

Supplement of

Improved gridded ammonia emission inventory in China

Baojie Li et al.

Correspondence to: Hong Liao (hongliao@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supplement of

Improved gridded ammonia emission inventory in China

Baojie Li¹, Lei Chen¹, Weishou Shen¹, Jianbing Jin¹, Teng Wang², Pinya Wang¹, Yang Yang¹, and Hong Liao^{1*}

¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China

² College of Oceanography, Hohai University, Nanjing, 210098, China

Corresponding author: Hong Liao (hongliao@nuist.edu.cn)

Number of sections:2 Number of tables: 6 Number of figures: 3

Section List

Section S1 Sources of fertilization application timing and frequency Section S2 WRF-Chem model configuration

Table List

Table S1 Basal and topdressing fertilization dates for maize, wheat and rice in mainland China (2016)
Table S2 Emission factor index for fertilizer application
Table S3 The parameters used in estimates of annual TAN excretion per cattle
Table S4 The EF and spatial allocation methods of NH3 emission sources
Table S5 Main sources of the fertilization application timing and frequency for the three main
crops: rice, maize, and wheat.
Table S6 Parameterizations used in the WRF-Chem model

Figure list

Fig. S1 Spatial distribution of single-season rice, middle rice and early/late rice.

Fig. S2 Geographical distribution of NH3 emission from fertilizer application, livestock wastes, and others in mainland China (2016).

Fig. S3 Comparison between IASI-based VCDs and simulated NH3 VCDs obtained in this study and MEIC, for January, April, July, and October. The range of the axes on the scatter plots for the different months is not the same.

Section S1 Sources of fertilization application timing and frequency

We evaluated the fertilizer application timing and frequency for rice, maize, and wheat crops in different regions by collecting data from a large number of studies and the technical guidelines for field management in each province in 2016. Table S5 lists the main data sources for the fertilization application timing and frequency. Most of the collected reports/websites were published by the national or provincial governments in 2016.

Section S2 WRF-Chem model configuration

A fully coupled online Weather Research and Forecasting with Chemistry model (WRF-Chem v3.7) is used to evaluate the accuracy of different NH₃ emission inventories. The WRF-Chem model is designed to cover most parts of North, East, Central, and South China at the horizontal resolutions of 27 km (Fig.2). The vertical dimension is resolved by 46 full sigma levels, with 18 layers located in the bottom 2 km for finer resolution in the planetary boundary layer; the height of the first layer averaged over the analyzed region is about 30 m.

Meteorological initial and lateral boundary conditions used in the WRF-Chem model are taken from the NCEP (National Center for Environmental Prediction) (Final) Operational Global Analysis data with a spatial resolution of $1^{\circ} \times 1^{\circ}$. The forecasts from the MOZART-4 global chemical transport model are processed to provide the chemical initial and boundary conditions for the WRF-Chem model (Emmons et al., 2010).

Air pollutants emissions (including SO₂, NO_x, CO, CO₂, NMVOC, BC, OC, PM_{2.5}, and PM₁₀) of 2016 were obtained from Multi-resolution Emission Inventory for China (MEIC) (http://meicmodel.org/), with the horizontal resolution of 0.25° (Li et al., 2017). The emission rate of each species for each hour is based on Gao et al. (2015). The biogenic emissions are calculated online using the MEGANv2.04 (Model of Emission of Gases and Aerosol from Nature v2.04) model (Guenther et al., 2006). Biomass-burning emissions are obtained from the GFEDv3 (Global Fire Emissions Database v3) (Randerson et al., 2005). Dust emissions and sea salt emissions are calculated online using algorithms proposed by Shao (2004) and Gong et al. (1997), respectively.

The Carbon Bond Mechanism Z (CBM-Z) is selected as the gas-phase chemical mechanism (Zaveri and Peters, 1999), and the full 8-bin MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) aerosol module with aqueous chemistry is used to simulate aerosol evolution (Zaveri et al., 2008). The photolysis rates are calculated by the Fast-J scheme (Wild et al., 2000). Aerosol radiation is simulated using RRTMG (Rapid Radiative Transfer Model for GCMs) for both shortwave (SW) and longwave (LW) radiation (Zhao et al., 2011). Other major physical parameterizations used in this study are listed in Table S6.

р [.]	C	D1	Topdressing		
Province	Crop	Basal	First	Second	
D - !!!!	Winter wheat	September 21-October 20	March 21-April 10	April 21-May 10	
Beijing	Summer maize	June 1-20	July 11-31	August 1-20	
	Spring wheat	April 11-20	June 1-20	July 1-10	
T ::	Single-season rice	June 1-10	June 21-July 20	August 1-10	
Tanjin	Winter wheat	September 21-October 20	March 21-April 10	April 21-May 10	
	Summer maize	June 1-20	July 11-31	August 1-20	
	Single-season rice	June 1-10	June 21-July 20	August 1-10	
Hebei	Winter wheat	September 21-October 20	March 21-April 10	April 21-May 10	
	Summer maize	June 1-20	July 11-31	August 1-20	
	Spring maize	April 21-May 10	June 11-July 20	July 11-August 20	
Shanxi	Winter wheat	September 21-October 10	March 21-April 10	April 21-May 10	
	Summer maize	June 1-20	July 11-31	August 1-20	
Inner	Spring wheat	April 11-20	June 1-20	July 1-10	
Inner	Spring maize	April 21-May 10	June 11-July 20	July 11-August 20	
Wongona	Single-season rice	May 1-20	June 11-20	July 11-31	
Liconina	Spring maize	April 21-May 10	June 11-July 20	July 11-August 20	
Liaoning	Single-season rice	May 1-20	June 11-20	July 11-31	
Jilin	Spring maize	April 21-May 10	June 11-July 20	July 11-August 20	
	Single-season rice	May 1-20	June 11-20	July 11-31	
	Spring wheat	April 11-20	June 1-20	July 1-10	
Heilongjiang	Spring maize	April 21-May 10	June 11-July 20	July 11-August 20	
	Single-season rice	May 1-20	June 11-20	July 11-31	
	Single-season rice	May 11-31	June 11-30	July 11-31	
Shanghai	Winter wheat	October 11-31	March 21-April 10	April 21-May 10	
	middle rice	June 1-20	July 11-20	August 1-20	
	Single-season rice	May 11-31	June 11-30	July 11-31	
Liangeu	Winter wheat	October 11-November 20	March 11-April 20	April 11-May 20	
Jiangsu	Summer maize	June 1-20	July 11-31	August 1-20	
	middle rice	June 1-20	July 11-20	August 1-20	
	Single-season rice	May 11-31	June 11-30	July 11-31	
	Winter wheat	October 11-November 20	March 11-April 20	April 11-May 20	
Theijang	Late rice	July 11-31	August 1-20	September 1-20	
Znejlang	Summer maize	June 1-20	July 11-31	August 1-20	
	Early rice	April 21-May 10	May 11-31	June 1-20	
	middle rice	June 1-20	July 11-20	August 1-20	
	Single-season rice	May 11-31	June 11-30	July 11-31	
	Winter wheat	October 11-November 20	March 11-April 20	April 11-May 20	
Anhui	Late rice	July 11-31	August 1-20	September 1-20	
2 111141	Summer maize	June 1-20	July 11-31	August 1-20	
	Early rice	April 21-May 10	May 11-31	June 1-20	
	middle rice	June 1-20	July 11-20	August 1-20	

 Table S1. Basal and topdressing fertilization dates for maize, wheat, and rice in mainland China (2016)

July 11-31
entember 1-20
August 1-20
June 1-20
August 1-20
Iuly 11-31
ril 11-May 20
entember 1, 20
August 1 20
August 1-20
June 1-20
August 1-20
August 1-10
ril 21-May 10
August 1-20
July 11-31
ril 21-May 10
August 1-20
August 1-20
July 11-31
ril 11-May 20
ptember 11-30
August 1-20
June 1-20
August 1-20
July 11-31
ril 11-May 20
ptember 11-30
August 1-20
June 1-20
August 1-20
ptember 11-30
August 1-20
June 1-20
July 11-31
ptember 11-30
August 1-20
June 1-20
August 1-20
ptember 11-30
June 1-20
June 1-20
July 11-31
ary 10-March 20
August 1-20

	Spring maize	March 11-April 20	May 21-31	June 1-20
0' 1	Single-season rice	May 1-20	June 11-30	July 11-31
Sichuan	Winter wheat	October 21-November 20	January 11-Febuary 20	February 10-March 20
	middle rice	June 1-20	July 11-20	August 1-20
	Spring maize	March 11-April 20	May 21-31	June 1-20
Cui-tur	Single-season rice	May 1-20	June 11-30	July 11-31
Guiznou	Winter wheat	October 21-November 20	January 11-Febuary 20	February 10-March 20
	middle rice	June 1-20	July 11-20	August 1-20
	Spring maize	March 11-April 20	May 21-31	June 1-20
	Single-season rice	May 1-20	June 11-30	July 11-31
Vuenon	Winter wheat	October 21-November 20	January 11-Febuary 20	February 10-March 20
i unnan	Late rice	August 11-20	September 1-10	October 11-20
	Early rice	February 11-20	March 11-20	April 1-20
	middle rice	June 1-20	July 11-20	August 1-20
Tibet	Winter wheat	October 21-November 20	January 11-Febuary 20	February 10-March 20
	Spring maize	April 21-May 10	June 11-30	July 11-31
Shaanxi	Single-season rice	May 1-10	June 11-20	July 11-31
	Winter wheat	September 11-October 20	March 11-31	April 11-30
	Spring wheat	March 11-April 20	May 21-31	June 11-30
Gansu	Spring maize	April 21-May 10	June 11-30	July 11-31
	Winter wheat	September 11-October 20	March 11-31	April 11-30
Oin shai	Spring wheat	March 11-April 20	May 21-31	June 11-30
Qinghai	Spring maize	April 21-May 10	June 11-30	July 11-31
	Spring wheat	March 11-April 20	May 21-31	June 11-30
Ningvia	Spring maize	April 21-May 10	June 11-30	July 11-31
ININGXIA	Single-season rice	May 1-10	June 11-20	July 11-31
	Winter wheat	September 11-October 20	March 11-31	April 11-30
	Spring wheat	March 11-April 20	May 21-31	June 11-30
Viniiono	Spring maize	April 11-May 20	June 11-30	July 11-31
Amjiang	Single-season rice	May 1-20	June 11-20	July 11-31
	Winter wheat	September 11-October 20	March 11-31	April 11-30

Note: Farmers often fertilize crops according to their planting experiences and available time, resulting in some uncertainty around the fertilization dates.

Factor		Value	References
EF ₀	urea	17.4 % NH3-N	(Cai et al., 2002; Dong
	ammonium bicarbonate	21.3% NH3-N	et al., 2009; Zhou et al.,
	diammonium phosphate	7.3% NH3-N	2016; Zhao et al., 2020)
	NPK compound fertilizer	5% NH3-N	
	other	4% NH3-N	
Crop	Upland crops	-0.045	(Zhang et al., 2018)
	Flooded crops	0	
Method	Basal	-1.139	(Huang et al., 2012)
	Тор	0	
Soil pH		0.067×pH ² -0.69×pH+0.68	(Bouwman et al., 2002;
			Zhang et al., 2018)
Soil CEC	CEC ≤16	0.088	(Zhang et al., 2018)
	16 <cec≤24< td=""><td>0.012</td><td></td></cec≤24<>	0.012	
	24 <cec≤32< td=""><td>0.163</td><td></td></cec≤32<>	0.163	
	CEC>32	0	

Table S2. Emission factor index for fertilizer application

Note: for soil pH, a second-order function is applied to fit the segmental values given in (Bouwman et al., 2002; Zhang et al., 2018).

	D · · · · · · · ·	Excretion	(kg/cattle/day)	Nitrogen content (%)		TAN
	Raising cycle					
		Urine	Excrement	Urine	Excrement	
beef cattle	365	10	20	0.9	0.38	60
dairy cow	365	19	40	0.9	0.38	60
goat	365	0.75	2.6	1.35	0.75	50
sheep	365	0.75	2.6	1.35	0.75	50
rabbit	55	0.3	0.15	0.15	1.72	45
horse/donkey/mule	365	6.5	15	1.4	0.2	60
SOW	365	5.7	2.1	0.4	0.34	70
fattening pig	75	3.2	1.5	0.4	0.34	70
camel	365	6.5	15	1.4	0.2	60
meat duck	55	-	0.1	-	1.1	70
meat goose	70	-	0.1	-	0.55	70
broilers	50	-	0.09	-	1.63	70
laying hen	365	-	0.12	-	1.63	70
laying duck	365	-	0.13	-	1.1	70

Table S3. The parameters used in estimates of annual TAN excretion per cattle

Category	Subcategory	EF	Spatial allocation
Transportation	light-duty gasoline vehicles	0.026 g/km	Road density ^a
	heavy-duty gasoline vehicles	0.028 g/km	
	light-duty diesel vehicles	0.004 g/km	
	heavy-duty diesel vehicles	0.017 g/km	
	motorcycles	0.007 g/km	
Residential &	human excrement	787 g/capita	Rural population ^b
commercial	indoor firewood combustion	1.3 g/kg	
	indoor wheat burning	0.52 g/kg	
	indoor rice burning	0.37 g/kg	
	Indoor maize burning	0.68 g/kg	
	domestic coal combustion	1 g/kg	Population ^b
	domestic oil combustion	120 g/10 ³ L	
	domestic gas combustion	3203.8 g/10 ⁴ m ³	
Industry	synthetic ammonia	787 g/t	Sub-national fuel data
	nitrogen fertilizers production	5000 g/t	disaggregation method using
	wastewater treatment	$30 \text{ g}/10^4 \text{ m}^3$	POI (SDMP) °
	waste landfill	0.0073 kg/kg CH4	
	waste incineration	210 g/t	
	coal combustion	10 g/t	
	oil combustion	100 g/10 ³ L	
_	gas combustion	512.6 g/10 ⁴ m ³	
Others	agricultural soil	1800 g/ha	Cropland ^d
	nitrogen-fixing plants (soybean)	1050 g/ha	Soybean harvest areas ^e
	nitrogen-fixing plants (peanuts)	1200 g/ha	Groundnut harvest areas ^e
	outdoor straw burning	0.53 g/kg	based on the gridded burned
			area in cropland ^f
	Forest fires	2.9 g/kg	Gridded burned areas in forest ^f
	Grassland fires	0.7 g/kg	Gridded burned areas in grass ^f

Table S4. The EF and spatial allocation methods of NH₃ emission sources

^a The road networks were derived from the OpenStreet data (http://www.geofabrik.de).

^b The population data in 2016 were downloaded at https://landscan.ornl.gov/download.

^c Details about the DPOI allocation method were previously discussed (Li et al., 2019).

^d The cropland was derived from the Resource and Environment Science and Data Center.

(http://www.resdc.cn/data.aspx?DATAID=184).

^e The harvest areas of each crop were derived from the EarthStat dataset.

^f The gridded burned area data were determined by coupling the MCD64A1 and MCD14ML fire products based on previous studies (Li et al., 2018; Qiu et al., 2016).

Crops	Regions	Sources
Wheat	Major regions of China	http://www.moa.gov.cn/ztzl/ql/jszd/201602/t20160223_5024971.htm
		http://www.moa.gov.cn/ztzl/2016ncg/jszd/201603/t20160317_5058189.htm
		http://www.moa.gov.cn/gk/nszd_1/2016nszd/201609/t20160922_5282096.htm
	Southwest China	http://www.moa.gov.cn/ztzl/2016ncg/jszd/201602/t20160205_5009571.htm
	North of China	http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201609/t20160928_323755.html
	Hebei	http://nync.hebei.gov.cn/article/tzgg/201603/20160300000999.shtml
		http://nync.hebei.gov.cn/article/tzgg/201509/20150990059492.shtml
	Shandong	https://www.tuliu.com/read-29459.html
	Anhui	http://nync.ah.gov.cn/snzx/sxxx/11016591.html
		https://www.tuliu.com/read-24814.html
	Shanxi	https://www.tuliu.com/read-26184.html
	Henan	https://www.163.com/dy/article/F6NFH60I05322B99.html
	Jiangsu	https://www.sohu.com/a/291887309_99951299
	Hubei	http://www.ampcn.com/info/detail/22904.asp
	Sichuan	http://www.mynky.cn/Html/FuWuSanNong/NongJiBaiKe/202101/2Io4Me8Am4Ut41491796.html
	Shaanxi	https://baijiahao.baidu.com/s?id=1692466171471969276𝔴=spider&for=pc
	Gansu	https://www.longnan.gov.cn/4455585/15819653.html
	Xinjiang	http://nynct.xinjiang.gov.cn/nynct/ywnjtg/201603/a08b46a4c9f54dc7ada0ee185045f289.shtml
		https://www.sohu.com/a/345312778_100082336
Maize	Northeast China	http://www.moa.gov.cn/ztzl/ql/jszd/201605/t20160506_5120809.htm
		http://www.moa.gov.cn/gk/nszd_1/2016nszd/201607/t20160726_5218391.htm
	Major regions of China	http://www.moa.gov.cn/ztzl/2016ncg/jszd/201603/t20160317_5058189.htm
	Huang-Huai-Hai region	http://www.agri.cn/V20/ZX/nyyw/201606/t20160606_5162723.htm
	Southwest China	http://www.moa.gov.cn/ztzl/ql/jszd/201508/t20150824_4802201.htm
	Hebei	http://nync.hebei.gov.cn/article/tzgg/201607/20160700001943.shtml
		http://nync.hebei.gov.cn/article/tzgg/201607/20160700001943.shtml
	Shandong	https://www.sohu.com/a/164032835_266055
	Jiangsu	http://www.ampcn.com/info/content.asp?newsid=26871
	Liaoning	http://www.moa.gov.cn/xw/qg/201505/t20150522_4609518.htm
	Jilin	http://www.moa.gov.cn/xw/qg/202108/t20210827_6375068.htm
		http://www.jlates.cn/zwzp/144.html
		http://www.jlates.cn/zwzp/230.html
	Heilongjiang	http://www.agri.cn/V20/syjs/zzjs/201202/t20120206_2475334.htm
		https://www.tuliu.com/read-31938.html
	Henan	http://www.xxagri.org.cn/news/10_1745
		http://nynct.henan.gov.cn/2019/06-14/934805.html
	Hubei	http://www.jiangxia.gov.cn/msrd_22342/202102/t20210222_1637576.html
	Guangxi	http://nynct.gxzf.gov.cn/xwdt/gxlb/nn/t1837418.shtml
		http://www.gxny.gov.cn/xwdt/syjs/t617158.html
	Chongqing	http://www.cqaas.cn/nky/index/detail/id/314.html
	Yunnan	http://news.wugu.com.cn/article/830800.html

Table S5. Main sources of the fertilization application timing and frequency for the three main crops: rice, maize, and wheat.

	Gansu	http://www.moa.gov.cn/ztzl/ql/dtbd/200907/t20090709_1307301.htm		
	Ningxia	http://www.nx12346.com/zxkt/zjwg/zjzzjs/zjls/202105/t20210529_398362.html		
	Xinjiang	https://www.sohu.com/a/379144178_293364		
Rice	Major regions of China	http://www.moa.gov.cn/ztzl/2016ncg/jszd/201603/t20160317_5058189.htm		
	Middle and lower	http://www.moa.gov.cn/ztzl/2016ncg/jszd/201605/t20160512_5126581.htm		
	reaches of Yangtze River			
	Northeast China	https://news.cnhnb.com/rdzx/detail/385809/		
	South of China	http://www.moa.gov.cn/gk/nszd_1/2016nszd/201604/t20160405_5083015.htm		
		http://www.moa.gov.cn/gk/nszd_1/2016nszd/201606/t20160619_5180240.htm		
		http://www.moa.gov.cn/gk/nszd_1/2016nszd/201607/t20160714_5206812.htm		
		http://www.moa.gov.cn/xw/zwdt/201607/t20160728_5221628.htm		
	Southwest China	http://www.moa.gov.cn/gk/nszd_1/2019/201907/t20190719_6321226.htm		
	Jiangsu	http://www.agri.cn/kj/syjs/zzjs/201604/t20160418_5098223.htm		
		http://nynct.jiangsu.gov.cn/art/2017/8/22/art_13469_6156717.html		
	Henan	http://nynct.henan.gov.cn/2019/06-14/934805.html		
	Anhui	http://nync.ah.gov.cn/public/7021/11273021.html		
	Heilongjiang	https://www.tuliu.com/read-31938.html		
	Jilin	http://www.jlates.cn/zwzp/111.html		
		http://www.jlates.cn/zwzp/144.html		
		http://www.jlates.cn/zwzp/230.html		
	Zhejiang	http://www.ruian.gov.cn/art/2016/6/1/art_1229181511_1222768.html		
		http://www.zjpy.gov.cn/art/2015/9/21/art_1229252500_3953190.html		
		http://nyncj.ningbo.gov.cn/art/2016/8/22/art_1229058373_48548981.html		
	Fujian	http://nynct.fujian.gov.cn/xxgk/gzdt/xxkd/201606/t20160621_2559895.htm		
		http://nynct.fujian.gov.cn/xxgk/gzdt/xxkd/201607/t20160729_2558957.htm		
	Jiangxi	http://nync.jiangxi.gov.cn/art/2019/6/10/art_27910_908458.html		
		http://nync.jiangxi.gov.cn/art/2020/8/25/art_27910_2808929.html		
	Hubei	http://www.jiangxia.gov.cn/msrd_22342/202102/t20210222_1637576.html		
		http://nyncj.wuhan.gov.cn/xwzx_25/xxlb/202001/t20200103_494873.html		
	Hunan	http://www.agri.cn/kj/nyhljc/qy/201603/t20160331_5078911.htm		
	Guangxi	http://www.gxny.gov.cn/xwdt/gxlb/nn/t608354.html		
		http://www.gxny.gov.cn/xwdt/syjs/t617158.html		
	Chongqing	http://www.cqaas.cn/nky/index/detail/id/312.html		
	Hainan	http://www.gov.cn/xinwen/2016-04/06/content_5061635.htm		
	Sichuan	http://www.mynky.cn/Html/FuWuSanNong/NongJiBaiKe/202006/1Hb7Hk3Ac0Sf19181709.html		

Note: These websites were accessed on September 20, 2021. Most of these websites were published by the national or provincial governments in 2016.

Options	WRF-Chem	
Microphysics option	Purdue Lin Scheme	
Longwave radiation option	RRTMG Scheme	
Shortwave radiation option	RRTMG Scheme	
Surface layer option	Revised MM5 Monin-Obukhov Scheme	
Land surface option	Unified Noah land-surface model	
Urban canopy model	Single-layer UCM Scheme	
Boundary layer option	YSU Scheme	
Cumulus option	Grell 3D ensemble Scheme	
Photolysis scheme	Fast-J	
Dust scheme	Shao_2004	
Chemistry option	CBMZ	
Aerosol option	MOSAIC	

Table S6. Parameterizations used in the WRF-Chem model

Fig. S1. Spatial distribution of single-season rice, middle rice and early/late rice.

Fig. S2. Geographical distribution of NH3 emission from fertilizer application, livestock wastes, and others in mainland China (2016).

Fig. S3. Comparison between IASI-based VCDs and simulated NH₃ VCDs obtained in this study and MEIC, for January, April, July, and October. The range of the axes on the scatter plots for the different months is not the same.

References

- Bouwman, A., Boumans, L., and Batjes, N.: Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands, Global Biogeochemical Cycles, 16, 8-1-8-14, 2002.
- Cai, G. X., Chen, D. L., Ding, H., Pacholski, A., Fan, X. H., and Zhu, Z. L.: Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain, Nutrient Cycling in Agroecosystems, 63, 187-195, 10.1023/A:1021198724250, 2002.
- Dong, Y., Chen, C., Huang, C., Wang, H., Li, L., Dai, P., and Jia, J.: Anthropogenic emissions and distribution of ammonia over the Yangtze River Delta, Acta Scientiae Circumstantiae, 29, 1611-1617, 2009.
- Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43-67, 10.5194/gmd-3-43-2010, 2010.
- Gao, Y., Zhang, M., Liu, Z., Wang, L., Wang, P., Xia, X., Tao, M., and Zhu, L.: Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain, Atmos. Chem. Phys., 15, 4279-4295, 10.5194/acp-15-4279-2015, 2015.
- Gong, S. L., Barrie, L. A., and Blanchet, J. P.: Modeling sea-salt aerosols in the atmosphere: 1. Model development, Journal of Geophysical Research: Atmospheres, 102, 3805-3818, https://doi.org/10.1029/96JD02953, 1997.
- Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210, 10.5194/acp-6-3181-2006, 2006.
- Huang, X., Song, Y., Li, M. M., Li, J. F., Huo, Q., Cai, X. H., Zhu, T., Hu, M., and Zhang, H. S.: A highresolution ammonia emission inventory in China, Global Biogeochemical Cycles, 26, Artn Gb1030, 10.1029/2011gb004161, 2012.
- Li, B., Wang, J., Wu, S., Jia, Z., Li, Y., Wang, T., and Zhou, S.: New Method for Improving Spatial Allocation Accuracy of Industrial Energy Consumption and Implications for Polycyclic Aromatic Hydrocarbon Emissions in China, Environmental Science & Technology, 53, 4326-4334, 10.1021/acs.est.8b06915, 2019.
- Li, B., Zhou, S., Wang, T., Sui, X., Jia, Z., Li, Y., Wang, J., and Wu, S.: An improved gridded polycyclic aromatic hydrocarbon emission inventory for the lower reaches of the Yangtze River Delta region from 2001 to 2015 using satellite data, Journal of hazardous materials, 360, 329-339, 2018.
- Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935-963, 10.5194/acp-17-935-2017, 2017.
- Qiu, X., Duan, L., Chai, F., Wang, S., Yu, Q., and Wang, S.: Deriving High-Resolution Emission Inventory of Open Biomass Burning in China based on Satellite Observations, Environmental science & technology, 50, 11779-11786, 2016.
- Shao, Y.: Simplification of a dust emission scheme and comparison with data, Journal of Geophysical

Research: Atmospheres, 109, https://doi.org/10.1029/2003JD004372, 2004.

- Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models, Journal of Atmospheric Chemistry, 37, 245-282, 10.1023/A:1006415919030, 2000.
- Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, Journal of Geophysical Research: Atmospheres, 104, 30387-30415, https://doi.org/10.1029/1999JD900876, 1999.
- Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2007JD008782, 2008.
- Zhang, L., Chen, Y. F., Zhao, Y. H., Henze, D. K., Zhu, L. Y., Song, Y., Paulot, F., Liu, X. J., Pan, Y. P., Lin, Y., and Huang, B. X.: Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmos Chem Phys, 18, 339-355, 10.5194/acp-18-339-2018, 2018.
- Zhao, C., Liu, X., Ruby Leung, L., and Hagos, S.: Radiative impact of mineral dust on monsoon precipitation variability over West Africa, Atmos. Chem. Phys., 11, 1879-1893, 10.5194/acp-11-1879-2011, 2011.
- Zhao, Y., Yuan, M. C., Huang, X., Chen, F., and Zhang, J.: Quantification and evaluation of atmospheric ammonia emissions with different methods: a case study for the Yangtze River Delta region, China, Atmos Chem Phys, 20, 4275-4294, 10.5194/acp-20-4275-2020, 2020.
- Zhou, F., Ciais, P., Hayashi, K., Galloway, J., Kim, D. G., Yang, C. L., Li, S. Y., Liu, B., Shang, Z. Y., and Gao, S. S.: Re-estimating NH3 Emissions from Chinese Cropland by a New Nonlinear Model, Environ Sci Technol, 50, 564-572, 10.1021/acs.est.5b03156, 2016.