layers. The HCA results indicated an incred-

ible need to investigate the variations of PM2.5 composition
in both time and space.

3.2.1 Spatial variations of chemical composition

To investigate the spatial similarities and differences of
chemical composition, the HCA was also applied based on
the chemical composition (%) at sampling sites for each year,
and the cluster results and their averaged species fractions are
listed in Fig. S3.

The chemical composition of the clusters in 2015–2019
is shown in Fig. 5. Taking as an example the first cluster
in 2015, we defined it as 2015C1. Spatial differences were
observed each year. The clusters 2015C4, 2016C4, 2017C1,
2018C2, and 2019C1 always showed higher OC fractions:
20.9 %, 14.6 %, 20.5 %, 17.5 %, and 23.3 % of PM2.5 mass,
respectively.

The higher OC fractions of these clusters were consid-
ered to occur at the contained sites, such as PZ3, JT3, CZ3,
XJ3, JY3, and PJ3, and could be either directly emitted (pri-
mary organic carbon, POC) or indirectly formed in the at-
mospheric (secondary organic carbon, SOC) (Kanakidou et
al., 2005; Zhong et al., 2021). The high POC was largely
associated with the stronger fuel combustion and biomass
burning. One possible reason is that there were more resi-
dential combustions (such as bulk coal and biofuel combus-
tion) and small boilers with low combustion efficiency at
PZ3 and XJ3; therefore, control measures for fuel combus-
tion still need to be strengthened. During the sampling pe-
riod, activities such as the burning of firewood by residents to
produce smoked meat can contribute greatly to the OC level
from biomass burning. Additionally, the formation of SOC
was also responsible for the high OC level. SOC is generated
from the oxidation of volatile organic compounds (VOCs)
through homogeneous or heterogeneous reactions (Jang et
al., 2002). VOC precursors come from both anthropogenic
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Figure 3. The spatiotemporal variations of the fractions of main chemical species in PM2.5 at each site during winters in 2015 to 2019
(unit: %)

sources and plant emissions (Ait-Helal et al., 2014; Kleindi-
enst et al., 2009). Previous studies (Zhao et al., 2018; Han
et al., 2013; Yin et al., 2015) have reported high VOC emis-
sions from industrial processes at PZ3, JT3, and other sites.
Coal combustion in industries and thermal power plants were
the main sources of industrial processes at PZ3 and JT3,
respectively. Biogenic VOC emissions often occur at sev-
eral agriculture sites such as JY3 and PJ3 because of the
high vegetation coverage in these areas. High NO−3 levels
in Chengdu were observed at PZ3 in 2015 and QY1 and
CH1 in 2019. The high NO−3 levels at PZ3 in 2015 may
be associated with the petrochemical industry. In 2019, the
NO−3 level at PZ3 was lower than that in 2015, which might
have been influenced by the renovation of denitrification of
the key industries. On the other hand, vehicle ownership in
Chengdu markedly increased, especially in layer 1. Charac-
terized by the most intensive vehicles, QY1 and CH1 experi-
enced heavy traffic pollution. Crustal elements accounted for
the highest proportion in layer-1-related clusters (2016C3,
2017C3, and 2018C4) with 10.5 %, 9.9 % and 8.3 %, respec-
tively. The subway construction in layer 1 of Chengdu can
explain this result.

3.2.2 Temporal variations of chemical composition

With respect to the temporal variations of composition shown
in Fig. 3, the fractions of OC and EC generally showed a de-
creasing trend from 2015 to 2018 and slightly increased in
2019 at most sites. The average fractions of OC were 19.1 %
and 15.5 % in 2015 and 2018, respectively. EC accounted
for 15.5 % and 5.0 % of PM2.5, in 2015 and 2018, respec-
tively. The OC and EC mainly come from the combustion
of fuels, such as coal, gasoline, diesel, and biomass (Wang
et al., 2020). In Chengdu, coal is one of the important fuels

for the industry but has been strongly reduced by the govern-
ment in recent years. Gasoline and diesel are mainly used in
vehicles. The decrease in OC and EC fractions from 2015
to 2018 may be due to the decline in coal use for indus-
tries, which was consistent with the strict coal-burning ban
in these years; however, as the vehicles became more im-
portant contributors, the OC and EC fractions increased in
2019. The absolute concentrations of SO2−

4 , NO−3 , and Cl−

are shown in Fig. S4. Publications have reported the use of
SO2−

4 and Cl− as coal-burning markers (Tian et al., 2014;
Vassura et al., 2014). In the 5 years of the study, the aver-
age concentrations of both SO2−

4 and Cl− sharply decreased,
from 28 to 8 µg m−3 and from 6 to 2 µg m−3, respectively.
The fractions of SO2−

4 and Cl− also showed a decreasing
trend, especially in 2016. However, the fractions of NO−3
showed a general increasing trend from 2015 to 2019. The
average concentrations of NO−3 were found to decrease from
20 µg m−3 in 2015 to 14 µg m−3 in 2016, mainly resulting
from the strongly promoted coal-burning ban policy; after
that, NO−3 increased slightly to 16 µg m−3 in 2019, which
might be attributed to the gradually enhanced contribution
of vehicles and use of natural gas. We also analysed the
SO2−

4 /NO−3 mass ratio, a qualitative indicator of sulfur ver-
sus nitrogen sources (Gao et al., 2015; Arimoto et al., 1996),
and the summary is presented in Fig. S4d. Ratios at most
sites exceeded 1 in 2015, dropped to less than 1 in 2016, and
then declined steadily. Combined with the absolute concen-
trations of SO2−

4 and NO−3 discussed above, the SO2−
4 /NO−3

mass ratio can also indicate decreasing coal combustion and
increasing traffic emissions in Chengdu. This result is con-
sistent with the slow reduction in NOx and the sharp decline
in SO2 emissions in China (Zhao et al., 2013; Z. Wang et al.,
2018). For crustal elements, temporal variations were found
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Figure 4. The HCA results (based on cosine distances) of chemical species (%) at sampling sites for 5 years (2015–2019) and their averaged
species fractions.

to have close a relationship with the construction activities in
Chengdu in 2015–2019.

3.3 Spatiotemporal variations of sources

PMF was used to quantify the source contributions in the
studied areas, and five categories were selected with distinc-
tively related source characteristics. Five sources were identi-
fied: traffic emissions, coal and biomass combustion, indus-
trial emissions, secondary particles, and resuspended dust.

The estimated source profiles in the form of species concen-
trations (µg m−3) and percentages of species sum (%) are
shown in Fig. 6. Factor 1 contributed 15.5 % of PM2.5 and
had high fractions of EC (70.0 % of total EC) and OC (51.8 %
of total OC), which can be identified as traffic emissions (Xu
et al., 2016). The relatively high NO−3 further revealed Fac-
tor 1 as the source of traffic emissions. The moderate frac-
tions of Al, Si, Cu, Ni, and As in this factor may be asso-
ciated with traffic activities, including resuspension of road
dust, tire and brake wear, and oil burning (A. Kulshrestha
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Figure 5. Spatial distribution of PM2.5 compositions and fraction values of each cluster from 2015 to 2019. (i.e. 2015C1 refers to the first
cluster of sampling sites in 2015).
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et al., 2009; Almeida et al., 2005; Amato and Hopke, 2012).
Factor 2 was determined to be a coal and biomass combustion
source. Coal combustion generally plays an important role in
the energy structure of China. Identified as markers of coal
combustion source, OC, EC, Cd, and SO2−

4 exhibited high
loadings in factor 2, with fractions of 25.8 %, 20.3 %, 61.9 %,
and 26.7 %, respectively (Tian et al., 2016). The presence of
biomass burning was indicated by the high fraction of K+ in
this factor (Amil et al., 2016; Richard et al., 2011). Factor 2
accounted for 19.7 % of the total PM2.5 mass concentration.
Factor 3, which accounted for 8.8 % of PM2.5, was consid-
ered as an industrial emission source because of its high load-
ings of Fe (73.8 %), Cu (70.7 %), Mn (60.5 %), Ti (85.5 %),
Ni (61.5 %), and Mg (50.2 %). These species are frequently
used as source markers for industrial emissions, including
building materials and metallurgical production (Contini et
al., 2014; Jiang et al., 2014). Factor 4 was characterized by
nearly 76.7 %, 61.2 %, and 55.9 % of NO−3 , NH+4 , and SO2−

4 ,
respectively, and no other high species. According to pre-
vious studies, NO−3 , SO2−

4 , and NH+4 are indicative of sec-
ondary reactions (Richard et al., 2011; Wu et al., 2021). Con-
sequently, factor 4 represented the secondary particle source,
contributing to 39.7 % of PM2.5. Factor 5 was identified as
resuspended dust, accounting for 16.2 % of PM2.5. The top
three fractions of species were Al (84.2 %), Ca (79.5 %), and
Si (56.5 %), which are typical indicators of resuspended dust
(Pant and Harrison, 2012).

3.3.1 Spatial variations of source contributions

In Fig. 7, we show the source contributions at each site from
2015 to 2019 in order to investigate their spatial variations.
The coefficient of variation (CV), which is defined as the
standard deviation divided by the mean, was used to inves-
tigate the spatial differences of each source category. As
shown in Table S7, the CV values in this study indicate that
coal and biomass combustion and industrial emissions show
stronger spatial variations. For coal and biomass combustion
sources, the percentage contribution was higher at CZ3 of
layer 3 and QBJ2 of layer 2 than at other sites. The high
contributions of industry sources mainly occurred in layer 2,
including QBJ2, WJ2, PD2, SL2, and XD2, with fractions
from 8.9 % to 12.9 %. Among the sampling sites mentioned
above, CZ3 was characterized by intensive coal-fired boilers.
QBJ2 contains large-scale iron, steel, and chemical plants.
WJ2, PD2, SL2, and XD2 are located in areas of intensified
development, including large factories of glass, food, and
furniture. Therefore, the spatial distributions of PM2.5, from
coal and biomass combustion and industrial emissions, were
strongly associated with industrial manufacturing plants. Ad-
ditionally, the contributions of traffic emissions were higher
in layers 1 and 2, with the percentage contributions in 2015–
2019 ranging from 13.9 % to 16.3 % in layer 1 and from
11.6 % to 17.5 % in layer 2. The secondary particles had a
higher contribution in layer 3. The fractions of secondary

particles at QY1 and LQY2 also presented relatively high
values of 44.5 % and 49.9 %, respectively. The spatial distri-
bution of resuspended dust varied with human activity. The
contributions were relatively higher in layer 1 in 2015–2018,
which resulted from the construction of the urban subway.
At JY3, high contributions from resuspended dust were at-
tributed to the fact that Chengdu Tianfu International Airport
was under construction. Overall, the spatial distributions of
source contributions were in accordance with the character-
istics and urbanization level of sites, highlighting the impor-
tance of site-specific and urbanization research in pollutant
emission control.

To better consider the spatial distribution of contributions
for each source category, the SWPSCF method was applied
to identify the source regions to the receptor site based on the
source contribution weight. In this study, we selected QY1 as
the receptor site, and the average contribution of each source
category at QY1 as the threshold value. Both SWPSCF and
PSCF values were calculated for each source category in the
winter from 2015 to 2019. Examples of traffic emissions and
coal and biomass combustion in 2015 and 2019 are shown
in Fig. 8, and the differences were found in the PSCF and
SWPSCF results. For coal and biomass combustion source
in 2015 (Fig. 8a), the potential source regions were observed
to concentrate to CZ3 after source weighting, and the SW-
PSCF values around QBJ2 were higher than the PSCF val-
ues, reflecting the strengthened influence of coal and biomass
combustion sources at CZ3 and QBJ2. For the traffic emis-
sion source in 2019 (Fig. 8b), the identified potential source
regions moved toward layer 1 after source weighting, which
was in agreement with the spatial distribution of traffic emis-
sion contributions. As described above, the potential source
regions identified after the source weighting could better re-
flect the spatial variations of source contributions, suggesting
the effectiveness of the SWPSCF method in this study.

3.3.2 Temporal variations of source contributions

The temporal variations of source contributions at each site
are summarized in Fig. 7. The contributions of traffic emis-
sions at most sites showed an increasing trend from 2015 to
2019, because the number of vehicles increased rapidly. The
average percentage contributions of traffic emissions of lay-
ers 1 and 2 were in the order of 13.3 % (in 2015) <13.4 %
(in 2016) <14.8 % (in 2017) <15.8 % (in 2018) <17.1 %
(in 2019). Contributions in layer 3 were not calculated be-
cause of the difference in sites in the studied year, but the
tendency was consistent with the conclusions of layers 1
and 2. An obvious decline in the contribution of coal and
biomass combustion can be observed in the studied years,
especially in 2016. The average percentages of layers 1 and
2 declined from 33.2 % in 2015 to 15.5 % in 2016, and finally
to 11.5 % in 2019. The results indicated that notable success
has been achieved in the control of coal-related sources in
recent years. Industrial emissions showed the highest per-
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Figure 6. Source profiles estimated by the PMF, in the form of species concentrations (µg m−3) and percentages of species sum (%).

Figure 7. Spatiotemporal variations of source contributions to total mass of PM2.5 in Chengdu. (TE, CC, IE, SP, and RD represent traffic
emission, coal and biomass combustion, industrial emission, secondary particles, and resuspended dust, respectively.)

Atmos. Chem. Phys., 21, 16219–16235, 2021 https://doi.org/10.5194/acp-21-16219-2021



X. Feng et al.: Spatiotemporal and policy-related variations of PM2.5 composition and sources 16231

Figure 8. Potential source locations identified by the PSCF and SWPSCF methods: (a) coal and biomass combustion source in 2015; (b)
traffic emission source in 2019.

centages in 2016 at some sites and presented a downward
trend. The percentage of source contributions of secondary
particles at most sites increased steadily each year. The av-
erage fractions of layers 1 and 2 from 2015 to 2019 were
29.8 %, 40.0 %, 41.2 %, 46.0 %, and 44.0 %, respectively. For
resuspended dust, the fractions in 2015 and 2016 were gen-
erally higher than those in other years, especially for sites in
layer 1, which experienced major subway construction activ-
ity in previous years. In 2017–2019, the source contributions
of resuspended dust remained stable, and some slight fluctu-
ations could be attributed to local construction activities.

The above analysis of temporal variations provides in-
sights into the changes of source structures in Chengdu: pol-
lution from traffic and secondary aerosols played a more im-
portant role; sources from coal and biomass combustion and
industrial emissions were effectively controlled; and resus-
pended dust always occurred along with the urban construc-
tion. All of this information can offer useful references for
the government to further promulgate effective policies for
atmospheric pollution prevention and reduction in China and
other developing and polluting countries.

4 Conclusions

We investigated the spatiotemporal and policy-related vari-
ations of PM2.5 composition and sources at 19 sites in
Chengdu, based on a long-term sampling campaign in winter
from 2015 to 2019. Considering the specific characteristics

among sites, the variations were discussed in three layers of
different urbanization levels. The results showed distinct spa-
tiotemporal distribution patterns for both PM2.5 composition
and sources, linked to the process of urbanization and corre-
sponding policies in the studied region.

During the sampling period, temporal variations of aver-
aged PM2.5 concentrations at sites in layer 1 showed the
most obvious decreasing trend, caused by comparably strict
control measures conducted in layer 1. The fractions of OC
and EC declined from 2015 to 2018 and slightly increased
in 2019 at most sites. The SO2−

4 /NO−3 mass ratio at most
sites dropped less than 1 since 2016 and showed a decreas-
ing trend, indicating decreasing coal combustion and increas-
ing traffic emissions in Chengdu. The average percentage
contributions of coal and biomass combustion sources de-
clined from 2015 to 2019, reflecting the notable success in
the control of coal-related sources in Chengdu. For spatial
variations, the composition of PM2.5 for layer 3 in 2019, was
found to be similar to that for layers 2 or 3 years earlier, and
this result indicates the considerable impact of differences in
urbanization on air quality. The high CV values of coal and
biomass combustion and industrial emissions are representa-
tive of the stronger spatial distribution patterns in Chengdu,
the high percentage contributions of which usually occurred
at sites with large-scale industrial factories and coal-fired
boilers. Frequent construction activities in developing areas
can considerably increase the percentage contribution of re-
suspended dust. The SWPSCF results were found to be sig-
nificantly different from the PSCF results. The changes in
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the identified potential source regions after source weighting
were in agreement with the spatial distribution of each source
contribution. This study presented a perspective on the rela-
tionship between PM2.5 and urbanization. Sampling activi-
ties that were conducted based on a 5-year measurement at 19
sites in different urbanization levels provided valuable data
for researchers. The results can be useful for further policy
formulation in most developing and polluted countries and
provide basic information for future epidemiological studies.
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