

Supplement of

Winter ClNO₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China

Men Xia et al.

Correspondence to: Tao Wang (cetwang@polyu.edu.hk)

The copyright of individual parts of the supplement might differ from the article licence.

Supplement of "Winter CINO₂ formation in the region of fresh anthropogenic emissions: Seasonal variability and insights into daytime peaks in northern China" by Men Xia et al.,

Table of Contents

Text S1. Technical details of N2O5 and ClNO2 measurements

Table captions

Table S1. Integration time of the signals recorded by the Q-CIMS in the winter campaigns.

Table S2. Sensitivities and detection limits of N₂O₅ and ClNO₂ measurements.

Table S3. The measured species and instruments in the field campaigns.

Table S4. Input parameters of the box model for case studies with high concentrations of daytime ClNO₂.

Table S5. Comparison of the influencing factors of $P(NO_3)$ in the winter and summer campaigns.

Table S6. A summary of $\gamma(N_2O_5)$ derived in the selected time periods of the winter campaigns.

Figure captions

Figure S1. A map showing the three observation sites over the NCP.

Figure S2. An example of the mass spectrum of Q-CIMS.

Figure S3. The signal of I³⁵ClNO₂⁻ and I³⁷ClNO₂⁻ during the ambient sampling and onsite calibrations.

Figure S4. The dependence of normalized N₂O₅ and ClNO₂ sensitivities on RH.

Figure S5. Summary of on-site calibrations of N₂O₅ and ClNO₂.

Figure S6. Multi-concentration calibrations of N_2O_5 and $ClNO_2$ conducted in the Mt. Tai campaign in March 2018.

Figure S7. Background signals of N₂O₅ and ClNO₂ in the winter field campaigns over the NCP.

Figure S8. Time series of some observed species in the winter campaigns.

Figure S9. Nocturnal relationship of the concentrations of N_2O_5 and $CINO_2$ in the winter and summer campaigns.

Figure S10. Examples of γ (N₂O₅) derived using the steady-state method.

Figure S11. Examples of other daytime-ClNO₂ cases observed during the winter Wangdu campaign.

Figure S12. The same to Fig. S11 but for the winter Beijing campaign.

Figure S13. The same to Fig. S11 and Fig. S12 but for the winter Mt. Tai campaign.

References

Section S1: technical details of N₂O₅ and ClNO₂ measurements

The detailed principle and description of technical aspects of the Q-CIMS, e.g., measures to minimize the inlet interference of N_2O_5 and $CINO_2$, are available in the

previous studies (Tham et al., 2016; Wang et al., 2016; Xia et al., 2020). Here we present the isotopic analysis of ClNO₂ signals and the normalized sensitivity of N₂O₅ and ClNO₂.

S1.1. Identification of ClNO₂ and N₂O₅

The primary ions, I^- and $I(H_2O)^-$, were recorded at 127 atomic mass unit (a.m.u.) (Fig. S2b) and 145 a.m.u. (Fig. S2c), respectively. The analytes, ClNO₂ and N₂O₅, were recognized as I³⁵ClNO₂⁻ (208 a.m.u., Fig. S2d), I³⁷ClNO₂⁻ (210 a.m.u., Fig. S2d), and $IN_2O_5^-$ (235 a.m.u.), respectively on the Q-CIMS spectrum. Before each campaign, we calibrated the mass so that the peak of N2O5 and ClNO2 signals points to 235.0 and 208.0. Manual scans of the mass spectrum (30~300 a.m.u.) were performed every day during the ambient sampling, in which the signals of I⁻, $I(H_2O)^-$, $I^{35}CINO_2^-$, $I^{37}CINO_2^-$, and IN₂O₅⁻ were recorded. The daily manual check of the peak shape and peak position ensures accurate identifications of the primary ions and analytes in this study. To further ensure the identity of ClNO₂, we compared the ratio of 208 a.m.u. and 210 a.m.u. signals during the ambient sampling and calibrations (Fig. S3). As for N₂O₅, field measurements at a rural site north of Beijing with a higher mass resolution spectrometer (HR-ToF-CIMS) showed no interference from other chemicals (Breton et al., 2018). However, a recent study revealed that hydroperoxymethyl thioformate, an oxidation product of dimethyl sulfide (DMS) by OH, does overlap with the N2O5 signal at 235 a.m.u in their iodide HR-ToF-CIMS (Veres et al., 2020). This interference was negligible at our three sites due to very low daytime signals of 235 a.m.u., typically below 15 pptv by assuming all 235 a.m.u. signals were N₂O₅. This result is consistent with anticipated low concentrations of DMS at our inland sites.

S1.2. Quantification of ClNO2 and N2O5

This section presents the sensitivity issues, detection limits, and uncertainty analysis of the Q-CIMS measurements. The detection limits of ClNO₂ and N₂O₅ (3σ , 5-min) are shown in Table S1. A detailed description of the uncertainty of N₂O₅ and ClNO₂ measurements (~19 %) is available in Xia et al. (2020). The sensitivity issues are introduced as follows.

On-site calibrations of ClNO₂ and N₂O₅ are referred to section 2.2 in the main text. The mixing ratios of ClNO₂ and N₂O₅ were calculated using the normalized sensitivity, which is essential to compensate for the potential changes in primary ions. The normalized sensitivity of ClNO₂ and N₂O₅ is defined as the signal ratio of 208 a.m.u. to 145 a.m.u. (I(H₂O)⁻) and 235 a.m.u. to 145 a.m.u. in the presence of 1-pptv ClNO₂ or N₂O₅, respectively. For example, a normalized sensitivity of 1.3×10^{-5} pptv⁻¹ of N₂O₅ indicates that the sensitivity of N₂O₅ is 1.3 Hz/pptv in the presence of 10^5 Hz of I(H₂O)⁻ signals. The normalized sensitivities of ClNO₂ ((0.9 - 1.8) × 10^{-5} pptv⁻¹) and N₂O₅ ((1.3 - 2.2) × 10^{-5} pptv⁻¹) are stable within each campaign (Fig. S5). A discrepancy of normalized sensitivities of ClNO₂ and N₂O₅ exists among different campaigns, owing to unknown factors, e.g., changes of instrument status after transport. We found a negative dependence of the normalized sensitivity of N₂O₅ on RH during the on-site calibrations (Fig. S4). While there is no obvious dependence of the normalized

sensitivity of ClNO₂ on RH.

Mass to charge ratio	Integration time (ms)	Mass to charge ratio	Integration time (ms)
62	287	210	287
145	587	217	287
163	290	222	290
165	287	223	287
173	287	234	286
174	287	235	1237
178	287	241	287
179	287	243	287
192	287	245	287
197	287	254	287
199	288	280	287
207	287	287	287
208	1239	289	288
209	287	291	287
Total int	egration time	10.2 s	

Table S1. Integration time of the signals recorded by the Q-CIMS in the winter campaigns.

|--|

Site	Wangdu	Beijing	Mt. Tai
Detection limit of N ₂ O ₅ ¹	7.3 ± 1.0	6.9 ± 1.6	6.9 ± 2.3
Detection limit of ClNO ₂ ¹	5.3 ± 1.3	3.9 ± 1.9	3.8 ± 1.9
Normalized sensitivity of N ₂ O ₅ ²	$(1.3 \pm 0.2) \times 10^{-5}$	$(2.2 \pm 0.2) \times 10^{-5}$	$(1.7 \pm 0.2) \times 10^{-5}$
Normalized sensitivity of ClNO2 ²	$(9.1 \pm 1.9) \times 10^{-6}$	$(1.8 \pm 0.2) \times 10^{-5}$	$(1.4 \pm 0.2) \times 10^{-5}$

^{1.} The detection limits (unit: pptv) are derived from the standard deviations of the signals (3σ in 5-min data) in the background testing.

². The unit for the normalized sensitivity is pptv⁻¹.

	T 1	1	•	1	•	•	.1	C 11	•
Table N4	The	measured	snecles	and	instruments	1n	the	tield	campatone
Table 55.	THC	measureu	species	and .	monumento	ш	une	nona	campaigns.

Measured species	Instruments	Detection limits	Time resolution
N ₂ O ₅ , ClNO ₂	Q-CIMS, THS	5~8 pptv	10 s
NO, NO ₂	42i-TL, Thermo Scientific	0.06 ppbv	1 min

NOy	EC9843, Ecotech	0.1 ppbv	1 min
CO	48i, Thermo Scientific	4 ppbv	1 min
SO ₂	43C, Thermo Scientific	0.1 ppbv	1 min
O ₃	49i, Thermo Scientific	0.5 ppbv	1 min
HONO	LOPAP-03, QUMA	5 pptv	1 min
jNO ₂	Filter Radiometer, metcon	4×10 ⁻⁵ s ⁻¹	10 s
PM _{2.5}	TEOM 1400A, Thermo Scientific	1 μg m ⁻³	1 min
VOCs	GC-MS/FID, Chromatotec Group	~10 pptv	1 h
PNSD	WPS 1000XP, MSP Corp.	1 particle cm ⁻³	1 min
NH4 ⁺ , Cl ⁻ , NO3 ⁻ , SO4 ²⁻	ACSM, Aerodyne Research Inc.	$0.01 \sim 0.06 \ \mu g \ m^{-3}$	10 min
	MARGA, Metrohm AG	$0.01 \sim 0.06 \ \mu g \ m^{-3}$	1 h

Table S4. Input parameters of the box model for case studies with high concentrations of daytime ClNO₂.

<u> </u>	me en (e2)			
No.	Parameter	Wangdu ¹	Beijing ¹	Mt. Tai ¹
1	$PM_{2.5} (\mu g m^{-3})$	162.23±90.64	116.47±69.33	66.65±37.11
2	RH (%)	69.22±7.67	33.78±14.67	85.52±14.43
3	Temp (°C)	-1.95 ± 2.77	1.43 ± 4.17	9.88±1.53
4	NO (ppbv)	87.84 ± 89.48	25.62±27.52	0.36 ± 0.35
5	NO ₂ (ppbv)	39.58 ± 7.68	37.24±19.28	3.83 ± 2.04
6	O ₃ (ppbv)	3.74±2.71	12.37 ± 10.57	59.79±8.6
7	CO (ppbv)	3156.92±1240.79	1881.1 ± 898.67	623.8±213.84
8	SO ₂ (ppbv)	11.87 ± 3.28	6.22±2.25	2.13±1.85
9	N ₂ O ₅ (ppbv)	$0.02{\pm}0.01$	0.07 ± 0.11	0.01 ± 0.02
10	ClNO ₂ (ppbv)	0.33±0.28	0.16 ± 0.17	0.26 ± 0.21
11	HONO (ppbv)	4.13±2.41	1.02 ± 0.46	0.13 ± 0.09
12	<i>j</i> NO ₂ (×10 ⁻³ s ⁻¹)	$0.59{\pm}0.86$	0.95 ± 1.43	0.88±1.23
13	Ethane	16.13±8	0.96 ± 0.42	$3.93{\pm}0.45$
14	Ethene	1.93 ± 1.42	0.43 ± 0.18	1.1±0.53
15	Propane	6.48 ± 2.96	6.03 ± 0.9	$1.94{\pm}0.52$
16	Propene	5.53±4.27	2.02 ± 0.81	0.15 ± 0.09
17	i-Butane	1.93 ± 0.51	$0.79{\pm}0.28$	0.39±0.16
18	n-Butane	3.84±1.14	1.18 ± 0.69	0.74 ± 0.33
19	Ethyne	6.04 ± 3.53	0.38 ± 0.36	2.1±0.32
20	trans-2-Butene	0.27 ± 0.26	-	0.01 ± 0.01
21	1-Butene	0.77 ± 0.61	$0.04{\pm}0.01$	0.03 ± 0.02
22	cis-2-Butene	$0.14{\pm}0.05$	0.15 ± 0.04	0.01 ± 0.01
23	Cyclopentane	2.67 ± 0.7	$0.02{\pm}0$	$0.04{\pm}0.02$
24	i-Pentane	0.21±0.17	-	0.35±0.18

25	n-Pentane	1.53 ± 0.51	-	0.25±0.11
26	Freon114	$0.03{\pm}0$	-	$0.02{\pm}0$
27	Chloromethane	0.45 ± 0.06	-	1.1±0.31
28	1,3-Butadiene	0.27 ± 0.23	$0.04{\pm}0.01$	$0.02{\pm}0.01$
29	Bromomethane	0.01 ± 0	-	0.06 ± 0.06
30	Freon11	$0.4{\pm}0.04$	-	$0.26{\pm}0.01$
31	1-Pentene	0.18 ± 0.15	$0.02{\pm}0.01$	0.01 ± 0.01
32	trans-2-Pentene	$0.14{\pm}0.11$	-	-
33	Isoprene	0.13±0.12	0.01 ± 0	0.01 ± 0.01
34	Freon113	$0.07{\pm}0$	$0.07{\pm}0$	$0.08{\pm}0$
35	Dichloromethane	1.64 ± 0.98	-	0.45 ± 0.08
36	2-Methylpentane	$0.44{\pm}0.15$	-	0.06 ± 0.03
37	3-Methylpentane	0.36 ± 0.09	-	$0.04{\pm}0.02$
38	2,2-Dimethylbutane	0.05 ± 0.01	-	-
39	2,3-Dimethylbutane	$0.07{\pm}0.03$	-	-
40	n-hexane	0.62 ± 0.23	$0.22{\pm}0.05$	0.09 ± 0.05
41	2-Propenal	0.03 ± 0.02	0.13±0	2.91±1.29
42	2,4-Dimethylpentane	-	-	-
43	Chloroform	0.66 ± 0.21	-	0.32 ± 0.14
44	Methyl chloroform	0.01 ± 0	-	0±0
45	Carbon tetrachloride	0.15 ± 0.01	-	0.11 ± 0.02
46	Cyclohexane	$0.18{\pm}0.05$	0.33±0.16	-
47	3-Methylhexane	-	$0.03{\pm}0.01$	-
48	Methyl tert-butyl ether	0.16 ± 0.05	-	-
49	Benzene	4.25±2.63	1.58 ± 0.37	0.71 ± 0.19
50	2,2,4-Trimethylpentan	0.07 ± 0.03	-	0.02 ± 0.01
51	n-Heptane	0.24 ± 0.13	0.06 ± 0.03	$0.04{\pm}0.02$
52	Toluene	3.28 ± 1.58	0.61 ± 0.31	0.37 ± 0.24
53	n-Octane	0.17 ± 0.1	0.06 ± 0.04	0.03 ± 0.01
54	Ethylbenzene	0.47 ± 0.25	$0.14{\pm}0.07$	0.09 ± 0.03
55	n-Nonane	0.13 ± 0.09	$0.01 {\pm} 0.01$	$0.04{\pm}0.02$
56	m-Xylene	1.15 ± 0.65	0.29 ± 0.12	0.1 ± 0.04
57	o-Xylene	0.41 ± 0.28	0.11 ± 0.06	0.05 ± 0.02
58	Styrene	0.39 ± 0.31	$0.03{\pm}0.01$	0.01 ± 0.01
59	Isopropylbenzene	0.04 ± 0.02	-	0.01 ± 0
60	Propylbenzene	0.04 ± 0.02	$0.02{\pm}0.01$	0.01 ± 0.01
61	n-Decane	0.09 ± 0.07	0.15 ± 0.07	0.02 ± 0.01
62	1,3,5-Trimethylbenzene	0.06 ± 0.04	$0.02{\pm}0.01$	0.01 ± 0.01
63	1,2,4-Trimethylbenzene	0.16 ± 0.12	0.06 ± 0.02	0.02 ± 0.01
64	1,2,3-Trimethylbenzene	-	0.1 ± 0.03	-
65	Methane	2000.00^4	2000.00 ⁴	2044.15±30.31
66	Formaldehyde	$3.54{\pm}1.03$	3.18±0 ³	4.93±1.53
67	Acetaldehyde	2.93 ± 0.69	2.5±0 ³	2.17 ± 0.52
68	Propionaldehyde	0.41 ± 0.07	0.29 ± 0^{3}	0.17 ± 0.07

69	Acetone	2.3 ± 0.75	$2.57{\pm}0^{3}$	5.11±1.7
70	Butyraldehyde	0.85 ± 0.14	0.17±0 ³	1.5 ± 0.47
71	Benzaldehyde	$0.18{\pm}0.03$	0.16±0 ³	0.11±0.03
72	n-Pentanal	$0.27{\pm}0.04$	$0.04{\pm}0^{2}$	0.19 ± 0.04
73	Hexanal	$0.12{\pm}0$	0.16±0 ²	0.13 ± 0.04

¹ 24-h average values \pm standard deviations are shown here. The units of VOCs and OVOCs are ppbv. "-" indicates that the parameter is not constrained in the model.

² The mixing ratio of this species is adopted from Gu et al. (2019).

³ The mixing ratio of this species is adopted from Qian et al. (2019).

⁴ The mixing ratio of this species is adopted from Tan et al. (2917).

Table S5. Comparison of the influencing factors of $P(NO_3)$ in the winter and summer campaigns.

Place/Season	T (K)	k_1 (cm ³ /molecule/s)	NO ₂ (ppbv)	O ₃ (ppbv)	[NO ₂]×[O ₃] (molecule ² /cm ⁶)	P(NO ₃) (ppbv/h)
Wangdu						
Winter	271.8±3.2	(1.5±0.2)×10 ⁻¹⁷	34.1±13.0	4.7±4.5	$(0.9\pm0.7)\times10^{23}$	0.20±0.15
Summer	298.1±3.4	(3.2±0.3)×10 ⁻¹⁷	16.8±9.7	37.8±26.2	$(2.5\pm2.1)\times10^{23}$	1.34±1.09
Beijing						
Winter	270.3±3.7	(1.4±0.2)×10 ⁻¹⁷	27.9±19.1	14.5±11.5	$(1.5\pm1.0)\times10^{23}$	0.28±0.18
Early summer	295.3±4.5	(3.0±0.4)×10 ⁻¹⁷	23.6±13.6	27.2±20.6	(2.9±2.4)×10 ²³	1.36±1.27
Mt. Tai	_					
Winter to early spring	277.1±5.8	(1.8±0.3)×10 ⁻¹⁷	2.0±1.7	65.1±14.1	(0.8±0.6)×10 ²³	0.21±0.16
Summer	289.8±2.1	(2.6±0.2)×10 ⁻¹⁷	3.1±3.2	77.8±20.1	(1.5±1.5)×10 ²³	0.56±0.55

Table S6. A summary of $\gamma(N_2O_5)$ derived in the selected time periods of the winter campaigns.

Start Time	End Time	$\gamma(N_2O_5)$	φ(ClNO ₂)
Wangdu			
12/17/17 1:10	12/17/17 4:20	0.0150	0.037
12/24/17 23:40	12/25/17 1:30	0.0060	0.053
Beijing			
1/20/18 3:45	1/20/18 6:05	0.0075	0.630
1/25/18 23:40	1/25/18 2:20	0.0125	0.061
1/26/18 2:50	1/26/18 6:05	0.0149	0.038
Mt. Tai			
3/9/18 18:10	3/9/18 20:00	0.0525	0.797

3/24/18 19:20	3/24/18 21:00	0.0036	0.545
3/24/18 18:00	3/25/18 2:00	0.0060	0.179
3/25/18 21:00	3/26/18 2:00	0.0118	0.273

Figure S1. A map showing the three observation sites over the NCP.

Figure S2. An example of the mass spectrum of Q-CIMS. (a) A full mass spectrum from 30 to 300 a.m.u. (b), (c), and (d) are expanded views of the mass spectrum for I⁻, $I(H_2O)^-$, and $ICINO_2^-$, respectively.

Figure S3. The signal of $I^{35}CINO_2^-$ and $I^{37}CINO_2^-$ during the ambient sampling and onsite calibrations. **(a)-(c)** represent the signals of 208 a.m.u. and 210 a.m.u. during the ambient observations on the daytime of 28 Dec 2017 in Wangdu, 14 January 2018 in Beijing, and 29 March 2018 in Mt. Tai, respectively. **(d)-(f)** show the respective signals of 208 a.m.u. and 210 a.m.u. during the on-site calibrations in Wangdu, Beijing, and Mt. Tai, respectively.

Figure S4. The dependence of normalized N₂O₅ and ClNO₂ sensitivities (unit: $pptv^{-1}$) on RH. The dots with different colors were experiment data in Wangdu, Beijing, and Mt. Tai, respectively. The N₂O₅ sensitivities were fitted by a quadratic function in the form of $y=ax^2+bx+c$.

Figure S5. Summary of on-site calibrations of N2O5 and ClNO2. The unit of the

normalized sensitivity of N₂O₅ and ClNO₂ is pptv⁻¹.

Figure S6. Multi-concentration calibrations of N₂O₅ and ClNO₂ conducted in the Mt. Tai campaign in March 2018.

Figure S7. Background signals of N₂O₅ and ClNO₂ in the winter field campaigns over the NCP.

Figure S8. Time series of some observed species in the winter campaigns. (a) the Wangdu campaign in December 2017, (b) the Beijing campaign in January 2018, and

(c) the Mt. Tai campaign in March 2018.

Figure S9. Nocturnal relationship of the concentrations of N_2O_5 and $CINO_2$ in the winter and summer campaigns in Wangdu, Beijing, and Mt. Tai. The dashed line in red shows a 1:1 ratio of the concentrations of N_2O_5 and $CINO_2$.

Figure S10. Examples of $\gamma(N_2O_5)$ derived using the steady-state method. (a) 16 December 2017 in Wangdu, (b) 25 January in Beijing, and (c) 24 March in Mt. Tai.

Figure S11. Examples of other daytime-ClNO₂ cases observed during the winter Wangdu campaign.

Figure S12. The same to Fig. S11 but for the winter Beijing campaign.

Figure S13. The same to Fig. S11 and Fig. S12 but for the winter Mt. Tai campaign.

References:

Veres, P. R., Neuman, J. A., Bertram, T. H., Assaf, E., Wolfe, G. M., Williamson, C. J.,
Weinzierl, B., Tilmes, S., Thompson, C. R., Thames, A. B., Schroder, J. C., Saiz-Lopez,
A., Rollins, A. W., Roberts, J. M., Price, D., Peischl, J., Nault, B. A., Møller, K. H.,
Miller, D. O., Meinardi, S., Li, Q., Lamarque, J.-F., Kupc, A., Kjaergaard, H. G.,
Kinnison, D., Jimenez, J. L., Jernigan, C. M., Hornbrook, R. S., Hills, A., Dollner, M.,
Day, D. A., Cuevas, C. A., Campuzano-Jost, P., Burkholder, J., Bui, T. P., Brune, W. H.,
Brown, S. S., Brock, C. A., Bourgeois, I., Blake, D. R., Apel, E. C., and Ryerson, T. B.:
Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation
mechanism in the marine atmosphere, Proceedings of the National Academy of
Sciences, 117, 4505-4510, 10.1073/pnas.1919344117, 2020.