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Abstract. Adsorption and desorption represent the initial
processes of the interaction of gas species with the condensed
phase. They have important implications for evaluating het-
erogeneous (gas-to-solid) and multiphase chemical kinetics
involved in catalysis; environmental interfaces; and, in par-
ticular, aerosol particles. When describing gas uptake, gas-
to-particle partitioning, and the chemical transformation of
aerosol particles, parameters describing adsorption and des-
orption rates are crucial to assessing the underlying chemical
kinetics such as surface reaction and surface-to-bulk trans-
fer. For instance, the desorption lifetime, in turn, depends
on the desorption free energy which is affected by the cho-
sen adsorbate model. To assess the impact of those condi-
tions on desorption energy and, thus, desorption lifetime, we
provide a complete classical and statistical thermodynamic
treatment of the adsorption and desorption process consid-
ering transition state theory for two typically applied ad-
sorbate models, the 2D ideal gas and the 2D ideal lattice
gas, the latter being equivalent to Langmuir adsorption. Both
models apply to solid and liquid substrate surfaces. We de-
rive the thermodynamic and microscopic relationships for
adsorption and desorption equilibrium constants, adsorption
and desorption rates, first-order adsorption and desorption
rate coefficients, and the corresponding pre-exponential fac-
tors. Although some of these derivations can be found in
the literature, this study aims to bring all derivations into
one place to facilitate the interpretation and analysis of the
variables driving adsorption and desorption for their appli-
cation in multiphase chemical kinetics. This exercise allows
for a microscopic interpretation of the underlying processes
including the surface accommodation coefficient and high-
lights the importance of the choice of adsorbate model and

standard states when analyzing and interpreting adsorption
and desorption processes. We demonstrate how the choice of
adsorbate model affects equilibrium surface concentrations
and coverages, desorption rates, and decay of the adsorbate
species with time. In addition, we show how those results dif-
fer when applying a concentration- or activity-based descrip-
tion. Our treatment demonstrates that the pre-exponential
factor can differ by orders of magnitude depending on the
choice of adsorbate model with similar effects on the desorp-
tion lifetime, yielding significant uncertainties in the desorp-
tion energy derived from experimentally derived desorption
rates. Furthermore, uncertainties in surface coverage and as-
sumptions about standard surface coverage can lead to sig-
nificant changes in desorption energies derived from mea-
sured desorption rates. Providing a comprehensive thermo-
dynamic and microscopic representation aims to guide theo-
retical and experimental assessments of desorption energies
and estimate potential uncertainties in applied desorption en-
ergies and corresponding desorption lifetimes important for
improving our understanding of multiphase chemical kinet-
ics.

1 Introduction

Any interaction between gas-phase species and condensed
matter, including liquid, semi-solid, and solid phases, com-
mences by adsorption and desorption processes (McNaught
and Wilkinson, 2014; Langmuir, 1915, 1916, 1918). These
are of importance in the research areas of catalysis and,
in particular, multiphase chemical kinetics or phase trans-
fer kinetics involving environmental surfaces and inter-
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faces (Cussler, 2009; Chorkendorff and Niemantsverdriet,
2007; Finlayson-Pitts and Pitts, 2000; Ravishankara, 1997;
Solomon, 1999). Surfaces including water bodies, ice, and
terrestrial and anthropogenic structures can provide inter-
faces at which phase transfer processes and multiphase and
heterogeneous reactions can take place. In the atmospheric
sciences, multiphase chemical reactions have been the foci
of research since the realization that heterogeneous reactions
on the surface of polar stratospheric clouds lead to the ac-
tivation of inert chlorine reservoir species that subsequently
result in ozone depletion, manifested in the spring southern
hemispheric ozone hole (Solomon, 1999; Rowland, 1991).
By now it is well established that gas–particle interactions
play crucial roles in particle growth by condensation, gas–
particle partitioning, and the chemical evolution of particles
during aerosol formation and aging (Pöschl et al., 2007; Kolb
et al., 2010; Rudich et al., 2007; George and Abbatt, 2010;
Pöschl and Shiraiwa, 2015; Moise et al., 2015; Ammann et
al., 2013; Crowley et al., 2013; Kroll et al., 2011; Donahue
et al., 2011; Jimenez et al., 2009). The role of reversible ad-
sorption and desorption has been addressed in many studies
of gas uptake and multiphase chemical reactions, in partic-
ular for the decoupling of mass transport and chemical re-
action (Kolb et al., 1995, 2010; Hanson and Ravishankara,
1991; Ammann et al., 2013; Crowley et al., 2013; Pöschl and
Shiraiwa, 2015).

In the context of atmospheric sciences, adsorption is com-
monly described by the surface accommodation coefficient,
αs, which is the probability that a molecule undergoing a
gas kinetic collision is adsorbed at the surface (see overview
and definitions by Kolb et al., 2010). For desorption, accord-
ing to the Frenkel equation, the desorption lifetime (τd) of
a surface-adsorbed chemical species (i.e., the adsorbate) fol-
lows an Arrhenius-type behavior (Arrhenius, 1889a, b; Lai-
dler, 1949; Frenkel, 1924; Laidler et al., 1940):

τd =
1
kd
=

1
A
e
E0

des
RT , (1)

where E0
des is the desorption energy with the energy refer-

ence of the gas molecule at rest at T = 0 K (as outlined be-
low), kd is a first-order desorption rate coefficient, A is a pre-
exponential factor, R is the general gas constant, and T is
temperature. Adsorption is treated as an activated process if
an energy barrier exists. Desorption is always treated as an
activated process, independent of whether an additional en-
ergy barrier exists. When describing multiphase chemical ki-
netics, kd affects the overall rate of transfer of a gas molecule
into the bulk by impacting the loss rate by surface reaction
and the surface-to-bulk transfer and, thus, the bulk accom-
modation coefficient (Ammann and Pöschl, 2007; Pöschl et
al., 2007; Shiraiwa and Pöschl, 2021). For example, a kinetic
multilayer model analysis of measured uptake coefficients
for OH radicals on levoglucosan substrates yielded a tight
correlation between τd and the chemical reaction rate coef-

ficient at the surface because the experimental data only al-
lowed us to constrain the product of the two (Arangio et al.,
2015). A similar issue, the competition between adsorption
(and uptake) and desorption, pertains to gas–particle parti-
tioning kinetics when describing condensation of water va-
por and volatile organic compounds (VOCs) and volatiliza-
tion of organic reaction products (Shiraiwa et al., 2012, 2013;
Shiraiwa and Seinfeld, 2012). Thus, accurate derivation of
the chemical reaction kinetics requires accurate τd values.
Atmospheric trace gases and water vapor can undergo re-
versible adsorption on aerosol, cloud, and ground surfaces
over a wide range of temperatures from below 200 to above
300 K. Especially at low temperatures, large values of τd
could counteract slow rates of chemical reaction and diffu-
sion, enhancing the overall gas uptake, which may involve
reversible, reactive, and catalytic processes on the surface or
in the bulk of the particles (Ammann et al., 2013; Crowley et
al., 2013; Kolb et al., 2010; Pöschl et al., 2007; Rudich et al.,
2007; Li et al., 2020; Li and Knopf, 2021).

Equation (1) does not explicitly show that the desorption
rate depends on the choice of adsorbate model and standard
states. The same applies to the surface accommodation coef-
ficient, which is not referring to the adsorbate model. Once
the pre-exponential factor A for desorption is expressed in
terms of the free energy of activation (Campbell et al., 2013,
2016; Donaldson et al., 2012; Kolasinski, 2012), the choice
of adsorbate model and standard states has a significant im-
pact on the values of the pre-exponential factorA and thus τd.
Vice versa, when using experimentally observed desorption
rates to derive E0

des, assumptions about the adsorbate model
can result, as we show in this study, in significant changes in
the corresponding E0

des values. It is known that the choice of
standard states and adsorbate model impacts the interpreta-
tion of the equilibrium constant and the desorption process
(Campbell et al., 2016; Donaldson et al., 2012; Kolasinski,
2012).

The difference in adsorbate models reflects the treatment
of the potential well in which the adsorbate “sits” (Hill, 1986;
Campbell et al., 2016). The most commonly applied adsor-
bate model is the 2D ideal gas which lacks 1 translational
degree of freedom compared to the 3D ideal gas (Hill, 1986).
It is defined by the condition of negligible lateral potential
wells; thus, it can freely move parallel across the surface.
The other extreme is the 2D ideal lattice gas where the ab-
sorbate cannot overcome the potential well of the adsorp-
tion site. Thus, it exerts only vibrational movements parallel
and vertically to the surface. A model that can describe both
extremes is, e.g., the ideal hindered translator model (Hill,
1986; Campbell et al., 2016; Sprowl et al., 2016). Which of
the two models, the 2D ideal gas and the 2D ideal lattice gas,
is realized will depend on the activation barrier for adsor-
bate diffusion parallel to the surface. If this activation barrier
is above kBT (Boltzmann constant times temperature), the
2D ideal lattice gas model is the preferred model, whereas
if it is below kBT , diffusion of adsorbates parallel to the
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surface can commence and the adsorption is described by a
2D ideal gas (Sprowl et al., 2016). The hindered translator
model (Sprowl et al., 2016) is not discussed in this study. It
will be shown that the choice of adsorbate model and corre-
sponding standard states will result in different equilibrium
constants; pre-exponential factors; and, thus, desorption rates
but, counter-intuitively, in the same adsorption rates. Ulti-
mately, the choice of the adsorbate model will also render
E0

des and τd, important parameters when examining and in-
terpreting the multiphase chemical kinetics at environmental
interfaces.

The purpose of this study is to provide a holistic de-
scription of the thermodynamic functions derived from mi-
croscopic principles (i.e., corresponding partition functions)
that allow for the calculation of the pre-exponential factor
of the desorption rate based on transition state (TS) theory
for the case of the 2D ideal gas and 2D ideal lattice gas.
We will apply statistical thermodynamics to describe the mi-
croscopic, i.e., on the molecular level, processes and classi-
cal thermodynamics that define the overall energy and equi-
librium conditions. The presented framework only consid-
ers physisorptive processes, within the general framework
of treating adsorption in atmospheric chemistry (Kolb et al.,
2010; Pöschl et al., 2007). Although many aspects of the pre-
sented derivations can be found in statistical thermodynamic
textbooks (Hill, 1986; Kolasinski, 2012) and articles (Camp-
bell et al., 2016; Donaldson et al., 2012; Savara, 2013), a
complete treatment of adsorption and desorption including
the TS and respective standard states is not readily available
in the literature, as far as the authors are aware of. An out-
come of this exercise is an improved understanding of the
defining parameters that govern typically measured and re-
ported thermodynamic parameters and their dependency on
chosen standard states. For example, the presented deriva-
tions demonstrate that the pre-exponential factor, commonly
assumed to be around 1013 s−1 (Atkins and de Paula, 2006),
can differ by orders of magnitude in response to the choice of
standard state and adsorbate model (Campbell et al., 2016).
This, in turn, will alter interpretation and analyses of multi-
phase chemical kinetics occurring at interfaces.

The outline of this study is guided by ways to derive
the thermodynamic functions. TS theory assumes thermo-
dynamic equilibrium between the adsorbed state and the TS
for desorption (Kolasinski, 2012; Eyring, 1935). The descrip-
tion of this equilibrium in terms of the basic thermodynamic
functions is based on adsorption thermodynamics. Since the
desorption rate and the pre-exponential factor are expressed
in terms of molecular properties (i.e., the microscopic pic-
ture), the linkage between statistical thermodynamics and the
thermodynamic functions has to be considered and applied.
However, the foundational derivations for the thermodynam-
ics and statistical thermodynamics of adsorption are not well
established and not treated in comprehensive ways in text-
books. We therefore retrace this theory first for the case of
desorption as an overall process. This will then serve as the

basis for applying this theory to the TS theory for desorp-
tion and adsorption and to derive the pre-exponential factor
for desorption. A great part of those derivations follows the
treatment by Campbell et al. (2016). Subsequently, combi-
nation of the rate expressions of desorption and adsorption
establishes the links between the overall adsorption thermo-
dynamics and the microscopic kinetic parameters including
the interpretation of the surface accommodation coefficient.
In this study, the surface accommodation coefficient follows
the definition by Kolb et al. (2010) valid for physisorptive
processes and consistent with the Langmuir adsorption de-
scription but not necessarily the same as the sticking coeffi-
cient used in surface sciences or catalysis, which is often in-
consistently defined and sometimes lumps or sometimes does
not lump physisorption and chemisorption together. There
are alternative descriptions such as the Kisliuk-type precur-
sor mechanism that consider more complex configurations
of the adsorbate (Kisliuk, 1957; Tully, 1994; Campbell et al.,
2016), not discussed in this study. Lastly, we evaluate how
our findings impact interpretation and analysis of measured
or theoretically derived E0

des values.
Since the basis for describing desorption by TS theory re-

quires consideration of thermodynamic equilibria, in Sects. 2
to 5 and the Supplement, we introduce first the overall des-
orption thermodynamics in more detail to provide the nec-
essary equations and terminology. Section 2 discusses the
general thermodynamic functions for describing adsorption
and desorption, their derivations from microscopic properties
(partition functions), and definitions of the standard states.
Section 3 provides the derivation of equilibrium thermody-
namic functions that describe the desorption process for the
two different adsorbate models. The results so far are ap-
plied in Sect. 4 to derive the desorption rates and associated
pre-exponential factors for the different adsorbate models in
terms of thermodynamic and microscopic quantities. Sec-
tion 5 presents the derivation of the adsorption rate including
thermodynamic and microscopic treatment and evaluation of
the surface accommodation coefficient. In Sect. 6, by com-
bination of the previous results we consider the equilibrium
between adsorption and desorption to derive the correspond-
ing equilibrium constants demonstrating that the derivations
are internally consistent. Section 7 provides the derivation of
the kinetic parameters from equilibrium between adsorption
and desorption. Section 8 discusses how the choices made
for standard states and the type of adsorbate model impact
surface concentration, activity, and coverage; adsorption and
desorption rates; E0

des and τd values; and thus our interpreta-
tion of multiphase chemical kinetics. This is followed by the
Conclusions section.

To fundamentally follow all derivations presented in this
document, an excess number of equations would have needed
to be shown, which would have rendered this document dif-
ficult to read. In the Supplement we provided all necessary
definitions, equations, and derivations from first principles
to follow the thoughts in the main document. The reader
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is encouraged to study this document side by side with the
Supplement that contains all information leading to the re-
sults shown here. We apply the definitions of parameters and
standard states given in the Supplement. The Supplement
includes all necessary detailed derivations of the thermody-
namic equations for 3D ideal gas, 2D ideal gas, 2D ideal lat-
tice gas, and TS. It includes the following sections: (S1) Def-
inition of desorption and adsorption equilibrium constants;
(S2) Derivation of thermodynamic functions for desorption
and adsorption; (S3) Standard molar enthalpies, entropies,
and Gibbs free energies; (S4) Derivation of equilibrium con-
stants; (S5) Standard molar Gibbs free energy change and
equilibrium constant between the 3D ideal gas and the tran-
sition state for adsorption; and (S6) Adsorption–desorption
equilibrium.

2 Thermodynamic and microscopic considerations of
the adsorption–desorption process

In this section we define the nomenclature, signage, and units
involved in partition functions, thermodynamic quantities,
and standard states when describing adsorption and desorp-
tion processes.

2.1 Gibbs free energy, enthalpy, and entropy of the
adsorption and desorption process

The spontaneous occurrence of adsorption implies an ex-
ergonic process with the thermodynamic condition (Bolis,
2013):

1G0
ads,m =1H

0
ads,m− T1S

0
ads,m < 0, (2)

1H 0
ads,m =H

0
ads,m−H

0
g,m =−1H

0
des,m , (3)

1S0
ads,m = S

0
ads,m− S

0
g,m =−1S

0
des,m . (4)

Since adsorption of a gas on a substrate results in an in-
crease in molecular ordering and 1S0

ads,m < 0, the change in
enthalpy1H 0

ads,m has to be negative. In this study,1G0
m and

1H 0
m are expressed in units of Jmol−1 and 1S0

m in units of
Jmol−1 K−1.

For the remainder of the text, the subscripts denote the pro-
cess direction in the order of (from left to right) process (ad-
sorption or desorption), educt (e.g., adsorbate), and product
(e.g., gas species). Subscript m denotes molar quantities.

2.2 Adsorption and desorption energy and activation
barrier

We define the energy reference as the internal energy, U , of
the gas molecule at rest at T = 0 K. The adsorbed or desorb-
ing molecule is at the bottom of a potential well, at −ε0

des
with ε0

des being a positive number in units of joules indicat-
ing the necessary heat for the molecule to desorb as depicted
in Fig. 1. Different processes can contribute to ε0

des such as

Figure 1. Potential energy curve for adsorption and desorption pro-
cesses expressed by the heat of desorption, ε0

des. For activated ad-
sorption and desorption processes an additional energy barrier, ex-
pressed by ε0

b , must be overcome.

molecular rotations and vibrations or other molecular inter-
actions. In molecular quantities and at a constant volume, ac-
counting for the number of adsorbed molecules in the system,
Nads, yields the internal energy of the adsorbate

Uads (0)=−Nadsε
0
des =−ε

0
des , (5)

where ε0
des represents the molecular desorption energy. In

molar quantities we obtain

E0
des =NAε

0
des (6)

and, thus,

Uads,m (0)=−E0
des . (7)

We treat the general case of activated adsorption–
desorption here, meaning that the TS’s internal energy is el-
evated by the barrier height above the reference level. The
TS for adsorption–desorption is assumed to exist at some
fixed distance from the surface but within a very thin layer
of thickness d, where it experiences an increase in potential
energy (relative to the gas phase at infinite separation) to a
maximum value expressed by the energy barrier ε0

b due to its
interaction with the surface (e.g., due to Pauli repulsion) as
outlined in Fig. 1. We further assume for simplicity that at
this TS distance from the surface, the potential energy does
not depend on the rotational orientation of the molecule or
on the location parallel to the surface. In molecular quanti-
ties, accounting for the number of molecules in the TS in the
system, NTS, at a constant volume yields the internal energy
of the TS

UTS(0)=NTSε
0
b = ε

0
b (8)

and in molar quantities

UTS,m(0)= E0
b . (9)
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In the literature, the desorption energy often includes the en-
ergy barrier (Kolasinski, 2012), so the activation of desorp-
tion is, expressed in our notation here,

E0
des,act = E

0
des+E

0
b . (10)

For the remainder of the document, we treat the desorption
energy and energy barrier separately. In the absence of an
energy barrier for adsorption and desorption, i.e., E0

b = 0, all
equations simplify accordingly. Note, however, as mentioned
above, in the absence of a barrier, the desorption process re-
mains an activated process with E0

des,act = E
0
des.

2.3 Relationship between partition functions and
thermodynamic quantities

We use statistical thermodynamics to relate the microscopic
properties to the matter’s bulk properties. Via the partition
function Q we can express the thermodynamic functions U ,
S (entropy), H (enthalpy), and G (Gibbs free energy) in the
following way (Atkins and de Paula, 2006):

U −U(0)=−
(
∂ lnQ
∂β

)
V

with β =
1
kBT

, (11)

S =
U −U(0)

T
+ kB lnQ, (12)

H −H(0)=−
(
∂ lnQ
∂β

)
V
+ kBT V

(
∂ lnQ
∂V

)
T

, (13)

G−G(0)=−kT lnQ+ kBT V
(
∂ lnQ
∂V

)
T

. (14)

T and V are the system’s temperature and volume, respec-
tively, and kB is the Boltzmann constant. We first calculate
the molecular quantities U , H , G, and S and then express
them as molar quantities:

Um = U/n,Hm =H/n, Gm =G/n, Sm = S/n,

via n=
N

NA
,R =NAk, and qm =

q

n
, (15)

where q is the molecular partition function (Atkins and de
Paula, 2006), N is the number of molecules in the system,
n is the number of moles in the system, NA is the Avogadro
number, and R is the general gas constant.

As introduced below for the cases of 3D ideal gas, 2D ideal
gas, 2D ideal lattice gas, and TS for desorption, we will ap-
ply the appropriate partition functions (see also Sect. S3 in
the Supplement). For the 3D and 2D ideal gases we will use
the canonical partition function, expressed for indistinguish-
able and independent molecules as Q= qN/N ! (Atkins and
de Paula, 2006). For the 2D ideal lattice gas, we will have to
modify the canonical partition function to introduce adsorp-
tion sites (Hill, 1986).

2.4 Concentration, standard states of gas species and
adsorbates, and activities

The concentration of the 3D ideal gas in the gas phase is
given by

Ng =
Ng

V
, (16)

where Ng is the number of gas molecules in the system. Its
standard concentration is(
Ng

V

)0

=
n0

g ·NA

V0 =
NA

V0
m
, (17)

where n0
g is the standard number of moles of the gas species

(typically set equal to 1) and V0
m indicates the standard molar

volume reflecting n0
g. For n0

g = 1 mol, V0
m = 24.8Lmol−1 at

298 K and 1000 hPa. We define the gas-phase activity, ag, as
the concentration in the gas phase, Ng, divided by the stan-
dard concentration, (Ng/V)0:

ag =
(Ng/V)
(Ng/V)0

=
Ng

(Ng/V)0
=

Ng(
NA/V0

m
) . (18)

We define the concentration for the adsorbate representing
a 2D ideal gas as

Nads =
Nads

A
, (19)

where Nads is the number of gas molecules on the surface
and A is the surface of the system. Its standard concentration
is(
Nads

A

)0

=
n0

ads ·NA

A0 =
NA

A0
m
, (20)

where n0
ads is the standard number of moles of adsorbate

and A0
m indicates the corresponding standard molar sur-

face area. Several suggestions have been made for the sur-
face concentrations (Donaldson et al., 2012; Ammann et al.,
2013; Campbell et al., 2016; Kemball and Rideal, 1946; de
Boer, 1968). Campbell et al. (2016) argue that when choos-
ing (Nads/A)0 = e1/3(NA/V0

m)
2/3, the adsorbate considered

a 2D ideal gas has an entropy two-thirds of that of the gas
species; i.e., S0

ads =
2
3S

0
g when considering only the transla-

tional degrees of freedom (see below). Since a 2D ideal gas
is a simple and straightforward assumption especially for ph-
ysisorption, this standard state has advantages. This standard
surface concentration corresponds to (Nads/A)0 = 1.17×
1013 cm−2 at 298 K at 1000 hPa. In comparison, the IUPAC
Task Group on Atmospheric Chemical Kinetic Data Evalu-
ation is using (Nads/A)0 = 1.61× 1012 cm−2 (Ammann et
al., 2013; Crowley et al., 2013). We define the surface activ-
ity for the 2D ideal gas, aads,2D, as the concentration at the
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surface, Nads, divided by the standard surface concentration,
(Nads/A)0:

aads,2D =
(Nads/A)
(Nads/A)0

=
(Nads)(
NA/A0

m
) = (Nads)(

NA/A0
m
) . (21)

We define the concentration for the molecule in the TS for
desorption as

NTS =
NTS

A
, (22)

whereNTS is the number of molecules in the TS. Its standard
concentration is(
NTS

A

)0

=
n0

TS ·NA

A0 =
NA

A0
m
, (23)

where n0
TS is the standard moles of TS molecules. Since the

TS is assumed to exist at some fixed distance from the sur-
face but within a very thin layer of thickness, it is treated as a
2D ideal gas, independent of the choice of model for the ad-
sorbate. Hence, we define the surface activity for the TS, aTS,
as the concentration of the TS, NTS, divided by the standard
concentration of the TS, (NTS/A)0:

aTS =
(NTS/A)
(NTS/A)0

=
(NTS)(
NA/A0

m
) = (NTS)(

NA/A0
m
) . (24)

For many applications, it has been common to normalize
the surface concentration, Nads, to a maximum concentra-
tion:

Nads,max =
Nads,max

A
. (25)

Then, the surface concentration can also be expressed as a
coverage:

θ =

Nads
A

Nads,max
A
=

Nads

Nads,max
, (26)

with a corresponding standard surface coverage

θ0
=

(
Nads

A

)0/
Nads,max

A
. (27)

Similarly to the 3D ideal gas, for the 2D ideal gas case, in
principle, there is also no limit to the surface concentration.
To remain within physically reasonable bounds, all equations
in conjunction with the 2D ideal gas model relate to condi-
tions of surface coverages below a typical monolayer cover-
age of about 1014 cm−2.

For the 2D ideal lattice gas case, the maximum number of
equivalent but distinguishable sites is Nads,max =M , which
will be important for the statistical thermodynamic deriva-
tion (Sect. S2.3 in the Supplement). A physically reasonable

choice for M is such that M
A = 1015 cm−2. Then, the stan-

dard surface coverage is θ0
= 0.0117 at 298 K. We define the

surface activity for the 2D ideal lattice gas, aads,latt:

aads,latt =
(θ/(1− θ))
(θ0/(1− θ0))

, (28)

where aads,latt does not depend linearly on surface coverage,
θ , and standard surface coverage, θ0. The reason for this,
ultimately, lies in the canonical partition function describ-
ing equivalent but distinguishable adsorption sites (Eqs. S40
and S41 in the Supplement). For example, from the deriva-
tion of the chemical potential of the adsorbed 2D ideal lat-
tice gas (Eq. S56 in the Supplement), it can be clearly seen
that Eq. (28) provides a self-consistent definition of the activ-
ity for this adsorbate model. The difference between surface
coverage and activity will be further discussed below.

3 Thermodynamic functions of the desorption
equilibrium

We derive the desorption equilibrium constants for the 2D
ideal gas and 2D ideal lattice gas in equilibrium with the
gas phase considering the corresponding standard states and
partition functions. See also general definitions for equilib-
rium constants outlined in Sect. S1 in the Supplement. For
both adsorbate models we also derive the change in enthalpy
and entropy between the adsorbed and the gas molecule. The
derivations in this section will demonstrate the importance
of standard states when calculating the equilibrium constants
for the desorption processes.

3.1 Desorption equilibrium for adsorbed 2D ideal gas

The adsorbed 2D ideal gas is characterized by molecules
moving freely parallel to the surface with a constant binding
energy to the surface. In other words, the adsorbate vibrates
in all directions but has free translational motion only in the
horizontal plane. The thermodynamic desorption equilibrium
constant is defined by the ratio of the activity in the gas phase
(ag) to that on the surface (aads),

K0
des,2D,g =

ag

aads,2D
=

(Ng/V)
(Ng/V)0
(Nads/A)
(Nads/A)0

=

Ng

(Ng/V)0

(Nads)

(NA/A0
m)

=

Ng

(NA/V0
m)

(Nads)

(NA/A0
m)

. (29)

As indicated by the definition of the adsorbate surface ac-
tivity, aads,2D, used in the definition of the equilibrium con-
stant, for the 2D ideal gas, the surface activity and thus also
the surface concentration are linearly correlated with the gas-
phase activity and concentration (i.e., number density). This
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is often expressed with a constant (Klin) directly relating gas-
phase number density with surface concentration (Crowley et
al., 2010):

Nads =KlinNg . (30)

As mentioned above, no limitations by surface area or num-
ber of sites are convoluted in this equation. The relationship
between Klin and the equilibrium constant is

Klin =
Nads

Ng
=

(Nads/A)0

K0
des,2D,g(Ng/V)0

. (31)

The equilibrium constant,K0
des,2D,g, is also related to the free

energy change, 1G0
des,2D,g,m. Since 1G0

des,2D,g,m =G
0
g,m−

G0
ads,2D,m, we can associate the two free energies with the

two partition functions for the two states and thus express the
equilibrium constant as (see Eqs. S119–S123 with Eqs. S86,
S89, S91, S93, S97, and S98 in the Supplement)

K0
des,2D,g = e

−1G0
des,2D,g,m/RT =

q0
g,m

q0
ads,2D,m

e−
E0

des
RT . (32)

The two partition functions, q0
g,m and q0

ads,2D,m, are evalu-
ated using the standard molar volume and area, respectively.
Typical values for standard partition functions are given in
Table S1 in the Supplement. The desorption or activation
energy at the molecule’s zero-point energy reflects the en-
ergy to elevate the adsorbed molecule from the lowest vi-
brational state to the lowest vibrational state of the activated
complex, i.e., the molecular state from which the adsorbate
can directly desorb into the gas phase. In other words, Edes
corresponds to the depth of the potential well (per mole). It
has a positive value as defined above (Eq. 5). When apply-
ing the standard adsorption enthalpy and entropy in Eq. (32)
(via 1G0

des,2D,g,m), those have to be based on the same stan-
dard concentrations as given in Eqs. (17) and (20) to result in
the sameK0

des,2D,g. Applying the expressions for the partition
functions (see Eqs. S92 and S99 in the Supplement) gives

K0
des,2D,g =

V0
m
(
2πmkBT/h

2)3/2
A0

m
(
2πmkBT/h2

) e−E0
des
RT

=
V0

m

A0
m

(
2πmkBT/h

2)1/2e−E0
des
RT

=
(Nads/A)0

(Ng/V)0
(
2πmkBT/h

2)1/2e−E0
des
RT , (33)

and thus it follows that

Klin =
(
2πmkBT/h

2)−1/2
e
E0

des
RT . (34)

Hence, Klin can be readily calculated if vibrations are not
considered. For a molecule at 298 K with a molecular weight

of 60 gmol−1 and E0
des = 45 kJmol−1, Klin is about 0.1 cm,

a typical value also found experimentally for many species
(Crowley et al., 2010).

The standard free energy change (and the equilibrium con-
stant) is also related to the adsorption entropy and enthalpy
via (Eqs. S119–S121 in the Supplement)

−RT ln
(
K0

des,2D,g
)
= 1G0

des,2D,g,m

= 1H 0
des,2D,g,m− T1S

0
des,2D,g,m

= E0
des−RT ln


(
q0

g,m
NA

)
(
q0

ads,2D,m
NA

)
 . (35)

As shown in the Supplement (Eqs. S12, S28, and S120),

1H 0
des,2D,g,m = Hg,m−Hads,2D,m =

5
2
RT −

4
2
RT +E0

des

=
1
2
RT +E0

des . (36)

The enthalpy difference is due to the change in translational
degrees of freedom between the 3D and 2D ideal gases and
in the binding energy of the 2D ideal gas on the surface.

As derived in the Supplement (Eq. S16) from statistical
thermodynamics, the entropy in the gas phase is given by the
Sackur–Tetrode equation (Campbell et al., 2016; Atkins and
de Paula, 2006; Hill, 1986) as

S0
g,m = R ln

(
e5/2q0

g,m

NA

)
= R ln

(
V0

m
(
2πmkBT/h

2)3/2e5/2
)

= R ln

((
2πmkBT/h

2)3/2e5/2(
Ng/V

)0
)
, (37)

while the entropy on the surface is (Eq. S33 in the Supple-
ment)

S0
ads,2D,m = R ln

(
e2q0

ads,2D,m

NA

)
= R ln

(
e2A0

m
(
2πmkBT/h

2)2/2)
= R ln

(
e2(2πmkBT/h

2)2/2
(Nads/A)0

)
. (38)

As already mentioned above, following Campbell et al.
(2016), when choosing the standard state as (Nads/A)0 =
e1/3(NA/V0

m
)2/3, the entropy on the surface becomes two-

thirds of that in the gas phase (Eq. 37) as evident from the
following:

S0
ads,2D,m = R ln

((
2πmkBT/h

2)e2

(Nads/A)0

)

= R ln

((
2πmkBT/h

2)e5/3(
NA/V0

m
)2/3

)
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=
2
3
R ln

((
2πmkBT/h

2)3/2e5/2

(Ng/V)0

)
=

2
3
S0

g,m . (39)

From this follows (Eq. S121 with Eq. S89 in the Supplement)

1S0
des,2D,g,m = S

0
g,m− S

0
ads,2D,m

= R ln

(
e5/2q0

g,m

NA

)
−R ln

(
e2q0

ads,2D,m

NA

)

= R ln

(
e5/2q0

g,mNA

NAe2q0
ads,2D,m

)
= R ln

(
e1/2q0

g,m

q0
ads,2D,m

)

=
1
2
R+R ln

(
q0

g,m

q0
ads,2D,m

)
. (40)

Using 1H 0
des,2D,g,m (Eq. 36) and 1S0

des,2D,g,m (Eq. 40) to-
gether in the second part of Eq. (35) results in the last ex-
pression of Eq. (35). Thus, the expressions for the thermody-
namic functions are all consistent with each other.

Substituting the definition of θ (Eq. 27) into the equation
for the adsorption entropy (Eq. 39) leads to

S0
ads,2D,m = R ln

((
2πmkBT/h

2)e(
Nads,max/A

) )+R ln(e/θ0)

= Strans,2D+ Scov . (41)

Thus, the adsorption entropy can be considered the sum of a
translational term, Strans,2D, and a coverage-dependent term,
Scov. For θ0

= 0.012, Scov = 5.42R. At room temperature,
Strans,2D is around 23R.

3.2 Desorption equilibrium for adsorbed 2D ideal
lattice gas

In contrast to the adsorbate being equivalent to a 2D ideal
gas, where molecules freely diffuse parallel across the sur-
face, the adsorbed molecule could also randomly populate a
fixed number of adsorption sites, where the adsorbates have
only vibrational degrees of freedom in three directions. This
adsorption model is generally referred to as Langmuir ad-
sorption (Langmuir, 1915, 1916, 1932). It is worthwhile not-
ing that this concept holds for solid and liquid surfaces as
long as the number of adsorption sites is given by M . In
other words, it is not necessary to know how the M adsorp-
tion sites are distributed over the surface and time. The cor-
responding picture would be to treat the adsorbate as a 2D
ideal lattice gas (Campbell et al., 2016). The activity is then
given by (θ/(1−θ))

(θ0/(1−θ0))
(Sect. S2.3 in the Supplement). In anal-

ogy to Eq. (29), the equilibrium constant is formulated as the
ratio of activities:

K0
des,latt,g =

ag

aads,latt
=

(Ng/V)
(Ng/V)0
(θ/(1−θ))
(θ0/(1−θ0))

=

Ng
(Ng/V)0
(θ/(1−θ))
(θ0/(1−θ0))

=

Ng

(NA/V0
m)

(θ/(1−θ))
(θ0/(1−θ0))

. (42)

In the traditional formulation of Langmuir adsorption, the
coverage is related to the gas-phase concentration via

θ =
KLangNg(

1+KLangNg
) , (43)

whereKLang is the Langmuir adsorption constant. From this,
we can derive

(θ/(1− θ))=KLangNg . (44)

This equation clearly demonstrates the usefulness of the def-
inition of the adsorbate surface activity. Thus, for the rela-
tionship between the KLang and K0

ads,latt, we obtain

KLang =
(θ0/(1− θ0))

K0
des,latt,g(Ng/V)0

. (45)

This relationship demonstrates that the functional form of the
dependence of the surface coverage on pressure or concentra-
tion in the gas phase is the same for both definitions of the
equilibrium constants (apart from the inverse formulation of
the equilibrium constant as the ratio of gas-to-surface con-
centrations (Eq. 42) rather than the ratio of surface-to-gas
concentrations). However, only K0

des,latt,g can be related to
the free energy change directly. Also in this case, the standard
free energy change,1G0

des,latt,g,m, embodied inK0
des,latt,g, can

be related to the partition functions describing the molecules
in the gas phase and adsorbed phases as (see Eqs. S131,
S133, and S134 with Eqs. S86, S89, S91, S100, S103, and
S105 in the Supplement)

K0
des,latt,g =

(
q0

g,m
NA

)
qads,latt

(1−θ0)
θ0

e−
E0

des
RT . (46)

When inserting the expressions for the standard molar parti-
tion functions for the translational motions (see Eq. S92 in
the Supplement),

K0
des,latt,g =

(
V0

m(2πmkBT/h
2)3/2

NA

)
qads,latt

(1−θ0)
θ0

e−
E0

des
RT

=

(
2πmkBT/h

2)3/2
(Ng/V)0qads,latt

(1−θ0)
θ0

e−
E0

des
RT . (47)

KLang can now be expressed as

KLang =
qads,latte

E0
des
RT(

2πmkBT/h2
)3/2 . (48)
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Hence, KLang can be readily calculated. For a molecule at
273 K with a molecular weight of 48 gmol−1, vibration fre-
quency of about 1013 s−1, and E0

des = 70 kJmol−1, KLang is
about 10−13 cm3, representing a typical value (Ammann et
al., 2013).

Since K0
des,latt,g is also related to the enthalpy and entropy

of adsorption, we can write

−RT ln
(
K0

des,latt,g
)
= 1G0

des,latt,g,m

= 1H 0
des,latt,g,m− T1S

0
des,latt,g,m

= E0
des−RT ln

(
q0

g,m
NA

)
qads,latt

(1−θ0)
θ0

. (49)

In contrast to the case of the 2D ideal gas and neglecting vi-
brations,Uads,latt,m =−E

0
des (Eq. S45 in the Supplement) due

to the absence of translational motion (while in the gas phase,
Ug,m =

3
2RT or for the 2D ideal gas,Uads,2D,m = RT−E

0
des).

Also, as shown in Eq. (S49) in the Supplement (neglecting
the contribution of vibrations in the gas and adsorbed phase),
we obtain

H 0
ads,latt,m =−E

0
des−RT

ln(1− θ0)

θ0 . (50)

Overall, for the change in enthalpy between gas and adsorbed
states (see also Eq. S133 in the Supplement), we obtain

1H 0
des,latt,g,m = H

0
g,m−H

0
ads,latt,m

=
5
2
RT +E0

des+RT
ln(1− θ0)

θ0 . (51)

We can now obtain the relationship between the desorption
energy and the adsorption enthalpy as

E0
des =1H

0
des,latt,g,m (T )−

5
2
RT −RT

ln(1− θ0)

θ0 . (52)

Thus, in the case of the 2D ideal lattice gas, the relationship
between the desorption energy and the enthalpy contains the
standard surface coverage explicitly.

For the entropy of the adsorbed 2D ideal lattice gas
(Eqs. S54 and S103 in the Supplement), we can write (Camp-
bell et al., 2016)

S0
ads,latt,m = R

(
lnqads,latt−β

(
∂ lnqads,latt

∂β

))
+R

(
ln
(
(1− θ0)

θ0

)
−

ln(1− θ0)

θ0

)
= S0

ads,latt,vib+ S
0
ads,latt,config . (53)

The adsorption entropy has a contribution for the vibra-
tions in three dimensions at the site, Sads,latt,vib (related to
qads,latt, Eq. S38 in the Supplement), and a configurational

contribution, Sads,latt,config. Using the above standard state of
θ0
= 0.012 leads to

S0
ads,latt,m = S

0
ads,latt,vib+ 5.42R. (54)

Typical values for Svib for three dimensions at room temper-
ature, assuming a vibration frequency of 1014 s−1, are around
4.90R (Campbell et al., 2016; McQuarrie, 2000; Atkins and
de Paula, 2006). Note that another choice of θ0 has also been
used, i.e., θ0

= 0.5, because then θ0/(1−θ0) is unity. Conse-
quently, this leads to a different numerical value for the stan-
dard adsorption entropy (Sads,latt,config = 1.39R). The choice
of the standard state adopted here and suggested by Camp-
bell et al. (2016) has the advantage that the standard adsor-
bate coverage is low and the coverage-dependent contribu-
tions Sads,latt,config for the 2D ideal lattice gas and Scov for the
2D ideal gas have nearly the same value (5.417 and 5.423,
respectively).

For the change in entropy upon desorption, we can derive
(Eq. S135 in the Supplement; Campbell et al., 2016)

1S0
des,latt,g,m = S

0
g,m− S

0
ads,latt,m

= R ln

(
e5/2q0

g,m

NA

)

−R

(
lnqads,latt−β

(
∂ lnqads,latt

∂β

))
−R

(
ln
(
(1− θ0)

θ0

)
−

ln(1− θ0)

θ0

)
. (55)

3.3 Adsorbate model comparison of surface
concentration, activity, and coverage

We can now use the results in Sect. 3.1 and 3.2 to evalu-
ate the equilibrium conditions between gas-phase and surface
concentrations and activities and respective coverages for the
2D ideal gas and 2D ideal lattice gas, presented in Figs. 2–
4. The thermodynamic quantities to reproduce these figures
are given in Table S1. Figure 2 illustrates the behavior of the
adsorption equilibria for the 2D ideal gas and the 2D ideal
lattice gas cases in terms of surface concentration versus gas-
phase concentration. As intuitively clear from the defining
equations, for the 2D ideal gas case, the surface concentra-
tion increases linearly with gas-phase concentration without
a limitation, thus increasing beyond a monolayer coverage,
here assumed as 1019 m−2. In turn, for the 2D ideal lattice
gas case, the initially linear increase is followed by the well-
established adsorption saturation due to the limitation by the
number of available sites on the surface, known as Langmuir
adsorption. Note that we purposely chose a larger desorp-
tion energy for this case, leading to the higher initial slope.
Assuming the same desorption energy for both cases, the ini-
tial slopes would be the same for both adsorption models.
As shown in Fig. 3, when normalizing the surface concentra-
tion to the maximum number of adsorption sites to obtain the
coverage, the picture remains the same.
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Figure 2. Equilibrium adsorbate surface concentration as a function
of gas-phase concentration for the case of a 2D ideal gas (blue line)
and 2D ideal lattice gas (red line). Applied E0

des values are 63 and
88 kJmol−1, respectively. We assume a desorption process without
an additional barrier: E0

b = 0. Thermodynamic quantities for calcu-
lation are given in Table S1.

Figure 3. Equilibrium surface coverage as a function of gas-phase
concentration for the case of a 2D ideal gas (blue line) and 2D ideal
lattice gas (red line). The data are the same as used for the derivation
of Fig. 2, but surface coverages are derived by normalization with
the maximum number of adsorption sites. Thermodynamic quanti-
ties and standard states necessary for calculation are given in Ta-
ble S1.

In contrast to Figs. 2 and 3, when considered in terms
of activities, both adsorbate models exhibit a linear relation-
ship between the surface activity and the gas-phase activity
as shown in Fig. 4. While trivial for the 2D ideal gas case,
for the 2D ideal lattice gas case, this is related to the defini-
tion of the activity as being proportional to θ/(1− θ). Note
that the gas-phase activity range in Fig. 4 covers the same
gas-phase concentration range as in Figs. 2 and 3. Also note
that the numerical values for the activities are completely dif-
ferent for the two cases. For example, for the 2D ideal gas
case, at values of θ of 0.5 and 0.8, aads,2D is 42.8 and 68.4,

Figure 4. Equilibrium surface activity as a function of gas-phase
activity for the case of a 2D ideal gas (blue line) and 2D ideal lattice
gas (red line). The data are the same as used for the derivation of
Fig. 2. Thermodynamic quantities and standard states necessary for
calculation are given in Table S1.

respectively, while for the 2D ideal lattice gas at the same
coverages, aads,latt is 85.9 and 336.8, respectively. On the one
hand, the different slopes of surface activity as a function of
gas-phase activity are related to the normalization to the two
different standard states. On the other hand, when considered
a function of θ , the relationship between the two surface ac-
tivities is highly non-linear due to the diverging nature of the
θ/(1− θ) term for high θ .

4 Derivation of the desorption rate and
pre-exponential factor A

Above we have outlined the determination of the equilibrium
constantK0

des and the importance of considering the standard
concentrations. In this section we will derive the desorption
rate and its pre-exponential factor A from TS theory, which
starts from the free energy change between the adsorbate and
the TS. This exercise will demonstrate the necessity of know-
ing the standard state of the entropic contribution or the stan-
dard concentrations of the TS and adsorbate for the correct
derivation of A. As we will show below, the pre-exponential
factor A in the desorption rate coefficient, kdes, includes the
entropic change between the adsorbed and TS of the desorb-
ing molecule. If we would like to calculate A, the standard
desorption entropy has to be based on the same standard con-
centrations as those for the definition of the activity. Again,
the same activity definitions have to be applied to calculate
actual desorption rates. We will see that without knowledge
of the chosen standard state of the entropy or standard con-
centrations of TS and adsorbate species, A cannot be accu-
rately derived. Furthermore, we examine two cases of adsor-
bate where we first treat the adsorbate as a 2D ideal gas and
secondly as a 2D ideal lattice gas. The TS is treated as a 2D
ideal gas in both cases. This section follows the derivations
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outlined in Campbell et al. (2016). Detailed derivations are
given in the Supplement.

In general, the desorption rate can be expressed as

Rdes

A
=−

dNads

dt
=−kdesNads , (56)

where kdes represents the first-order rate coefficient for des-
orption (in units of s−1), describing the rate of change of
surface concentration. As is evident from the definitions of
activity above, the surface concentration is not necessarily
proportional to the surface activity. We therefore introduce
a separate rate expression and corresponding desorption rate
coefficient acting on surface activities, Ra

des and ka
des, respec-

tively, as

Ra
des =−

daads

dt
=−ka

desaads . (57)

4.1 Desorption of a 2D ideal gas

According to conventional transition state theory (CTST)
(Kolasinski, 2012), Edes is the activation energy necessary
to elevate an adsorbed species from the lowest vibrational
state to the lowest vibrational state of the activated complex,
i.e., the molecular state from which the adsorbate can directly
desorb into the gas phase. Note that desorption is always
considered an activated process, irrespective of whether an
energy barrier is considered or not. In CTST, rates are de-
rived from assuming equilibrium between the adsorbed state
and the TS, which is the reason for discussing the overall
adsorption–desorption equilibrium in detail above. The TS
for desorption is assumed to exist at some fixed distance from
the surface but within a very thin layer of thickness d, where
it experiences an increase in potential energy to a maximum
value expressed by the energy barrier ε0

b due to its interac-
tion with the surface as outlined above. In principle, the TS
resembles a 2D ideal gas, but as discussed further below and
in Sect. S3.4 in the Supplement, CTST assumes molecules in
the TS exhibit translational motion along the reaction coor-
dinate, which for the case of desorption is orthogonally away
from the surface. The associated equilibrium constant is re-
lated to the free energy change between the adsorbed state
and the TS, each expressed with the corresponding standard
molar partition function, q0

ads,2D,m, and q0
TS,m (Sects. S1, S2,

and S4 and Eqs. S3, S22, S60, S117, and S152 in the Supple-
ment):

K0
des,2D,TS =

(
q0

TS,m
NA

)
(
q0

ads,2D,m
NA

)e−
(
E0

des+E
0
b

)
RT

=
q0

TS,m

q0
ads,2D,m

e−

(
E0

des+E
0
b

)
RT . (58)

The equilibrium constant is also related to the ratio of activi-
ties:

K0
des,2D,TS = e

−1G0
des,2D,TS,m/RT

=

(NTS/A)
(NTS/A)0
(Nads/A)
(Nads/A)0

=

NTS
(NTS/A)0

Nads
(Nads/A)0

=
aTS

aads

=
q0

TS,m

q0
ads,2D,m

e−

(
E0

des+E
0
b

)
RT . (59)

As discussed above, the entropy values depend strongly on
the configuration (i.e., degrees of freedom) of the species in
the adsorbed state and the TS.

Within this CTST approach, the desorption rate can be ob-
tained by assuming that the TS has a finite width d across
which the molecule moves with its mean thermal velocity in
the direction orthogonal to the surface:

Rdes,2D

A
= κ

(
NTS

A

) (
kBT/2πm

)1/2
d

, (60)

where κ is a transmission coefficient defining the probability
with which an activated complex proceeds to desorption (Ko-
lasinski, 2012). The partition function for the translational
motion of the transition state in the direction of desorption is

qTS,des =
(
2πmkBT/h

2)1/2d. (61)

Solving this for d and inserting it into Eq. (60) allows us
to express the desorption rate as a function of this partition
function:

Rdes,2D

A
= κ

(
kBT

h

)(
NTS

A

)
1

qTS,des
. (62)

The surface concentration of the TS can be derived from the
equilibrium (Eq. 59):

NTS =
NTS

A
=

q0
TS,m

q0
ads,2D,m

(NTS/A)0

(Nads/A)0
e−

(
E0

des+E
0
b

)
RT Nads . (63)

Inserting Eq. (63) into Eq. (62) leads to

Rdes,2D

A
= κ

(
kBT

h

)(
1

qTS,des

q0
TS,m

q0
ads,2D,m

)
(NTS/A)0

(Nads/A)0

× e−

(
E0

des+E
0
b

)
RT Nads . (64)

When considering surface activities, by dividing by the stan-
dard surface concentration we obtain

Ra
des,2D =

Rdes,2D
A

(Nads/A)0

= κ

(
kBT

h

)(
1

qTS,des

q0
TS,m

q0
ads,2D,m

)
(NTS/A)0

(Nads/A)0

× e−

(
E0

des+E
0
b

)
RT aads,2D . (65)

As further discussed in Sect. S3.4, the activation process
can be conceptually envisioned by bringing the molecules
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in the 2D ideal gas from the zero-point energy to the actual
energy level that allows for the formation of the TS. Thus,
activation does not include the energy of the motion along
the desorption coordinate and as such is less than the energy
associated with the TS. When defining the 1G0

des,2D,act,m
of desorption as 1G0

des,2D,TS,m (see Eqs. S145 and S146 in
the Supplement) minus the TS’s free energy associated with
the motion along the desorption coordinate, expressed by its
molecular partition function, qTS,des, we obtain

e
−1G0

des,2D,act,m/RT =
e
−1G0

des,2D,TS,m/RT

qTS,des

=
1

qTS,des

q0
TS,m

q0
ads,2D,m

e−

(
E0

des+E
0
b

)
RT . (66)

With this definition of1G0
des,2D,act,m, we can express the des-

orption rate as

Rdes,2D

A
= κ

(
kBT

h

)(
1

qTS,des

q0
TS,m

q0
ads,2D,m

)
(NTS/A)0

(Nads/A)0

× e−

(
E0

des+E
0
b

)
RT Nads

= κ

(
kBT

h

)
e
−1G0

des,2D,act,m/RT
(NTS/A)0

(Nads/A)0
Nads (67)

and obtain for the activity-based desorption rate

Ra
des,2D = κ

(
kBT

h

)(
1

qTS,des

q0
TS,m

q0
ads,2D,m

)
(NTS/A)0

(Nads/A)0

× e−

(
E0

des+E
0
b

)
RT aads,2D

= κ

(
kBT

h

)
e
−1G0

des,2D,act,m/RT
(NTS/A)0

(Nads/A)0
aads,2D .

(68)

Thus, we can derive the desorption rate coefficient as

kdes,2D = k
a
des,2D = κ

(
kBT

h

)
(NTS/A)0

(Nads/A)0
e
−1G0

des,2D,act,m/RT

= κ

(
kBT

h

)
e
−1G0

des,2D,act,m/RT , (69)

where we assume

(NTS/A)0

(Nads/A)0
= 1.

Equation (69) is consistent with Eq. (4.4.24) in Kolasinski
(2012), since the standard concentrations are the same for
the TS and the adsorbed state in this case.

Following Campbell et al. (2016) defining q0′
TS/A

0
m as the

partition function for the TS after omitting motion in the di-
rection of the reaction coordinate, this leaves the partition

function for a 2D ideal gas (Eq. S117 in the Supplement):(
q0

TS,m

qTS,des

)
= q0′

TS,m = q
0
TS,2D,m

=A0
m
(
2πmkBT/h

2)2/2. (70)

Using Eq. (70) in Eqs. (67) and (68), we obtain

Rdes,2D

A
=κ

(
kBT

h

)(
q0′

TS,m

q0
ads,2D,m

)
(NTS/A)0

(Nads/A)0
e−

(
E0

des+E
0
b

)
RT Nads (71)

and

Ra
des,2D = κ

(
kBT

h

)(
q0′

TS,m

q0
ads,2D,m

)
(NTS/A)0

(Nads/A)0

× e−

(
E0

des+E
0
b

)
RT aads,2D . (72)

Identifying Eq. (71) with Eq. (56) yields

kdes,2D = k
a
des,2D = κ

(
kBT

h

)(
q0′

TS

q0
ads,2D,m

)
(NTS/A)0

(Nads/A)0

× e−

(
E0

des+E
0
b

)
RT . (73)

We can convert the standard molar partition functions back
to the molecular ones. For that, we consider that(
Nads

A

)0

=
nads ·NA

A0 =
NA

A0
m
,

and analogously for the TS, we then obtain

1
qTS,des

q0
TS,m

q0
ads,2D,m

(NTS/A)0

(Nads/A)0
=

q0′
TS,m

q0
ads,2D,m

(NTS/A)0

(Nads/A)0

=

q ′TS
A

qads,2D
A
=

q ′TS
qads,2D

. (74)

This yields

kdes,2D = k
a
des,2D = κ

(
kBT

h

)(
q ′TS
qads,2D

)
e−

(
E0

des+E
0
b

)
RT . (75)

Hence, we have an expression for kdes,2D based on ther-
modynamic quantities (Eq. 69) and on molecular properties
(Eq. 75). The latter is consistent with Eq. (4.4.20) given by
(Kolasinski, 2012):

kdes,2D = k
a
des,2D = κ

kBT

h

q‡

qads
e−

(
E0

des+E
0
b

)
RT , (76)
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where q‡ represents the partition function of the TS, for
which, in the explanation of Kolasinski, “the loose vibra-
tion in the direction of desorption has been factored out” and
can be identified with q ′TS. Note that factoring out a “loose”
vibration has the same effect on qTS as assigning the TS a
translation over the length d, as discussed above and in other
textbooks (Hill, 1986; Pilling and Seakins, 1996). As out-
lined above, in the literature, the desorption energy often in-
cludes the energy barrier (Kolasinski, 2012); i.e., E0

des,act =

E0
des+E

0
b .

The above derivations include the definition of the free
energy of desorption (i.e., the free energy change between
the adsorbed state and the TS) and, thus, allow us to eval-
uate the pre-exponential factor A. We first formulate kdes
using the definition of 1G0

des,2D,act,m (Eq. 66), equate it
with the expression in Eq. (75), and apply the relationship
1H 0

des,2D,act,m = E
0
b +E

0
des (Eq. S148 with Eqs. S108 and

S93 in the Supplement):

kdes,2D = k
a
des,2D = κ

(
kBT

h

)
(NTS/A)0

(Nads/A)0
e
−1G0

des,2D,act,m/RT

= κ

(
kBT

h

)(
q ′TS
qads,2D

)
e−

(
E0

des+E
0
b

)
RT

≡ κ

(
kBT

h

)
(NTS/A)0

(Nads/A)0

× e
1S0

des,2D,act,m/Re
−1H 0

des,2D,act,m/RT

= κ

(
kBT

h

)(
q ′TS
qads,2D

)
e−

(
E0

des+E
0
b

)
RT

≡ κ

(
kBT

h

)
(NTS/A)0

(Nads/A)0
e
1S0

des,2D,act,m/Re−

(
E0

des+E
0
b

)
RT

= κ

(
kBT

h

)(
q ′TS
qads,2D

)
e−

(
E0

des+E
0
b

)
RT . (77)

With this, we can define the pre-exponential factor A as

Ades,2D = κ

(
kBT

h

)(
q ′TS
qads,2D

)
= κ

(
kBT

h

)
(NTS/A)0

(Nads/A)0
e
1S0

des,2D,act,m/R

= κ

(
kBT

h

)
(NTS/A)0

(Nads/A)0
e
S0

act,m−S
0
ads,2D,m
R . (78)

Equation (78) demonstrates the relevance of knowing the
standard state. The first expression on the right-hand side,
the formulation in terms of the molecular partition func-
tions (q ′TS, qads,2D), indicates that the value of Ades,2D is di-
rectly linked to the assumptions of the adsorbate model as
a basis for the calculation of the partition functions. In con-
trast, when Ades,2D is obtained from the entropy of activation
(1S0

des,2D,act,m), the Arrhenius term needs to be corrected by

the ratio of the standard states, (NTS/A)0
(Nads/A)0

.

Above derivations (Eq. 77) now allow for the interpreta-
tion of Ades,2D. Let us assume κ ≈ 1. Also recall that if both
adsorbed and TS are 2D ideal gases and if we neglect vibra-
tions,(

q ′TS
qads,2D

)
=

(
2πmkBT/h

2)(
2πmkBT/h2

) = 1,

which is equivalent to having no significant change in en-
tropy; i.e.,1S0

des,2D,act,m = 0. This leads to the commonly ap-
plied value of Ades,2D ≈

kBT
h
≈ 6× 1012

≈ 1013 s−1 at room
temperature (298 K). It is clear, that if the ratio of the parti-
tion functions deviates significantly from 1 and, thus, there
are significant changes in1S0

des,2D,act,m when going from the
adsorbed state to the activated state, substantial deviations
from the “benchmark” value of 1013 s−1 are expected. For
example,

Ades,2D > 1013 s−1 with 1S0
des,2D,act,m > 0 and

q0′
TS,m

q0
ads,2D,m

> 1,

which represents the case where a greater number of acces-
sible configurations of the TS (more degrees of freedom) are
available that are more easily excited by thermal energy than
for the adsorbed state. In contrast,

Ades,2D < 1013 s−1 with 1S0
des,2D,act,m < 0 and

q0′
TS,m

q0
ads,2D,m

< 1

indicates that the TS is constrained where, e.g., the molecule
has to obtain a specific configuration in the activated com-
plex. Campbell et al. (2013) showed that the observed varia-
tions in A for different adsorbates can be well described by a
linear correlation between adsorbate entropies and gas-phase
entropies provided the adsorbate’s surface residence time is
less than ∼1000 s. The underlying explanation is that the gas
molecule’s motions in the z direction are arrested (i.e., frus-
trated rotational and translational modes) resulting in a steep
interaction potential well in the z direction, better described
by a hindered translator model.

4.2 Desorption of a 2D ideal lattice gas

For the case of the adsorbate being a 2D ideal lattice gas
but the TS being a 2D ideal gas, the associated equilibrium
constant is related to the free energy change between the TS
and the absorbed state, each expressed with the correspond-
ing standard molar partition function, q0

TS,m, and qads,latt
(Eqs. S4, S38, and S175 in the Supplement):

K0
des,latt,TS =

(
q0

TS,m
NA

)
qads,latt

(1−θ0)
θ0

e−

(
E0

des+E
0
b

)
RT . (79)
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The equilibrium constant is also related to the ratio of activi-
ties:

K0
des,latt,TS = e

−1G0
des,latt,TS,m/RT =

(NTS/A)
(NTS/A)0
(θ/(1−θ))
(θ0/(1−θ0))

=

NTS
(NTS/A)0
(θ/(1−θ))
(θ0/(1−θ0))

=

(
q0

TS,m
NA

)
(
qads,latt

(1−θ0)
θ0

)e− (E0
des+E

0
b

)
RT . (80)

Note that qads,latt represents only vibrations and rotations. In
addition, for the 2D ideal lattice gas, the surface activity is
based on the coverage, and correspondingly, for the normal-
ization to the standard state, θ0/(1−θ0) replaces (Nads/A)0.
Using the same procedure as for the 2D ideal gas case, i.e.,
rearranging Eq. (80), leads to (Campbell et al., 2016)

NTS =
NTS

A
=

(
q0

TS,m
NA

)
(θ/(1−θ))
(θ0/(1−θ0))(

qads,latt
(1−θ0)
θ0

) (NTS/A)0e−
(
E0

des+E
0
b

)
RT

=

(
q0

TS,m
NA

)
(
qads,latt

) (NTS/A)0e−
(
E0

des+E
0
b

)
RT (θ/(1− θ)). (81)

Setting this into Eq. (62) yields

Rdes,latt

A
= κ

(
kBT

h

) (
q0

TS,m
NA

)
qTS,desqads,latt

(NTS/A)0

× e−

(
E0

des+E
0
b

)
RT (θ/(1− θ)). (82)

We note that Eq. (82) differs from Eq. (71) for the ideal 2D
gas, such that qads,latt has only vibrational degrees of free-
dom (instead of two translational motions) (Campbell et al.,
2016).

Equation (82) highlights that the desorption rate is not
proportional to the surface concentration but depends non-
linearly on the surface coverage θ for high θ . Figure 5 high-
lights this behavior. The desorption rate first changes linearly
with coverage for both adsorbate models but then strongly
non-linearly for the 2D ideal lattice gas when approaching
high (θ close to 1) surface coverages. This fact makes conver-
sion of the rate expression to the surface activity challenging.
The rate of change of surface activity is related to the rate of
change of θ as (see Eqs. 26, 56, and S2 in the Supplement)

Rdes,latt

ANads,max
=−

dθ
dt
. (83)

Assuming that the steady-state surface concentration of the
TS remains much smaller than the number of adsorbed

Figure 5. The change in the desorption rate for the assumption of a
2D ideal gas (solid lines) and 2D ideal lattice gas (dashed lines) is
plotted as a function of the adsorbate fractional surface coverage θ
and variation in E0

des from 100 (bottom) to 10 kJmol−1 (top) indi-
cated by colored numbers. We assume a desorption process without
an additional barrier: E0

b = 0. Thermodynamic quantities and stan-
dard states necessary for calculation are given in Table S1.

molecules (in a time interval necessary to populate the TS)
and correspondingly the desorption rate remains relatively
small in comparison to the actual coverage, we can write

Rdes,latt

ANads,max
=−

dθ
dt
≈−

d(θ/(1− θ))
dt

, (84)

since

lim
θ→0

(
θ

1− θ

)
≈ θ.

In other words, for small rates of change of θ , the desorption
rate in terms of rate of change of activity can be assumed to
depend linearly on θ . Since this concerns the rate of change
of θ , Eq. (84) holds for any coverage. This allows us to ex-
press the desorption rate in terms of activity as

Rdes,latt

ANads,max(θ0/(1− θ0))
≈ −

d
(
(θ/(1−θ))
(θ0/(1−θ0))

)
dt

= −
daads,latt

dt
. (85)
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Therefore, dividing Eq. (82) by Nads,max(θ
0/(1− θ0)) leads

to the corresponding activity-based desorption rate expres-
sion

Ra
des,latt = κ

(
kBT

h

) (
q0

TS,m
NA

)
qTS,des

(
qads,latt

)
× e−

(
E0

des+E
0
b

)
RT

(NTS/A)0

Nads,max
aads,latt . (86)

We now follow a similar derivation as for the 2D ideal gas.
We define the 1G0

des,latt,act,m of desorption as 1G0
des,latt,TS,m

minus the TS’s free energy associated with the motion along
the desorption coordinate and obtain

e
−1G0

des,latt,act,m/RT =
e
−1G0

des,latt,TS,m/RT

qTS,des

=
1

qTS,des

(
q0

TS,m
NA

)
(
qads,latt

(1−θ0)
θ0

)e− (E0
des+E

0
b

)
RT .

(87)

Thus, we can express the desorption rate for an adsorbate
treated as a 2D ideal lattice gas as

Rdes,latt

A
= κ

(
kBT

h

) (
q0

TS,m
NA

)
qTS,des

(
qads,latt

(1−θ0)
θ0

)
× e−

(
E0

des+E
0
b

)
RT

(1− θ0)

θ0 (NTS/A)0(θ/(1− θ))

= κ

(
kBT

h

)
e
−1G0

des,latt,act,m/RT

×
(1− θ0)

θ0 (NTS/A)0(θ/(1− θ))

= κ

(
kBT

h

)
e
−1G0

des,latt,act,m/RT

× (NTS/A)0
(θ/(1− θ))
(θ0/(1− θ0))

. (88)

The activity-based desorption rate expression becomes

Ra
des,latt = κ

(
kBT

h

) (
q0

TS,m
NA

)
qTS,des

(
qads,latt

(1−θ0)
θ0

)
× e−

(
E0

des+E
0
b

)
RT

(1− θ0)

θ0
(NTS/A)0

Nads,max
aads,latt

= κ

(
kBT

h

)
e
−1G0

des,latt,act,m/RT

×
(1− θ0)

θ0
(NTS/A)0

Nads,max
aads,latt . (89)

Therefore, the desorption rate coefficient (in units of s−1)
related to the surface activity is given by

ka
des,latt = κ

(
kBT

h

) (
q0

TS,m
NA

)
qTS,des(qads,latt)

(NTS/A)0

Nads,max
e−

(
E0

des+E
0
b

)
RT

= κ

(
kBT

h

)
(1− θ0)

θ0
(NTS/A)0

Nads,max

e
−1G0

des,latt,act,m/RT . (90)

While the activity-based desorption rate expression
(Eq. 86) clearly displays the first-order decay behavior of
the activity, driven by ka

des,latt, Eqs. (82) and (88) demonstrate
that when expressed in terms of molecules desorbing per unit
area and time, it is not first order in the surface concentra-
tion but shows a strong dependence on the surface coverage,
(θ/(1−θ)), otherwise included in the activity. Therefore, for
high surface coverage, an apparent kdes,latt cannot easily be
derived. For low coverage (of the adsorbate, not of the tran-
sition state),

(θ/(1− θ))≈ θ =
Nads

Nads,max
,

the rate Eq. (82) simplifies to

Rdes,latt

A
≈ κ

(
kBT

h

) (
q0

TS,m
NA

)
qTS,des(qads,latt)

(NTS/A)0

Nads,max

× e−

(
E0

des+E
0
b

)
RT Nads . (91)

From this it follows that kdes,latt(θ � 1)= ka
des,latt. This

demonstrates that the decay of surface concentration at high
coverage cannot be used to deriveE0

des, as also pointed out by
Campbell et al. (2016). In other words, the decay of the sur-
face coverage is not a first-order process at high coverages.
Using Eq. (70) in Eq. (82) yields

Rdes,latt

A
= κ

(
kBT

h

) (
q0′

TS,m
NA

)
(qads,latt)

(NTS/A)0

× e−

(
E0

des+E
0
b

)
RT (θ/(1− θ)). (92)

Note that the last equation is consistent with the desorption
rate derived by Campbell et al. (2016) for the special case of
θ0
= 0.5.
We can now express the desorption rate coefficient as

ka
des,latt = κ

(
kBT

h

) (
q0′

TS,m
NA

)
(
qads,latt

) (NTS/A)0

Nads,max
e−

(
E0

des+E
0
b

)
RT

= κ

(
kBT

h

) (
q ′TS/A

)
qads,lattNads,max

e−

(
E0

des+E
0
b

)
RT

https://doi.org/10.5194/acp-21-15725-2021 Atmos. Chem. Phys., 21, 15725–15753, 2021



15740 D. A. Knopf and M. Ammann: Adsorption and desorption equilibria

=

(
2πmkBT/h

2)
qads,lattNads,max

e−

(
E0

des+E
0
b

)
RT . (93)

For the second and third expression in Eq. (93), we have
converted the standard molar partition function back to the
molecular ones, using(
NTS

A

)0

=
nTS ·NA

A0 =
NA

A0
m
.

We can establish the link between the entropy and the pre-
exponential factor by taking the expression for ka

des and in-
serting the definition of 1G0

des,latt,act,m accounting for the re-
lationship between E0

des and 1H 0
des,latt,act,m (Eqs. S108 and

S171 in the Supplement):

1H 0
des,latt,act,m = H

0
act,m−H

0
ads,latt,m

= 2RT −
NA ·hν

eβhν − 1
+RT

ln(1− θ0)

θ0

+E0
des+E

0
b . (94)

Neglecting vibrations, we obtain

1H 0
des,latt,act,m ≈ 2RT +E0

des+E
0
b +RT

ln(1− θ0)

θ0 . (95)

Then it follows that

ka
des,latt = κ

(
kBT

h

)
(NTS/A)0

(θ0/(1− θ0))Nads,max

× e
−1G0

des,latt,act,m/RT

= κ

(
kBT

h

) (
q ′TS/A

)
qads,lattNads,max

× e−

(
E0

des+E
0
b

)
RT

≡ κ

(
kBT

h

)
(NTS/A)0

(θ0/(1− θ0))Nads,max
e
1S0

des,latt,act,m/R

× e
−1H 0

des,latt,act,m/RT

= κ

(
kBT

h

) (
q ′TS/A

)
qads,lattNads,max

e−

(
E0

des+E
0
b

)
RT

≡ κ

(
kBT

h

)
(NTS/A)0

(θ0/(1− θ0))Nads,max

× e−2e
1S0

des,latt,act,m/Re−

(
E0

des+E
0
b

)
RT (1− θ0)

−
1
θ0

= κ

(
kBT

h

) (
q ′TS/A

)
qads,lattNads,max

e−

(
E0

des+E
0
b

)
RT . (96)

With this, we can derive the pre-exponential factor as

Aa
des,latt = κ

(
kBT

h

) (
q ′TS/A

)
qads,lattNads,max

= κ

(
kBT

h

)
(NTS/A)0(1− θ0)

−
1
θ0

(θ0/(1− θ0))Nads,max

× e−2e

(
1S0

des,latt,act,m
R

)
= κ

(
kBT

h

)
(NTS/A)0

(θ0/(1− θ0))Nads,max

× e−2e

(
S0

act,m−S
0
ads,latt,m
R

)
. (97)

We can, therefore, identify

(NTS/A)0(1− θ0)
−

1
θ0

(θ0/(1− θ0))
e

(
1S0

des,latt,act,m
R

)
= e2

(
q ′TS/A

)
qads,latt

. (98)

Again, as for the previous case, Eqs. (96) and (97) clearly
show that when using thermodynamic data to assess the TS,
the correct standard state needs to be applied to calculate
Aa

des,latt from the entropy of activation.

4.3 Adsorbate model comparison of desorption rate
and pre-exponential factor

Since, strictly speaking, the desorption rate law is represent-
ing a first-order process acting on the surface activity, it is
also straightforward to understand that the desorption rate,
when expressed as rate of change of activity per unit time is
proportional to the surface activity, as shown in Fig. 6, inde-
pendent of the adsorbate model. Thus, even when the surface
coverage becomes high, the activity-based first-order desorp-
tion rate coefficient remains constant. The consequence of
this becomes then directly apparent in Fig. 7, showing the
desorption rate expressed as the rate of change of surface
concentration per unit area and unit time, as a function of
the surface coverage. For the 2D ideal gas case, the linear re-
lationship is maintained; i.e., the surface concentration-based
desorption rate coefficient is constant and thus independent
of the surface coverage. In contrast, for the 2D ideal lattice
gas case, the desorption rate rapidly increases towards high
surface coverages, clearly demonstrating the non-first-order
behavior of desorption when expressed in terms of surface
concentration. This behavior is a consequence of the high
configurational entropy at high coverages and naturally re-
sults from a consistent description of the surface activity.
Therefore, the dependency of the desorption rate on cover-
age is not due to surface sites with different desorption ener-
gies but is a consequence of the applied lattice gas adsorption
model that entails a limited number of equivalent sites. In
other words, the lifetime of an individual adsorbate molecule
depends on the overall surface coverage, exerting shorter ad-
sorbate lifetimes for greater surface coverages. Therefore,
as also pointed out by Campbell et al. (2016), experimental
desorption rate measurements need to be analyzed with care
when deriving the desorption energy from measured desorp-
tion rates.
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Figure 6. The activity-based desorption rate for the case of a 2D ideal gas (blue line, a) and 2D ideal lattice gas (red line, b). Applied
E0

des values are 70 and 92 kJmol−1, respectively. We assume a desorption process without an additional barrier: E0
b = 0. Thermodynamic

quantities and standard states necessary for calculation are given in Table S1.

Figure 7. The desorption rate for the case of a 2D ideal gas (blue
line) and 2D ideal lattice gas (red line). Applied E0

des values are
63 and 88 kJmol−1, respectively. We assume a desorption process
without an additional barrier: E0

b = 0. Thermodynamic quantities
and standard states necessary for calculation are given in Table S1.

The features of the rate law for desorption acting as a first-
order process on the surface activity then also become mani-
fest in the time-dependent decay of the surface coverage for
the two adsorbate models. As expected for the 2D ideal gas
case, where surface activity and surface coverage are pro-
portional to each other, the first order and thus single expo-
nential decay of the surface activity leads to a corresponding
single exponential decay of the surface coverage, as shown
in Fig. 8. In contrast, as demonstrated in Fig. 9, the single
exponential decay of the surface activity of the 2D ideal lat-
tice gas case leads to a non-exponential decay of the surface
coverage. This further emphasizes the need to carefully ana-
lyze experimental data of desorption rate measurements, es-
pecially if short timescales are considered.

As discussed above, the pre-exponential factor is often as-
sumed to be Ades ≈ 1013 s−1. Figure 10 shows Ades for both
adsorbate models as a function of temperature. For the 2D
ideal gas,Ades displays a weak temperature dependency, and,
when approaching room temperature, Ades,2D is close to the
typically applied value of 1013 s−1. For the 2D ideal lattice
gas, Aa

des,latt is about 3 orders of magnitude larger and ex-
hibits a stronger temperature dependency compared to the 2D
ideal gas. The greater values for Aa

des,latt can be understood
in the following way. When going from a localized bound
species (i.e., 2D ideal lattice gas) to a 2D ideal gas (TS), it is
very likely that the ratio of partition functions is larger than
1 and 1S0

des,latt,act,m > 0. Hence, it can be expected that in
these cases Aa

des,latt > 1013 s−1, as demonstrated in Fig. 10.
Even when ignoring internal rotations, the change in trans-
lational degrees of freedom between the 2D ideal lattice gas
adsorbate and the 2D ideal gas of the TS, the configurational
contribution to the 2D ideal lattice gas adsorbate leads to an
increase in Aa

des,latt > 1015 s−1 (if κ remains as 1).

5 Rate of adsorption

Adsorption is treated as a physisorptive process but might
exert a non-zero energy barrier E0

b for activated adsorption.
We derive the adsorption rates of gas molecules transferring
into the 2D ideal and 2D ideal lattice gas absorbates. The
adsorption proceeds via the TS, which is treated as a 2D ideal
gas, as in the case of desorption.

When considered from the gas-phase side, the equilibrium
constant between the gas phase and the adsorbed state is
given by the inverse ratio of activities compared to the case
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Figure 8. The decay of surface activity (a) and surface coverage (b) of the 2D ideal gas adsorbate as a function of time due to desorption.
The applied E0

des is 70 kJmol−1, and the initial surface activity is 50. We assume a desorption process without an additional barrier: E0
b = 0.

Thermodynamic quantities and standard states necessary for calculation are given in Table S1.

Figure 9. The decay of surface activity (a) and surface coverage (b) of the 2D ideal lattice gas adsorbate as a function of time due to
desorption. The applied E0

des is 91 kJmol−1, and the initial surface activity is 1500. We assume a desorption process without an additional
barrier: E0

b = 0. Thermodynamic quantities and standard states necessary for calculation are given in Table S1.

Figure 10. The pre-exponential factor Ades as a function of temper-
ature is plotted for the case of a 2D ideal gas (blue) and a 2D ideal
lattice gas (red). Thermodynamic quantities and standard states nec-
essary for calculation are given in Table S1.

of desorption, as now the adsorbed state is the product:

K0
ads,g,2D =

aads,2D

ag
=

(Nads/A)
(Nads/A)0
(Ng/V)
(Ng/V)0

=

(Nads)

(NA/A0
m)

(Ng/V)
(NA/V0

m)

≡
1

K0
des,2D,g

(99)

and

K0
ads,g,latt =

aads,latt

ag
=

(θ/(1−θ))
(θ0/(1−θ0))

(Ng/V)
(Ng/V)0

=

(θ/(1−θ))
(θ0/(1−θ0))

(Ng/V)
(NA/V0

m)

≡
1

K0
des,latt,g

. (100)

The relationship to the equilibrium constant of desorption
holds irrespective of whether the adsorbed state is a 2D ideal
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gas or 2D ideal lattice gas due to the reversible nature of the
adsorption equilibrium.

In general, the adsorption rate can be expressed as

Rads,2D

A
=

dNads

dt
=−

dNg

dt
V
A
= kadsNg

V
A

(101)

and

Rads,latt

A
=

dNads

dt
=

dθ
dt

Nads,max

=−
dNg

dt
V
A
= kadsNg

V
A

(102)

with

dθ
dt
=

kads

Nads,max
Ng

V
A
, (103)

where kads represents the first-order rate coefficient for ad-
sorption (in units of s−1), describing the rate of change of
gas-phase concentration or activity. Considering the rate ex-
pression in terms of the gain in adsorbed molecules per unit
area and time, the rate of loss from the gas phase needs to be
multiplied by V

A . Since adsorption proceeds via the TS that
is assumed to be a 2D ideal gas, kads is the same first-order
rate coefficient for the adsorption into the 2D ideal gas and
2D ideal lattice gas adsorbate model.

The rate of change of surface activity for the 2D ideal gas
is given by

Ra
ads,2D =

Rads,2D

A(Nads,2D/A)0
= kadsNg

V
A(Nads,2D/A)0

= kadsNg
V(Ng/V)0

A(Nads,2D/A)0(Ng/V)0

= kads
Ng

(Ng/V)0
V(Ng/V)0

A(Nads,2D/A)0

= kadsag
VA0

m

AV0
m
= ka

adsag
VA0

m

AV0
m
, (104)

and for the 2D ideal lattice gas, it is given by

Ra
ads,latt =

daads,latt

dt
=

d
dt

θ

(1− θ)
(1− θ0)

θ0

≈
dθ
dt
(1− θ0)

θ0 =
kads

Nads,max
Ng

V
A
(1− θ0)

θ0

=
kads

Nads,max

Ng

(Ng/V)0
V(Ng/V)0

A
(1− θ0)

θ0

=
kads

Nads,max
ag

V
A
(Ng/V)0(1− θ0)

θ0

=
ka

ads
Nads,max

ag
V
A
(Ng/V)0(1− θ0)

θ0 . (105)

We note that although kads is the same for both gas adsor-
bate models, Ra

ads,2D and Ra
ads,latt will differ, as evident from

Eqs. (104) and (105), respectively, and shown further below
(Eqs. 126 and 127). As outlined above and in the Supple-
ment (Sect. S2.3), the activity of the 2D ideal lattice gas
scales with (θ/(1−θ))

(θ0/(1−θ0))
. To provide an analytical solution us-

ing our definitions, in Eq. (105), we make the assumption that
d
dt

θ
(1−θ)

(1−θ0)
θ0 ≈

dθ
dt
(1−θ0)
θ0 , meaning that we consider rates of

change small enough so that this condition is justified. Since
ka

ads describes the decay of the gas-phase activity, which is
proportional to its concentration, it follows that ka

ads = kads.
In turn, the factor V

A needs to be normalized to the corre-
sponding ratio of standard molar volume to surface area to
convert from gas-phase activity change to surface activity
change, in the last expression of Eq. (105).

TS theory for adsorption encompasses the same steps as
those for desorption but starting from the gas-phase side.
Considered from the gas phase, the equilibrium constant be-
tween the gas phase and the TS for adsorption is related to
the free energy change between the gas and the TS, each
expressed with the corresponding standard molar partition
functions, as defined by (Eqs. S193–S199 in the Supplement)

K0
ads,g,TS = e

−1G0
ads,g,TS,m/RT =

q0
TS,m

q0
g,m

e−
E0

b
RT . (106)

Note that we treat the general case of activated adsorption
here, meaning that the TS’s internal energy is elevated by the
barrier height above the reference level (E0

b ), leading to the
corresponding Arrhenius term in Eq. (106). The equilibrium
constant is also related to the ratio of activities (Eq. S5 in the
Supplement):

K0
ads,g,TS = e

−1G0
ads,g,TS,m/RT =

aTS

ag

=

(NTS/A)
(NTS/A)0
(Ng/V)
(Ng/V)0

=

(NTS)

(NA/A0
m)

(Ng/V)
(NA/V0

m)

. (107)

As in the case of desorption, the adsorption rate can be
obtained by assuming that the TS has the same finite width
d across which the molecule moves with its mean thermal
velocity in the direction orthogonal to the surface:

Rads,2D

A
= κ

(
NTS

A

) (
kBT/2πm

)1/2
d

, (108)

where κ is the same transmission coefficient defining the
probability with which the activated complex proceeds to ad-
sorption as that for desorption due to microscopic reversibil-
ity (Kolasinski, 2012). The partition function for the transla-
tional motion of the TS in the direction of adsorption is

qTS,ads =
(
2πmkBT/h

2)1/2d. (109)

Solving this for d and inserting it into Eq. (108) allows us
to express the adsorption rate as a function of this partition
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function:

Rads,2D

A
= κ

(
kBT

h

)(
NTS

A

)
1

qTS,ads
. (110)

The surface concentration of the TS can be derived from the
equilibrium (Eq. 107):

NTS =
NTS

A
=
q0

TS,m

q0
g,m

e−
E0

b
RT
(NTS/A)0

(Ng/V)0
Ng . (111)

Inserting Eq. (111) into Eq. (110) leads to

Rads,2D

A
=κ

(
kBT

h

)
1

qTS,ads

q0
TS,m

q0
g,m

e−
E0

b
RT
(NTS/A)0

(Ng/V)0
Ng. (112)

When defining the 1G0
ads,g,act,m of adsorption as

1G0
ads,g,TS,m (Eqs. S193 and S207 in the Supplement) mi-

nus the TS’s free energy associated with the motion along
the adsorption coordinate, expressed by its molecular parti-
tion function, qTS,ads, we obtain

e
−1G0

ads,g,act,m/RT =
e
−1G0

ads,g,TS,m/RT

qTS,ads

=
1

qTS,ads

q0
TS,m

q0
g,m

e−
E0

b
RT . (113)

With this definition of 1G0
ads,g,act,m, we can express the

adsorption rate as

Rads,2D

A
= κ

(
kBT

h

)
e
−1G0

ads,g,act,m/RT
(NTS/A)0

(Ng/V)0
Ng . (114)

When using the definition of the adsorption rate coefficient
linking the loss rate from the gas phase with the gain in ad-
sorbed species on the surface, i.e.,

Rads,2D

A
= kadsNg

V
A
,

the adsorption rate coefficient becomes

kads =

(
kBT

h

)
e
−1G0

ads,g,act,m/RT
(NTS/A)0

(Ng/V)0
A
V

= κ

(
kBT

h

)
1

qTS,ads

q0
TS,m

q0
g,m

e−
E0

b
RT
(NTS/A)0

(Ng/V)0
A
V
. (115)

Defining q0′
TS/A

0
m as the partition function for the TS after

omitting motion in the direction of the reaction coordinate
(Campbell et al., 2016), this leaves the partition function for
a 2D ideal gas (Eqs. S60 and S118 in the Supplement):(
q0

TS,m

qTS,ads

)
= q0′

TS,m = q
0
TS,2D,m =A0

m
(
2πmkBT/h

2)2/2.

(116)

Using Eq. (116) in Eq. (112), we obtain

Rads,2D

A
= κ

(
kBT

h

)
q0′

TS,m

q0
g,m

e−
E0

b
RT
(NTS/A)0

(Ng/V)0
Ng , (117)

and identifying Eq. (117) with Eq. (104) yields

kads = κ

(
kBT

h

)
q0′

TS,m

q0
g,m

e−
E0

b
RT
(NTS/A)0

(Ng/V)0
A
V
. (118)

This is the same result as in Eq. (115) when using thermody-
namic quantities.

We can convert the standard molar partition functions back
to the molecular ones. For that, we consider that(
NTS

A

)0

=
nTS ·NA

A0 =
NA

A0
m

and(
Ng

V

)0

=
ng ·NA

V0 =
NA

V0
m
,

and we obtain

1
qTS,ads

q0
TS,m

q0
g,m

(NTS/A)0

(Ng/V)0
A
V
=
q0′

TS,m

q0
g,m

(NTS/A)0

(Ng/V)0
A
V

=
A0

m
(
2πmkBT/h

2)2/2
V0

m
(
2πmkBT/h2

)3/2
NA
A0

m
NA
V0

m

A
V

=
q ′TS/A
qg/V

A
V

=
1(

2πmkBT/h2
)1/2 AV . (119)

This yields

kads = κ

(
kBT

h

)
1(

2πmkBT/h2
)1/2 e− E0

b
RT

A
V
. (120)

As in the case of desorption, we can compare the thermody-
namic derivation of kads (left-hand side below) with the one
based on the partition functions (right-hand side below):

kads = κ

(
kBT

h

)
e
−1G0

ads,g,act,m/RT
(NTS/A)0

(Ng/V)0
A
V

= κ

(
kBT

h

)(
q ′TS/A
qg/V

)
e−

E0
b

RT
A
V

≡ κ

(
kBT

h

)
(NTS/A)0

(Ng/V)0
e
1S0

ads,g,act,m/Re
−1H 0

ads,g,act,m/RT
A
V

= κ

(
kBT

h

)(
q ′TS/A
qg/V

)
e−

E0
b

RT
A
V
. (121)
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With 1H 0
ads,g,act,m =−

1
2RT +E

0
b (Eq. S195 in the Supple-

ment), we obtain

κ

(
kBT

h

)
(NTS/A)0

(Ng/V)0
e
1S0

ads,g,act,m/Re1/2e−
E0

b
RT

= κ

(
kBT

h

)(
q ′TS/A
qg/V

)
e−

E0
b

RT ,

κ

(
kBT

h

)
(NTS/A)0

(Ng/V)0
e
1S0

ads,g,act,m/Re1/2

= κ

(
kBT

h

)(
q ′TS/A
qg/V

)
. (122)

In the case of adsorption, the Arrhenius term is only driven
by the barrier height. Therefore, the pre-exponential factor
for adsorption is (since ka

ads = kads)

Aads,2D = A
a
ads,2D = κ

(
kBT

h

)(
q ′TS/A
qg/V

)
A
V

= κ

(
kBT

h

)
(NTS/A)0

(Ng/V)0
e1/2e

1S0
ads,g,act,m/R

A
V

= κ

(
kBT

h

)
(NTS/A)0

(Ng/V)0
A
V
e1/2e

(
S0

act,m−S
0
g,m

R

)
. (123)

Thus, we can identify

(NTS/A)0

(Ng/V)0
e
1S0

ads,g,act,m/R =

(
q ′TS/A
qg/V

)
e−1/2. (124)

This emphasizes the relationship between the entropy of acti-
vation and the ratio of the corresponding partition functions.
Note that when neglecting vibrations,(
q ′TS/A
qg/V

)
=

(
2πmkBT/h

2)2/2(
2πmkBT/h2

)3/2 = 1(
2πmkBT/h2

)1/2 ,
which allows estimating the entropy of activation for ad-
sorption. For the examples discussed here (see Table S1),
1S0

ads,g,act,m =−53.98JK−1 mol−1.
Thus, essentially, the gas loses 1 translational degree of

freedom, and the rate of adsorption (vibrations neglected)
can be written as

Rads,2D

A
= kadsNg

V
A
= κ

(
kBT

h

)(
q ′TS/A
qg/V

)
e−

E0
b

RT Ng
A
V

V
A

= κ

(
kBT

h

)
h

√
2πmkBT

e−
E0

b
RT Ng

=
p

√
2πmkBT

κe−
E0

b
RT . (125)

For the case considering activities, we obtain

Ra
ads,2D = kadsag

VA0
m

AV0
m

Figure 11. The adsorption rate for the case of a 2D ideal gas and
2D ideal lattice gas is depicted. We assume a non-activated ad-
sorption process: E0

b = 0. Thermodynamic quantities and standard
states necessary for calculation are given in Table S1.

= κ

(
kBT

h

)(
q ′TS/A
qg/V

)
e−

E0
b

RT
A
V
ag

VA0
m

AV0
m

= κ

(
kBT

h

)
h

√
2πmkBT

e−
E0

b
RT

Ng

(Ng/V)0
A0

m

V0
m

= κ
p

√
2πmkBT

e−
E0

b
RT

A0
m

NA
. (126)

For the case of the 2D ideal lattice gas we can write, using
the same definition as for kads,

Ra
ads,latt =

kads

Nads,max
ag

V
A
(Ng/V)0(1− θ0)

θ0

= κ

(
kBT

h

)(
q ′TS/A
qg/V

)
× e−

E0
b

RT
A
V

1
Nads,max

ag
V
A
(Ng/V)0(1− θ0)

θ0

= κ

(
kBT

h

)(
q ′TS/A
qg/V

)
× e−

E0
b

RT
1

Nads,max
ag
(Ng/V)0(1− θ0)

θ0

= κ

(
kBT

h

)
h

√
2πmkBT

× e−
E0

b
RT

Ng

(Ng/V)0
1

Nads,max

(Ng/V)0(1− θ0)

θ0

= κ
p

√
2πmkBT

× e−
E0

b
RT

1
(Ng/V)0

1
Nads,max

(Ng/V)0(1− θ0)

θ0

= κ
p

√
2πmkBT

e−
E0

b
RT

1
Nads,max

(1− θ0)

θ0 . (127)
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Figure 12. The activity-based adsorption rates for the case of a 2D
ideal gas (blue line) and 2D ideal lattice gas (red line) are depicted.
We assume a non-activated adsorption process: E0

b = 0. Thermody-
namic quantities and standard states necessary for calculation are
given in Table S1.

p
√

2πmkBT
represents the Hertz–Knudsen expression of the

flux of molecules impinging on surface atoms. Thus, CTST
is consistent with the collision rate multiplied with κ for the
case that the activated complex associated with the TS is con-
sidered a 2D ideal gas, the barrier is negligible, and no inter-
nal vibrations are considered.

As discussed in the previous section, the TS for adsorp-
tion is the same as that for desorption and is considered a 2D
ideal gas. This means that the adsorptive flux, i.e., the adsorp-
tion rate in terms of gain in molecules per surface area and
time, is simply proportional to the gas-phase concentration,
independent of the adsorption model used to describe the fi-
nal state of adsorption, as shown in Fig. 11. For the same
reason, the rate of change of surface activity is also linearly
related to the gas-phase activity, as shown in Fig. 12. How-
ever, the meaning of the rate of change of surface activity is
entirely different for the two adsorbate models, as discussed
for the case of desorption. While for the 2D ideal gas model,
the rate of change of surface activity is linearly related to the
rate of change of surface coverage, for the 2D ideal lattice gas
case, the same rate of change of surface activity is governed
by a strongly non-linear relationship to the rate of change
of surface coverage, thus depending on the actual coverage.
This explains the slight visible deviations between Ra

ads,2D
and Ra

ads,latt in Fig. 12 at high gas-phase activity values, re-
flecting in fact different rates of change of surface coverages.

We can now look at the surface accommodation coeffi-
cient, αs, which is operationally defined as the ratio between
the adsorption rate and the gas-kinetic collision rate (Kolb
et al., 2010; Ammann et al., 2013; Crowley et al., 2013)
considering only physisorptive processes, not accounting for
possibly more complex configurations involving already-
adsorbed molecules (Kisliuk, 1957; Tully, 1994; Campbell
et al., 2016). The description of the adsorption rate follows

Figure 13. The dependency of the mass accommodation coefficient,
αs, on the adsorption activation energy, E0

b . Thermodynamic quan-
tities and standard states necessary for calculation are given in Ta-
ble S1.

as

Rads,2D

A
= κ

p
√

2πmkBT
=Ngκ

√
kBT
√

2πm

= Ngκ

√
8kBT

4
√
πm
= αsNg

ω

4
, (128)

where ω represents the thermal velocity of the gas species.
Keeping with this definition but putting in the more general
expression for the adsorption rate based on TS theory, the
interpretation of αs becomes different as it is related to

αs =
κ
(
kBT
h

)
q ′TS/A
qg/V e

−
E0

b
RT Ng

Ng
ω
4

=

κ
(
kBT
h

)
q ′TS/A
qg/V e

−
E0

b
RT(

kBT
h

)(
2πmkBT/h2

)−1/2

= κ
q ′TS/A
qg/V

e−
E0

b
RT
(
2πmkBT/h

2)1/2. (129)

Therefore, αs = κ (and αs = 1 if κ = 1) if

q ′TS/A
qg/V

=
(
2πmkBT/h

2)−1/2

and E0
b = 0, but it is different in the presence of a barrier or

if other contributions are relevant in the partition functions
of the activated complex associated with the TS or the gas-
phase species (such as internal vibrations or rotations). As
mentioned above, the ratio of the partition functions is also
related to the corresponding entropy of activation (i.e., non-
zero if αs deviates from κ).

Figure 13 shows how αs depends on E0
b under the assump-

tion of κ = 1 and
q ′TS/A
qg/V

=
(
2πmkBT/h

2)−1/2
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(see Table S1). Hence, αs depends exponentially on the acti-
vation energy of adsorption. A transmission coefficient κ < 1
will yield lower αs values. If the TS is more constrained than
the assumed 2D ideal gas, expressed by

1S0
ads,g,act,m = R ln

(
q0

TS,2D,m

e1/2q0
g,m

)
(Eqs. 124 and S197 in the Supplement), this will further
lower αs.

6 Adsorption–desorption equilibrium

We consider equilibrium between adsorption and desorption
and demonstrate that this results in the proper equilibrium
constants for gas adsorption into a 2D ideal gas and a 2D
ideal lattice gas, proving that the CTST formulation of the
rates leads back to the equilibrium definition, from which
we started. We also show that this works when using both
partition functions and thermodynamic expressions. Hence,
the derivations of all thermodynamic functions are internally
consistent.

Considering the equilibrium, for the case that the adsorbed
state is a 2D ideal gas, at low coverage

Rads,2D

A
=
Rdes,2D

A

κ

(
kBT

h

)
q ′TS/A
qg/V

e−
E0

b
RT Ng

= κ

(
kBT

h

)(
q ′TS
qads,2D

)
e−

(
E0

des+E
0
b

)
RT Nads

1/A
qg/V

Ng =

(
1

qads,2D

)
e−

E0
des
RT Nads

V
A
Ng =

(
qg

qads,2D

)
e−

E0
des
RT Nads

Nads

Ng
=
qads,2D

qg

V
A
e
E0

des
RT =

(
2πmkBT/h

2)−1/2
e
E0

des
RT

=Klin . (130)

This is the same result as given in Eq. (31) and consistent
with the relation between Klin and the equilibrium constant.
Performing the same derivation starting with the thermody-
namic expressions is given in the Supplement (Eqs. S216–
S220).

For the case of the activity-based adsorption and desorp-
tion rates, we obtain

Ra
ads,2D = R

a
des,2D

κ

(
kBT

h

)(
q ′TS/A
qg/V

)
e−

E0
b

RT
A
V
ag

VA0
m

AV0
m

= κ

(
kBT

h

)
q ′TS
qads,2D

e−

(
E0

des+E
0
b

)
RT aads,2D

1/A
qg/V

ag
A0

m

V0
m
=

(
1

qads,2D

)
e−

E0
des
RT aads,2D

V
A
ag

A0
m

V0
m
=

(
qg

qads,2D

)
e−

E0
des
RT aads,2D

aads,2D

ag
=
qads,2D

qg

V
A
e
E0

des
RT

A0
m

V0
m

=
(
2πmkBT/h

2)−1/2
e
E0

des
RT

A0
m

V0
m

=Klin
A0

m

V0
m
. (131)

This is the same result as in Eq. (130). The derivation using
the thermodynamic expressions is outlined in Eqs. (S221)–
(S225) in the Supplement.

For the case when the adsorbed state on the surface is
treated as a 2D ideal lattice gas using Eqs. (92), (102), and
(121),

Rads,latt

A
=
Rdes,latt

A

κ

(
kBT

h

)
q ′TS/A
qg/V

e−
E0

b
RT Ng = κ

(
kBT

h

) ( q0′
TS,m
NA

)
(
qads,latt

) (NTS/A)0

× e−

(
E0

des+E
0
b

)
RT (θ/(1− θ));

with(
q0′

TS,m

NA

)
(NTS/A)0 =

(
q0′

TS,m

NA

)
NA

A0
m
=
q0′

TS,m

A0
m
=
q ′TS
A
,

we obtain

κ

(
kBT

h

)
q ′TS/A
qg/V

e−
E0

b
RT Ng = κ

(
kBT

h

) (
q ′TS/A

)
qads,latt

× e−

(
E0

des+E
0
b

)
RT (θ/(1− θ))

1
qg/V

Ng =
1

qads,latt
e−

E0
des
RT (θ/(1− θ))

(θ/(1− θ))
Ng

=
qads,latt

qg/V
e
E0

des
RT

=
(
2πmkBT/h

2)−3/2
e
E0

des
RT =KLang . (132)

This is the expected result outlined in Eq. (44). The deriva-
tion starting with the thermodynamic expressions is given in
Eqs. (S226)–(S230) in the Supplement.

For the case of the activity-based adsorption (Eq. 127) and
desorption rates (Eq. 86), we obtain

Ra
ads,latt = R

a
des,latt

κ

(
kBT

h

)(
q ′TS/A
qg/V

)
e−

E0
b

RT
1

Nads,max
ag
(Ng/V)0(1− θ0)

θ0

https://doi.org/10.5194/acp-21-15725-2021 Atmos. Chem. Phys., 21, 15725–15753, 2021



15748 D. A. Knopf and M. Ammann: Adsorption and desorption equilibria

= κ

(
kBT

h

) (
q ′TS/A

)
qads,lattNads,max

e−

(
E0

des+E
0
b

)
RT aads,latt

1
qg/V

ag
(Ng/V)0(1− θ0)

θ0 =
1

qads,latt
e−

E0
des
RT aads,latt

aads,latt

ag
=
qads,latt

qg/V
e
E0

des
RT
(Ng/V)0(1− θ0)

θ0
aads,latt

ag

aads,latt

ag
=
(
2πmkBT/h

2)−3/2
e
E0

des
RT
(Ng/V)0(1− θ0)

θ0

=KLang
(Ng/V)0(1− θ0)

θ0

aads,latt

ag

θ0

(Ng/V)0(1− θ0)
=
(θ/(1− θ))

Ng
=KLang . (133)

This results in the same relationship as in Eq. (132). The
derivation starting with the thermodynamic expressions is
given in Eqs. (S231)–(S235) in the Supplement. Thus, equat-
ing the adsorption and desorption rates, both derived based
on TS theory, correctly reproduces the corresponding equi-
librium constant.

7 Derivation of kinetic parameters from the
equilibrium constants

In previous studies (Bartels-Rausch et al., 2005; Tabazadeh
and Turco, 1993) equilibrium thermodynamic data or equi-
librium coverage data have been used to constrain kinetic
parameters of either adsorption or desorption. If K0

ads,g,latt or
K0

ads,g,2D is known as a function of temperature from mea-
surements or extracted from fundamental thermodynamic
data, the Arrhenius plot of its temperature dependence de-
livers 1H 0

ads,g,2D or 1H 0
des,2D,g as a slope and 1S0

ads,g,2D or
1S0

des,2D,d as an offset.
For the case of an adsorbed 2D ideal gas, we can derive the

pre-exponential factor from equilibrium, Ra
ads,2D = R

a
des,2D,

starting off with the molecular descriptions of respective
rates (Eq. 131). In addition, we make use of αs and its re-
lationship to microscopic properties (Eq. 129) and the defi-
nition of Ades,2D obtained from the derivation of the desorp-
tion rate (Eq. 78). By applying the thermodynamic equilib-
rium constant, we can then relate the microscopic picture to
thermodynamic functions, obtaining Ades,2D under equilib-
rium conditions (the full derivation is given in Eq. S236 in
the Supplement):

κ

(
kBT

h

)(
q ′TS/A
qg/V

)
e−

E0
b

RT
A
V
ag

VA0
m

AV0
m

= κ

(
kBT

h

)
q ′TS
qads,2D

e−

(
E0

des+E
0
b

)
RT aads,2D(

kBT

h

)
αsag

A0
m

V0
m

(
2πmkBT/h

2)−1/2

= Ades,2De
−

(
E0

des+E
0
b

)
RT aads,2D

Ades,2D =

(
kBT

h

)
αs

A0
m

V0
m

(
2πmkBT/h

2)−1/2

× e−1/2e
E0

b
RT e

1S0
des,2D,g,m/R. (134)

If the energy barrier E0
b is negligible, this simplifies to

Ades,2D = αse
1S0

des,2D,g,m/R

×e−1/2
(
A0

m

V0
m

)(
kBT

h

)(
2πmkBT/h

2)−1/2
. (135)

Ades,2D derived from equilibrium is the same result as for
Ades,2D derived from desorption using TS theory (Eq. 78).
Thus, the pre-exponential factor of desorption can be calcu-
lated from the desorption entropy (1S0

des,2D,g,m) and from the
known value of αs but only if the standard state, which has
been used to obtain the entropy, is known.

For the case of an adsorbed 2D ideal lattice gas, we can de-
rive the pre-exponential factor from equilibrium, Ra

ads,latt =

Ra
des,latt (Eq. 133), in a similar way to how it is derived for

the 2D ideal gas discussed above, using Ades,latt from the
derivation of the desorption rate (Eq. 97) and αs (Eq. 129)
as follows (the full derivation is given in Eq. S244 in the
Supplement):
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θ0

= Aa
des,latte
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(
E0

des+E
0
b

)
RT aads,latt

Aa
des,latt = αs

(
kBT

h

)(
2πmkBT/h

2)−1/2

×
1

Nads,max

(Ng/V)0(1− θ0)

θ0

× e−
5
2 (1− θ0)

−
1
θ0 e

E0
b

RT e
1S0

des,latt,g,m
R . (136)

If the energy barrier E0
b is negligible, this simplifies to

Aa
des,latt = αse

1S0
des,latt,g,m/R

× e−5/2 (1− θ
0)

θ0

(
1

Nads,max

)(
NA

V0
m

)
× (1− θ0)−1/θ0

(
kBT

h

)
(
2πmkBT/h

2)−1/2
. (137)

Aa
des,latt derived from equilibrium is the same result as for

Aa
des,latt derived from desorption using TS theory (Eq. 97).
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As can be seen, the activity-basedAa
des,latt does not depend

on the surface coverage. However, the standard surface cov-
erage θ0, for which 1S0

des,latt,g,m has been derived, must be
known (similarly to the case described in Eq. 97). Hence, the
pre-exponential factor Ades,latt has a strong non-linear depen-
dence on the standard surface coverage. When the underly-
ing standard surface coverages are not known, additional un-
certainties are introduced. When deriving the desorption rate
(Eq. 82), the dependence on surface coverage is accounted
for.

8 Implications for the assessment of the desorption
energy and rate and pre-exponential factor

The thermodynamic derivations above indicate that the un-
derlying adsorption model, i.e., 2D ideal gas or 2D ideal lat-
tice gas, will have a significant impact on desorption rates
and the pre-exponential factor and, thus, on the evaluation
of E0

des and τd. This is particularly important for the case of
the 2D ideal lattice gas model for which the desorption rate
varies non-linearly with surface coverage, i.e., proportionally
to (θ/(1−θ)) (Eq. 82) since the surface activity is defined by
(θ/(1−θ))
(θ0/(1−θ0))

(Eq. 28). This implies that for the same E0
des,

Rdes
A

values can vary significantly depending on adsorbate cover-
age. Vice versa, if the coverage is not well known, derivation
of E0

des from measured Rdes
A is associated with large uncer-

tainties.
Figure 5 displays the variation in Rdes

A for different θ val-
ues, covering a pristine surface to a fully occupied surface.
As discussion of Fig. 7 alluded to (above), Fig. 5 demon-
strates that the assumption of the underlying substrate model
significantly impacts Rdes

A . The differences in Rdes
A when ap-

plying a 2D ideal gas or a 2D ideal lattice gas are of about 3
to 6 orders of magnitude over a typical θ range. Furthermore,
variation in Rdes

A for the 2D ideal lattice gas is greater with
θ due to its non-linear dependence on θ . The observed non-
linearity of Rdes

A of the 2D ideal lattice gas, being proportional
to (θ/(1− θ)), is a direct result of the non-linear increase in
the configurational entropy (e.g., Eqs. 53 and 98). Figure 5
implies that the different sensitivities of the two adsorbate
models to surface coverages can result in large differences in
experimentally derived desorption rates besides uncertainties
in the pre-exponential factor and E0

des.
As outlined above, Fig. 10 highlights how the underlying

adsorbate model impacts the pre-exponential factor. If the
actual adsorbate system behaves more like a 2D ideal lat-
tice gas but is analyzed assuming a 2D ideal gas, significant
uncertainties in Ades can arise which, in turn, increase the
uncertainty in the derivation of E0

des and estimation of the
desorption lifetime.

Figure 14 presents estimates of τd for given E0
des values

as a function of temperature when applying a 2D ideal gas
and 2D ideal lattice gas adsorbate model. For both adsor-
bate models, the temperature sensitivity of τd increases with

Figure 14. Estimates of τd as a function of temperature applying
results from Fig. 3. Blue and red lines represent the 2D ideal gas
and 2D ideal lattice gas model, respectively. E0

des varies from 0 to
100 kJmol−1 in 5 kJmol−1 steps from bottom to top and is indi-
cated by numbers on lines. We assume a desorption process without
an additional barrier: E0

b = 0. Thermodynamic quantities and stan-
dard states necessary for calculation are given in Table S1.

increasing E0
des. For given τd values the difference in E0

des,
when applying the different adsorbate models, can range
from 10 to 15 kJmol−1, where larger differences occur at
higher temperatures. Hence, when deriving E0

des from τd val-
ues, in the absence of knowledge of the underlying adsorbate
model, E0

des is likely uncertain by 10 to 15 kJmol−1. Vice
versa, the corresponding uncertainty in τd is up to about 3
orders of magnitude. As outlined in the Introduction, for ex-
perimental studies where τd is coupled to the surface reaction
rate, the first-order surface reaction rate could also be uncer-
tain by up to 3 orders of magnitude.

Figure 15 displays E0
des values derived from a variation in

desorption rates applying a 2D ideal gas or 2D ideal lattice
gas adsorbate model as a function of surface coverage θ . For
example, for Rdes

A = 1 m−2 s−1, reflected by the uppermost
red and blue curves, it is evident that the chosen adsorbate
model results in significantly different E0

des values differing
by at least 20 kJmol−1. These results further support the im-
portance of accurate knowledge of θ . The E0

des values can
vary by tens of kJmol−1 if θ is incorrectly determined or as-
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Figure 15. Estimates of E0
desas a function of coverage for desorp-

tion rates from 1 to 1040 m−2 s−1 (from top to bottom and indicated
by colored numbers) for T = 298 K. Blue and red lines indicate the
desorption model based on a 2D ideal gas and 2D ideal lattice gas,
respectively. We assume a desorption process without an additional
barrier:E0

b = 0. Thermodynamic quantities and standard states nec-
essary for calculation are given in Table S1.

sumed. For example, if the substrate surface is assumed to
be pristine but in fact θ = 0.2, E0

des can be overestimated by
10–20 kJmol−1.

Figures 5, 10, 14, and 15 highlight the potential uncer-
tainties that arise by the choice of the absorbate models
for derivation of E0

des. In addition to those uncertainties,
standard states applied in adsorption and desorption stud-
ies are often not known or well documented. This can lead
to additional uncertainties as also outlined above. Ades val-
ues shown in Fig. 10 will be the same for different choices
of standard states as long as the latter have been consis-
tently applied to the entropic contributions 1S0

des,2D,act,m,
1S0

des,2D,g,m, 1S0
des,latt,act,m, and 1S0

des,latt,g,m (Eqs. S150,
S121, S173, and S134 in the Supplement, respectively) and
are correctly included in the equations forAdes (Eqs. 78, 134,
97, 136). The standard molar volume, V0

m = 24.8 Lmol−1 at
298 K and 1000 hPa, is the typically applied parameter, but
one has to make sure to adjust this value to observational con-
ditions, i.e., temperature and pressure, for both the entropic
contribution and the derivation of the partition functions. The

latter depends linearly on the molar volume (Eqs. S7 and S92
in the Supplement). The actual surface coverage and applied
standard surface coverages are often less clear, and further-
more, different standard states may have been chosen for the
entropic contributions and experimental conditions. To fur-
ther complicate matters, standard surface coverages can be
defined applying θ0

= 0.012 or 0.5, which both have their
advantages as outlined above. If the standard surface cover-
age for the entropic contribution is based on θ0

= 0.012 but
the remainder of thermodynamic functions on θ0

= 0.5, Ades
will be erroneous and thus E0

des and τd will be too.

9 Conclusions

Reversible adsorption is a key process for any gas–
condensed-phase interaction and is particularly impor-
tant when environmental interfaces are involved including
aerosol particles. This study provides a comprehensive treat-
ment of the classic and statistical thermodynamics of the
adsorption and desorption processes considering transition
state theory for two typically applied adsorbate models, the
2D ideal gas and the 2D ideal lattice gas, which apply to solid
or liquid substrate surfaces. We established thermodynamic
and microscopic relationships for adsorption and desorption
equilibrium constants, adsorption and desorption rates, first-
order adsorption and desorption rate coefficients, and cor-
responding pre-exponential factors. These derivations allow
the interpretation of thermodynamic functions such as equi-
librium constants in terms of their molecular properties, as
well as the calculation of explicit numeric expressions for
the latter. This exercise demonstrates the importance of ap-
plied assumptions of the adsorbate model and standard states
when analyzing and interpreting adsorption and desorption
processes, the latter often being ill-defined in experimental
studies (Donaldson et al., 2012). The derivations allow for
a microscopic interpretation of the surface accommodation
coefficient including the entropic contribution. Our treatment
demonstrates that the pre-exponential factor, when deriving
the desorption lifetime from the desorption energy, can differ
by orders of magnitude depending on the choice of adsorbate
model. Clearly, such a difference yields similar effects on the
desorption lifetime, and when used to estimate desorption en-
ergies (e.g., from interfacial residence times estimated from
molecular dynamics simulations or from measured desorp-
tion rates) significant uncertainties in the desorption energy
are incurred. Furthermore, uncertainties in surface coverage
and assumptions about standard surface coverage can lead
to significant changes in desorption rates and thus in eval-
uated desorption energies for the rather common case of a
2D ideal lattice gas. The objective of providing this compre-
hensive thermodynamic and microscopic treatment of the ad-
sorption and desorption processes is to guide the theoretical
and experimental assessments of adsorption and desorption
rates, desorption energies, and choice of standard states with
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implications for the corresponding desorption lifetimes. This
in turn will improve, specifically, the analyses and interpreta-
tion of surface layer reaction rates and surface-to-bulk trans-
port and, thus, bulk mass accommodation. More generally,
this provides a better basis for the prediction of gas–particle
partitioning, multiphase chemical reactions, and the chemi-
cal evolution of atmospheric aerosols.

Data availability. All data needed to draw the conclusions in the
present study are shown in the paper and/or the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-21-15725-2021-supplement.

Author contributions. DAK and MA envisioned this study and
wrote this paper.

Competing interests. The authors are members of the editorial
board of Atmospheric Chemistry and Physics. The authors have no
other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Daniel A. Knopf acknowledges support from
the National Science Foundation. Markus Ammann appreciates
support by the Swiss National Science Foundation. This study came
out of an ongoing collaborative project with Manabu Shiraiwa and
Ulrich Pöschl, and we appreciate discussions with both of our col-
leagues.

Financial support. This research has been supported by the
National Science Foundation (grant no. AGS-1446286) and
the Schweizerischer Nationalfonds zur Förderung der Wis-
senschaftlichen Forschung (grant no. 188662).

Review statement. This paper was edited by Andreas Hofzumahaus
and reviewed by two anonymous referees.

References

Ammann, M. and Pöschl, U.: Kinetic model framework for aerosol
and cloud surface chemistry and gas-particle interactions – Part
2: Exemplary practical applications and numerical simulations,
Atmos. Chem. Phys., 7, 6025–6045, https://doi.org/10.5194/acp-
7-6025-2007, 2007.

Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki,
A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated ki-
netic and photochemical data for atmospheric chemistry: Vol-
ume VI – heterogeneous reactions with liquid substrates, At-
mos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-
13-8045-2013, 2013.

Arangio, A. M., Slade, J. H., Berkemeier, T., Pöschl, U., Knopf, D.
A., and Shiraiwa, M.: Multiphase Chemical Kinetics of OH Rad-
ical Uptake by Molecular Organic Markers of Biomass Burning
Aerosols: Humidity and Temperature Dependence, Surface Re-
action, and Bulk Diffusion, J. Phys. Chem. A, 119, 4533–4544,
https://doi.org/10.1021/jp510489z, 2015.

Arrhenius, S. A.: Über die Dissociationswärme und den Einfluss der
Temperatur auf den Dissociationsgrad der Elektrolyte, Z. Phys.
Chem., 4, 96–116, 1889a.

Arrhenius, S. A.: Über die Reaktionsgeschwindigkeit bei der Inver-
sion von Rohrzucker durch Säuren, Z. Phys. Chem., 4, 226–248,
1889b.

Atkins, P. and de Paula, J.: Physical Chemistry, 8th edn., W. H. Free-
man and Company, New York, 1040 pp., 2006.

Bartels-Rausch, T., Huthwelker, T., Gäggeler, H. W., and Ammann,
M.: Atmospheric pressure coated-wall flow-tube study of ace-
tone adsorption on ice, J. Phys. Chem. A, 109, 4531–4539,
https://doi.org/10.1021/jp045187l, 2005.

Bolis, V.: Fundamentals in Adsorption at the Solid-Gas Interface.
Concepts and Thermodynamics, in: Calorimetry and Thermal
Methods in Catalysis, vol. 154, edited by: Auroux, A., Springer-
Verlag, Berlin, Heidelberg, 3–50, 2013.

Campbell, C. T., Arnadottir, L., and Sellers, J. R. V.: Kinetic Prefac-
tors of Reactions on Solid Surfaces, Z. Phys. Chem., 227, 1435–
1454, https://doi.org/10.1524/zpch.2013.0395, 2013.

Campbell, C. T., Sprowl, L. H., and Arnadottir, L.: Equilibrium
Constants and Rate Constants for Adsorbates: Two-Dimensional
(2D) Ideal Gas, 2D Ideal Lattice Gas, and Ideal Hindered
Translator Models, J. Phys. Chem. C, 120, 10283–10297,
https://doi.org/10.1021/acs.jpcc.6b00975, 2016.

Chorkendorff, I. and Niemantsverdriet, J. W.: Concepts of Modern
Catalysis and Kinetics, 2nd edn., Wiley-VCH, Weinheim, 477
pp., 2007.

Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin,
M. E., Mellouki, A., Rossi, M. J., Troe, J., and Walling-
ton, T. J.: Evaluated kinetic and photochemical data for at-
mospheric chemistry: Volume V – heterogeneous reactions
on solid substrates, Atmos. Chem. Phys., 10, 9059–9223,
https://doi.org/10.5194/acp-10-9059-2010, 2010.

Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin,
M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington,
T. J.: Corrigendum to “Evaluated kinetic and photochemical
data for atmospheric chemistry: Volume V – heterogeneous re-
actions on solid substrates” published in Atmos. Chem. Phys.
10, 9059–9223, 2010, Atmos. Chem. Phys., 13, 7359–7359,
https://doi.org/10.5194/acp-13-7359-2013, 2013.

Cussler, E. L.: Diffusion – Mass Transfer in Fluid Systems, Cam-
bridge University Press, New York, 631 pp., 2009.

de Boer, J. H.: The Dynamical Character of Adsorption, Clarendon
Press, Oxford, 240 pp., 1968.

Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A.
L.: A two-dimensional volatility basis set: 1. organic-aerosol

https://doi.org/10.5194/acp-21-15725-2021 Atmos. Chem. Phys., 21, 15725–15753, 2021

https://doi.org/10.5194/acp-21-15725-2021-supplement
https://doi.org/10.5194/acp-7-6025-2007
https://doi.org/10.5194/acp-7-6025-2007
https://doi.org/10.5194/acp-13-8045-2013
https://doi.org/10.5194/acp-13-8045-2013
https://doi.org/10.1021/jp510489z
https://doi.org/10.1021/jp045187l
https://doi.org/10.1524/zpch.2013.0395
https://doi.org/10.1021/acs.jpcc.6b00975
https://doi.org/10.5194/acp-10-9059-2010
https://doi.org/10.5194/acp-13-7359-2013


15752 D. A. Knopf and M. Ammann: Adsorption and desorption equilibria

mixing thermodynamics, Atmos. Chem. Phys., 11, 3303–3318,
https://doi.org/10.5194/acp-11-3303-2011, 2011.

Donaldson, D. J., Ammann, M., Bartels-Rausch, T., and Pöschl,
U.: Standard States and Thermochemical Kinetics in Heteroge-
neous Atmospheric Chemistry, J. Phys. Chem. A, 116, 6312–
6316, https://doi.org/10.1021/jp212015g, 2012.

Eyring, H.: The activated complex in chemical reactions, J. Chem.
Phys., 3, 107–115, https://doi.org/10.1063/1.1749604, 1935.

Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the Upper
and Lower Atmosphere: Theory, Experiments and Applications,
Academic Press, San Diego, CA, London, xxii, 969 pp., 2000.

Frenkel, J.: Theory of the adsorption and related occurrences, Z.
Phys., 26, 117–138, https://doi.org/10.1007/bf01327320, 1924.

George, I. J. and Abbatt, J. P. D.: Heterogeneous oxidation of at-
mospheric aerosol particles by gas-phase radicals, Nat. Chem.,
2, 713–722, https://doi.org/10.1038/Nchem.806, 2010.

Hanson, D. R. and Ravishankara, A. R.: The Loss of CF2O On
Ice, NAT, and Sulfuric-Acid-Solutions, Geophys. Res. Lett., 18,
1699–1701, 1991.

Hill, T. L.: An Introduction to Statistical Thermodynamics, Dover
Publications, New York, 501 pp., 1986.

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S.
H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe,
H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wil-
son, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laak-
sonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn,
M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M.
J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R.,
Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick,
F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cot-
trell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S.,
Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel,
J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb,
C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Or-
ganic Aerosols in the Atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009.

Kemball, C. and Rideal, E. K.: The adsorption of vapours on mer-
cury. 1. Non-polar substances, P. Roy. Soc. Lond. A Mat., 187,
53–73, https://doi.org/10.1098/rspa.1946.0065, 1946.

Kisliuk, P.: The sticking probabilities of gases chemisorbed on
the surfaces of solids, J. Phys. Chem. Solids, 3, 95–101,
https://doi.org/10.1016/0022-3697(57)90054-9, 1957.

Kolasinski, K. W.: Surface Science: Foundations of Catalysis and
Nanoscience, 3rd edn., John Wiley & Sons, Ltd., West Sussex,
United Kingdom, 556 pp., 2012.

Kolb, C. E., Worsnop, D. R., Zahniser, M. S., Davidovits, P., Keyser,
L. F., Leu, M.-T., Molina, M. J., Hanson, D. R., Ravishankara,
A. R., Williams, L. R., and Tolbert, M. A.: Laboratory Studies of
Atmospheric Heterogeneous Chemistry, in: Progress and Prob-
lems in Atmospheric Chemistry, edited by: Barker, J. R., World
Scientific, Singapore, 771–875, 1995.

Kolb, C. E., Cox, R. A., Abbatt, J. P. D., Ammann, M., Davis, E. J.,
Donaldson, D. J., Garrett, B. C., George, C., Griffiths, P. T., Han-
son, D. R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I.,
Rossi, M. J., Rudich, Y., Wagner, P. E., Winkler, P. M., Worsnop,
D. R., and O’Dowd, C. D.: An overview of current issues in the

uptake of atmospheric trace gases by aerosols and clouds, Atmos.
Chem. Phys., 10, 10561–10605, 2010.

Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Cana-
garatna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R.,
Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb,
C. E., and Worsnop, D. R.: Carbon oxidation state as a metric
for describing the chemistry of atmospheric organic aerosol, Nat.
Chem., 3, 133–139, https://doi.org/10.1038/NCHEM.948, 2011.

Laidler, K. J.: The mechanisms of some elementary sur-
face reactions, J. Phys. Colloid Chem., 53, 712–732,
https://doi.org/10.1021/j150470a010, 1949.

Laidler, K. J., Glasstone, S., and Eyring, H.: Application of the The-
ory of Absolute Reaction Rates to Heterogeneous Processes II.
Chemical Reactions on Surfaces, J. Chem. Phys., 8, 667–676,
https://doi.org/10.1063/1.1750737, 1940.

Langmuir, I.: A theory of adsorption, Phys. Rev., 6, 79–80, 1915.
Langmuir, I.: The evaporation, condensation and reflection of

molecules and the mechanism of adsorption, Phys. Rev., 8, 149–
176, https://doi.org/10.1103/PhysRev.8.149, 1916.

Langmuir, I.: The adsorption of gases on plane surfaces of
glass, mica and platinum, J. Am. Chem. Soc., 40, 1361–1403,
https://doi.org/10.1021/ja02242a004, 1918.

Langmuir, I.: Vapor pressures, evaporation, condensation
and adsorption, J. Am. Chem. Soc., 54, 2798–2832,
https://doi.org/10.1021/ja01346a022, 1932.

Li, J. and Knopf, D. A.: Representation of Multiphase OH
Oxidation of Amorphous Organic Aerosol for Tropo-
spheric Conditions, Environ. Sci. Technol., 55, 7266–7275,
https://doi.org/10.1021/acs.est.0c07668, 2021.

Li, J., Forrester, S. M., and Knopf, D. A.: Heterogeneous oxidation
of amorphous organic aerosol surrogates by O3, NO3, and OH
at typical tropospheric temperatures, Atmos. Chem. Phys., 20,
6055–6080, https://doi.org/10.5194/acp-20-6055-2020, 2020.

McNaught, A. D. and Wilkinson, A.: IUPAC. Compendium of
Chemical Terminology (the “Gold Book”), 2nd edn., Blackwell
Scientific Publications, Oxford, 2014.

McQuarrie, D. A.: Statistical mechanics, University Science Books,
Sausalito, CA, 631 pp., 2000.

Moise, T., Flores, J. M., and Rudich, Y.: Optical prop-
erties of secondary organic aerosols and their changes
by chemical processes, Chem. Rev., 115, 4400–4439,
https://doi.org/10.1021/cr5005259, 2015.

Pilling, M. J. and Seakins, P. W.: Reaction Kinetics, 2nd edn., Ox-
ford Science Publications, Oxford University Press, New York,
USA, 320 pp., 1996.

Pöschl, U. and Shiraiwa, M.: Multiphase Chemistry at the
Atmosphere-Biosphere Interface Influencing Climate and Pub-
lic Health in the Anthropocene, Chem. Rev., 115, 4440–4475,
https://doi.org/10.1021/cr500487s, 2015.

Pöschl, U., Rudich, Y., and Ammann, M.: Kinetic model framework
for aerosol and cloud surface chemistry and gas-particle interac-
tions – Part 1: General equations, parameters, and terminology,
Atmos. Chem. Phys., 7, 5989–6023, 2007.

Ravishankara, A. R.: Heterogeneous and multiphase chemistry in
the troposphere, Science, 276, 1058–1065, 1997.

Rowland, F. S.: Stratospheric ozone deple-
tion, Annu. Rev. Phys. Chem., 42, 731–768,
https://doi.org/10.1146/annurev.physchem.42.1.731, 1991.

Atmos. Chem. Phys., 21, 15725–15753, 2021 https://doi.org/10.5194/acp-21-15725-2021

https://doi.org/10.5194/acp-11-3303-2011
https://doi.org/10.1021/jp212015g
https://doi.org/10.1063/1.1749604
https://doi.org/10.1007/bf01327320
https://doi.org/10.1038/Nchem.806
https://doi.org/10.1126/science.1180353
https://doi.org/10.1098/rspa.1946.0065
https://doi.org/10.1016/0022-3697(57)90054-9
https://doi.org/10.1038/NCHEM.948
https://doi.org/10.1021/j150470a010
https://doi.org/10.1063/1.1750737
https://doi.org/10.1103/PhysRev.8.149
https://doi.org/10.1021/ja02242a004
https://doi.org/10.1021/ja01346a022
https://doi.org/10.1021/acs.est.0c07668
https://doi.org/10.5194/acp-20-6055-2020
https://doi.org/10.1021/cr5005259
https://doi.org/10.1021/cr500487s
https://doi.org/10.1146/annurev.physchem.42.1.731


D. A. Knopf and M. Ammann: Adsorption and desorption equilibria 15753

Rudich, Y., Donahue, N. M., and Mentel, T. F.: Aging of
organic aerosol: Bridging the gap between laboratory
and field studies, Annu. Rev. Phys. Chem., 58, 321–352,
https://doi.org/10.1146/annurev.physchem.58.032806.104432,
2007.

Savara, A.: Standard States for Adsorption on Solid Surfaces:
2D Gases, Surface Liquids, and Langmuir Adsorbates, J. Phys.
Chem. C, 117, 15710–15715, https://doi.org/10.1021/jp404398z,
2013.

Shiraiwa, M. and Pöschl, U.: Mass accommodation and gas–
particle partitioning in secondary organic aerosols: depen-
dence on diffusivity, volatility, particle-phase reactions, and
penetration depth, Atmos. Chem. Phys., 21, 1565–1580,
https://doi.org/10.5194/acp-21-1565-2021, 2021.

Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmo-
spheric secondary organic aerosol partitioning, Geophys. Res.
Lett., 39, L24801, https://doi.org/10.1029/2012gl054008, 2012.

Shiraiwa, M., Pfrang, C., Koop, T., and Pöschl, U.: Kinetic multi-
layer model of gas-particle interactions in aerosols and clouds
(KM-GAP): linking condensation, evaporation and chemical re-
actions of organics, oxidants and water, Atmos. Chem. Phys., 12,
2777–2794, 2012.

Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-
particle partitioning of atmospheric aerosols: interplay of physi-
cal state, non-ideal mixing and morphology, Phys. Chem. Chem.
Phys., 15, 11441–11453, https://doi.org/10.1039/c3cp51595h,
2013.

Solomon, S.: Stratospheric ozone depletion: A review of concepts
and history, Rev. Geophys., 37, 275–316, 1999.

Sprowl, L. H., Campbell, C. T., and Arnadottir, L.: Hindered
Translator and Hindered Rotor Models for Adsorbates: Partition
Functions and Entropies, J. Phys. Chem. C, 120, 9719–9731,
https://doi.org/10.1021/acs.jpcc.5b11616, 2016.

Tabazadeh, A. and Turco, R. P.: A Model for Heterogeneous Chem-
ical Processes on the Surfaces of Ice and Nitric-Acid Trihydrate
Particles, J. Geophys. Res., 98, 12727–12740, 1993.

Tully, J. C.: The dynamics of adsorption and desorption, Surf. Sci.,
299, 667–677, https://doi.org/10.1016/0039-6028(94)90688-2,
1994.

https://doi.org/10.5194/acp-21-15725-2021 Atmos. Chem. Phys., 21, 15725–15753, 2021

https://doi.org/10.1146/annurev.physchem.58.032806.104432
https://doi.org/10.1021/jp404398z
https://doi.org/10.5194/acp-21-1565-2021
https://doi.org/10.1029/2012gl054008
https://doi.org/10.1039/c3cp51595h
https://doi.org/10.1021/acs.jpcc.5b11616
https://doi.org/10.1016/0039-6028(94)90688-2

	Abstract
	Introduction
	Thermodynamic and microscopic considerations of the adsorption–desorption process
	Gibbs free energy, enthalpy, and entropy of the adsorption and desorption process
	Adsorption and desorption energy and activation barrier
	Relationship between partition functions and thermodynamic quantities
	Concentration, standard states of gas species and adsorbates, and activities

	Thermodynamic functions of the desorption equilibrium
	Desorption equilibrium for adsorbed 2D ideal gas
	Desorption equilibrium for adsorbed 2D ideal lattice gas
	Adsorbate model comparison of surface concentration, activity, and coverage

	Derivation of the desorption rate and pre-exponential factor A
	Desorption of a 2D ideal gas
	Desorption of a 2D ideal lattice gas
	Adsorbate model comparison of desorption rate and pre-exponential factor

	Rate of adsorption
	Adsorption–desorption equilibrium
	Derivation of kinetic parameters from the equilibrium constants
	Implications for the assessment of the desorption energy and rate and pre-exponential factor
	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

