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This Supplement includes all necessary derivations of the thermodynamic equations for 3D ideal gas, 2D ideal gas, 2D ideal
lattice gas, and transition state (TS). Many of these equations can be found in Campbell et al. (2016) and in classical textbooks
such as by Kolasinski (2012) and Hill (1986). The Supplement consists of the following sections: (S1) Definition of desorption
and adsorption equilibrium constants; (S2) Derivation of thermodynamic functions for desorption and adsorption; (S3)
Standard molar enthalpies, entropies, and Gibbs free energies; (S4) Derivation of equilibrium constants; (S5) Standard molar
Gibbs free energy change and equilibrium constant between the 3D ideal gas and the transition state for adsorption; (S6)

Adsorption-desorption equilibrium.

S1 Definition of desorption and adsorption equilibrium constants

When defining the equilibrium constant and thermodynamic quantities, the subscripts describe the process direction in the
order of (from left to right) process (adsorption or desorption), educt, and product. We are defining the equilibrium between
the adsorbed 2D ideal gas and the 3D ideal gas as

(Ng/V)o (Ng/v)
0 _ Gy _ (Ng/V)  _ (Na/vR)
Xadsz2p © Xg: and Kdes,zD,g = deassn | Maasd/AD (J?ads) - (1)

(Nads/‘ﬂ)o (NA/CH?")

We define the equilibrium between the adsorbed 2D ideal lattice gas and the 3D ideal gas as

(Ng/V)o (Ng/7)
0 __ 9 __(gm) _ _(Na/vR)
Xaasiatt © Xg» and Kgeg iate.g = P 7/ Ct) I /(=6 - @)

(69/(1-69))  (6°/(1-69))
We define the equilibrium between the adsorbed 2D ideal gas and the TS for desorption as

(Nrs/A) (Nps/A)
0 ars  _ (Nrs/A)” _ (Na/A%)
o — — (Nts — (Na/Am
XadS,ZD XTS! and Kdes,ZD,TS Qads2p (Nads/‘ﬂ) (Nads) . (3)

(Nads/‘ﬂ)o (NA/‘A?”)

We define the equilibrium between the adsorbed 2D ideal lattice gas and the TS for desorption as

(NTS/‘A)O (NTs/A)
0 __ars _ _(Nps/A)  _  (Na/AR)
Xaasatt < Xrs» and Kgeg jqee7s = @/-0) " = ~@/a=6)) 4

Qqds,latt

(0°/(1-6%)  (0°/(1-69))
We define the equilibrium between the 3D ideal gas and the TS for adsorption as (note that the direction is different now, TS
is the product)

(Nrs/A) (NTs/A)
_ars _ (Nps/A) _ (Na/Ah)

Xy © Xrg, and Kt(z)ds,g,TS = i = (;Z/V) = (Sg/v) : ©)
(ng/v)° (Na/vin)



S2 Derivation of thermodynamic functions for desorption and adsorption

This section establishes the partition functions and their relationship to thermodynamic variables for desorption and adsorption
considering the 3D ideal gas, 2D ideal gas, 2D ideal lattice gas, and transition state. The 3D gas case is reiterated here for

reference and comparison to the other cases.
S2.1 Calculation of molecular and molar thermodynamic functions for the 3D ideal gas

With = gV /N!, using Stirling’s approximation, we can approximate:
InQ=Nlng—InN!'=* Nlng—NInN+N . (6)

Considering translations in 3 dimensions only for a gas, %" = (2mmkgT /h%)3/?, yields (Atkins and de Paula, 2006)

3/2
a9=2=V(55) = VvQrmkyT/h?)? 0
R A I h _ 1
with A= h ()" = o—tr and f = . ®)

We can now derive the thermodynamic functions. The internal energy is

U, — Uy (0) = — (‘“{;‘_ﬁ%)v =, (2 I;;y)v _ _Z_j(%)v =N, (2 (- x5) = SNgksT. ©)

Note that the energy reference is set such that for T = 0, U,(0) = 0, and thus

3 U 3
Ug == NgksT and Ug p, = —2 = ~RT . (10)

9

For the enthalpy we derive

_ _ d01lnQg 91nQg NngTV 9qg NngTVA 1
Hy — Hy(0) = ( 5 ) +kBTV( )T S NghsT + 2222 . (BV) 2 NgkpT + 22222 = 2N ke T +
5
NgkpT =~ NgkpT . (11)
In this case, the reference conditions is in such a way that for T = 0, H,(0) = 0, and thus H, = gNngT and Hy , = :—g =
g
ZRT . (12)
For the Gibbs free energy, we derive
alnQ
Gy — G4(0) = —kgTInQ, + kBTV( - g)T = —kgTN,yInq, + ksT(NyIn N, — N;) + NykgT = —NksT In (ZTZ) :
(13)
Note that the energy reference is set such that for T = 0, G4(0) = U,(0) =0.
Expressed in molar quantities: G, = —RT In (qg m) . (14)
Ng

Lastly, we derive the entropy for the 3D ideal gas as



S =290 4 kyInQy = ENgky + NykyIn gy — Ngkiy In Ny + Nyky = Nykip(In(€¥/2) + In gy — InNy +Ine) =
5/2
NykgIn (“’ qg) (15)
g
Expressed in molar quantities, we can write
5/2 5/2 5/2 23/2 5/2 213/2
Sym = RIn ( "g) — Rln (M) _ Rin (&LCmmksT/n) TN _ oy (2L2GrmisT/n) T (16)
' Ng Na (Ng/7) (k;%»

The last expression is the Sackur-Tetrode equation (Atkins and de Paula, 2006).

The chemical potential, u 4, can be derived in the following way (Hill, 1986), accounting for the standard concentrations:

Na
Gg— Gg(O) _ 91nQg _ dg _ 2mTm 3/2_ _ 2mm /ZLE
by (T) = g (0) = 5220 = kBT( o )W = ~kpTIn 2 = —iesT'In [(hz,;) ] = —ko71n | (352) o

0
3/2 . 3/2 3/2
(an) %kB;OT = —kyTIn [ an I@;Tﬁ] = —ksTln [ 271:m I;T] n kBTln (17)

h?p e ol h2ﬁ p° » hzﬁ
kBT %kgT

_kBTl

The last term we identify with

ug(T) = 1g(0) = (1) + kpTIn3., (18)
so that we can express the standard chemical potential of the ideal 3D gas as

2nm\3/2 kT
u(T) = —kyTIn [(h ) ,,—o] . (19)

Note that the energy reference is set such that for T = 0, G,(0) = U4(0) = 0, and thus also u,(0) = yg(O) = 0. With this
we obtain the common general expression for the chemical potential of an ideal gas

#g(T) = pg(T) + kT In 5
S2.2 Calculation of molecular and molar thermodynamic functions for molecules adsorbed as 2D ideal gas

For the 2D ideal gas of adsorbates on a surface, the canonical ensemble still represents independent indistinguishable non-

interacting molecules on the surface, as in the 3D ideal gas case. With q"“%'w = (2mrmkgT /h?), we can write

A 2mm 2/2
Quranson = 55 = A (57) " = AQumk,T /K22, (20)
with
_ B \Y? _ h 1
A=h (E) ~ (2mmkgT)1/2 and § = kpT (21)

If the adsorbed molecule still has vibrations in the z-direction, this adds a factor q, ,,;;,. Then the overall partition function for
the ideal 2D gas is

qads,ZD = qtrans,Zqu,vib . (22)



Here, we just consider q452p = Gerans,2p and obtain

Uaas,zp — Uaas,2p (0) = —Naas (alm;%)ﬂ = _%(aq%%)ﬂ = —Ngas (Ajf) (_ %) = NaasksT . (23)

The energy reference for the internal energy is the gas phase molecule at rest (T = 0 K). The adsorbed molecule is at the
bottom of a potential well, at —e,, with €3, being a positive number indicating the necessary heat for the molecule to desorb.
At constant volume, the change in heat equals the change in internal energy. At T = 0 K, Uggs2p(0) = —Nags€3es = —€3ess
thus,
Ugasz2p = NaaskpT—€des (24)
and in molar quantities with E3,; = N€3,
Uaaszpm = RT_Ea(l)es . (25)

As a reminder, EJ, represents the depth of the potential well in molar units and has a positive value. Similarly, for the

enthalpy we can write

91InQqqs, d1InQqqs,
Haas2p — Haaspp(0) = — (ﬁ)ﬂ + kgTA (ﬁ)T = NaaskgT +

NqdgskpTA (aQads,ZD
ap 0A

A )T = NadskBT +

dads2D

NgqskpTAM% 1

) 7 = NaaskpT + NaaskpT = 2NqaskpT . (26)
Also, hereatT = 0 K:
Haas20(0) = —Nags€ges = —€des: thus, Hagsop = 2NaqskpT —&ges (27)
and
Hagsz2pm = ZRT_Ec(l)es . (28)

Following with the derivation of Gibbs free energy

01nQqqs,
Gads,ZD - Gads,ZD (O) = _kBT In Qads,ZD + kBTC’q (%)T = _kBTNads In Qads,2D + kBT(Nads In Nads - Nads) +

NaasksT = —NogskpT In (12422} (29)

ads
AtT = 0K, Gags2p(0) = Uggs2p(0) = —Nggs€des = —€des, thus, we obtain
dads,
Gads,ZD = _NadskBT In (ﬁ) - Ec(i)es . (30)

In molar quantities, as above for the ideal 3D gas, we obtain

0
Edes

Gadszom = —RT In (144222) _ g, = —RTIn (—q“d;”'me RT ) (31)

A A

while ggq52pm reflects only 2 translations and vibrations.

Lastly, for the entropy we can write

U 2D~ Uqads,2p(0)
Sads,ZD = M + kB In Qads,ZD = NadskB + NadskB In Qads2p — NadskB In Nggs + NadskB = NadskB (ln e+

2
IN Gaas.2p = I Nogs + In€) = Nogskp In (S22 (32)

ads



with the molar quantities

2 2 2 22/2
Sadszpm = RIn (—e qadS'ZD) =Rln (—e qazjw'm) =RIn (e AzmmkT/h7) ) . (33)

ads Nads

This is the equivalent of the Sackur-Tetrode equation in 2 dimensions.
The chemical potential for a mono-atomic 2D ideal gas can be derived in a similar way as shown above for the 3D ideal

gas and considering that there are only 2 translational degrees of freedom (Hill, 1986)

2
#ads,zu(T) _ ‘uadsyw(o) _ Gads2p~Gads20(®) _ —kyT (6 1nQads,2D)qu = —kpT In dads2D dads2p _ —kyTIn [(an)z 1 ] _

Nads ONggs Naas h2B) Nags
z Mg 2
—kyT1n (";’;’;) N‘fds ‘;‘,j; = —kyTIn [(i’;’;)z ‘I‘;—’:aa;w] =—kyTIn [(i’;’;)z ‘f}m] + kgTIn dggsap - (34)
Since Uggs2p(0) = G“‘I’::‘:;(O) = U“‘;fazdi © = _¢9,. , we obtain
0
Haas2p(T) = —kgTIn [(i’;’;‘)z ‘;’;':] + kpTInQugsop — €3es = —ksT In (igf;)zﬂmei‘?ﬁ + kT Inaggsop =
2mm Ec/lo %
—ksTIn [(hz 3)2 e R |+ kpT In Gagsz (35)
Applying
Haaszp(T) = U3as2p(T) + kgTInaggs2p (36)

we can express the standard chemical potential of the adsorbed ideal 2D gas as

Edes
#ads 2D (T) - _kBT ll’l [(i’;r;) c/lm € RT ] . (37)

S2.3 Calculation of molecular and molar thermodynamic functions for molecules adsorbed as 2D ideal lattice gas

For the 2D ideal lattice gas, no translations are allowed, and the adsorbed molecules have three vibrational degrees of freedom,
leading to (Hill, 1986)
qads latt — qx vib qy vib qz vib * (38)

For the vibrational partition function q,;;,, we can write, setting the zero-point level (g, = éhv) as 0 (Atkins and de Paula,
2006),

Qviv = 7 (39)

In the 2D lattice gas model, N adsorbed molecules distribute over M equivalent but distinguishable sites, leading to the
canonical partition function being (Hill, 1986):

Q:

M!qN

NI(M=N)! an =MInM—-NInN — (M —N)ln(M—N) +N1nq (40)



It is worthwhile noting that this approach holds for a solid and liquid surface as long as the number of adsorption sites is given

by M. In other words, the partition function does not consider how the M sites are distributed over the surface and time.

Using the definition of 6 = % this can also be written as:

N N N N N
In Qads,latt = ‘;ds lnaTds - Nads In Nads - (aTds - Nads) ln( (;ds - Nads) + Nads In Qads,latt = — st ln(l - 9) +
1-6
Nads In (T) + Nads In Qads,latt - (41)

Campbell et al. (2016) applied this same transformation when deriving the entropy, here derived further below.
For the thermodynamic functions, the number of sites M is the new variable that replaces the area (used in the 2D ideal

gas) or the volume used in the 3D ideal gas as variables:

_ _ 0InQqds,latt _ 91Inqqqslatt _ _ _Nags 9qqds,latt _ Nagshv
Uads,latt Uads,latt(o) - ( ap )M - Nads ( ap )M - Qads,latt( ap )M - eBhv_1 " (42)
Like the case of the 2D ideal gas, the adsorbed molecule resides in the bottom of the potential well:
Uads,latt(o) = _Nadseges = _Sges’ (43)
and thus
Ngds'h
Uaasjate = eB:"—: - Sges . (44)

In molar quantities, we derive

_ Nghv 0
Uads,latt,m T eBhv_{ _Edes . (45)

Note that the partition function of vibration does not depend on surface area and thus molecular partition functions are used
here and for the remainder of the 2D ideal lattice gas discussion.

For the enthalpy of an adsorbed 2D ideal lattice gas, we obtain

_ _ 01InQqds,latt 91InQqds,latt — Nads 9qads,latt M _
Haasate = Haasiaee(0) = = (F552tett) o kM (Fiptotett) = — bede (Hasiast) 4 oy M In ([—) =
Nads  (9dads,latt Nags _ _ _ _Nags (94adslatt) _ Nags _ oy _ Nagshv Nads _
ads (—a . ) +kpT 4 (= In(1 - 0)) = — ~ede— (—a . ) kT 2L 1n(1 - 0) = Tod™ — o7 N (g
0). (46)
Also, hereatT = 0 K:
Hads,latt(o) = _Nads€3es = _gges . (47)
We obtain
N -hv N
Hads,latt = egz—‘s’—l - kBTaTdsln(1 - 9)—8335 . (48)
In molar quantities, we can derive
N 4-hv In(1-6)
Haasatem = eg;lzv_l —RT 9 _E(ges . (49)

For the Gibbs free energy, we derive



01InQqds,la Nads (1-6)
Gads,latt - Gads latt(o) - _kBT In Qads latt T kBTM (#)T = _kBT (_len(l - 0) + Nads ln( 9 ) +

1-6)

Nads _
Nggs In qads,latt) - kBTlen(l —0) = —NggskpT In Qads,latt — NadskBTln( ) = NadskBTlrl(1 —e ﬁ‘hv) -

(1-6)
NaasksT In (= ) (50)

At T=0 K, Gads'latt(O) = Uads,latt(o) = _Nadseges = _8((1)85' thUS, we Obtaln

- (1-6)
Gads,latt = NadskBTln(1 —e€ Bhv) NadskBTln( ) Sges . (51)

Expressed in molar quantities:
(1-6)

- (1-6)
Gads,latt,m = —RTIn qads,latt RT ln( ) Edes =RT ln(l —€ ,Bhv) RTIn ( ) Ez(i)es . (52)
Lastly, we derive the entropy of the adsorbed 2D ideal lattice gas (Campbell et al., 2016):

Uads,latt - ads,latt(o)

Sads,latt = T + kg In Qads,latt =
__Nggs (aqads,latt) _Ngaskp (aqads,latt)
] N 1-6 9
dads,latt B + kB ( Nads ln(l _ 9) + Nads In (( )) + Nads In qads,latt) — qads,lat;BT B +

(1-0) Nads 01Inqqds,la
kBNads In Qads,latt + kBNads ll’l( 0 ) - kB len(l - 0) = NadskB (ln Gads,latt — B (¢)) +

ap
(1-6)\ In(1-6)
NadskB (11‘1( 0 ) - P ) Sads latt,vib + Sads latt,config- (53)
In molar quantities (Campbell et al., 2016):
91Inqqgsia (1-6) In(1-6)
Sads,latt,m =R (ln Qads,latt — B (*)) +R (11’1 (T) - nT) : (54)
The chemical potential of the adsorbed 2D ideal lattice gas can be derived in the following way:
Gasa Gasa(o) alQasa
ﬂads latt(T) ﬂads latt(o) - ot ttN dulatt kBT (%) = kBT( In Nads + In Nads + ln( 1) +
ads ads M Nads
6
Inqqasiare = In6 —In(1 = 6) —Inggasiaee) = kT In (m)- (55)

Accounting for the standard surface coverage, keeping the same dependence as 8, we can write (Hill, 1986;Campbell et al.,
2016)

90

6 6 1g0 1-6°
Haas,iate(T) = Hads,1aee (0) = kpT In (m) kpT In [Qads — e 55 l = —kpTIn [qads latt —go ] +
1-60
4
ksTIn [“ ”] ks T 10 [Guasiate o] + k5T 1N Gaasiare - (56)
1-60

Gads,latt(o) Uads latt(o)
Nads Nads

Since pagsiaee (0) = = —el,s , We obtain



0
1-90 o Ydes

1-6
Hads latt (T) = _kBT In [qads,latt T] + kBT In QAqds,latt — eges = _kBT In Iqads,latt g0 eksT

+ kgT In QAads,latt =

1-90 Eges
_kBT In Gads,latt W e RT |+ kBT In Aads latt - (57)
Applying
.uads,latt (T) = .ugds,latt (T) + kBT In aads,latt ' (58)
we can express the standard chemical potential of the adsorbed 2D ideal lattice gas as

(59)

£0
o _ 1-99 Zdes
ﬂads,latt(T) - _kBTln [qads,latt 90 e RT

S2.4 Calculation of molecular and molar thermodynamic functions for molecules in the transition state for desorption

or adsorption

The TS for adsorption/desorption is assumed to exist at some fixed distance from the surface but within a very thin layer
of thickness d, where it experiences an increase in potential energy (relative to the gas phase at infinite separation) to a
maximum value expressed by the energy barrier € per mole due to its interaction with the surface (e.g., due to Pauli repulsion).
We further assume for simplicity that, at this TS distance from the surface, or at that energy barrier, the potential energy does
not depend on the rotational orientation of the molecule nor on the location parallel to the surface (i.e., the energy barrier is
independent of x,y-coordinates). According to TS theory, the molecules are moving in the direction of the reaction coordinate
(thus desorption or adsorption) with the mean thermal velocity. They are treated as a 2D ideal gas in the plane parallel to the
surface, but they feature translation in the direction orthogonal to it, which is confined to d. Therefore, when omitting

vibrations, the total partition function is

A d 2mm\2/2 2mm\1/2 2mrm\3/2 2mmkpT)3/2 Ad
drs = qrszpqrsdes = 7375 = A (W) d (m) = Ad (W) = Ad ( th ) = a3 (60)
o g \Y2 h _ 1
WIthA—h(%) —W ndﬁ—m. (61)

The partition function of the TS is made up of the partition function of the TS confined to two dimensions similar to a 2D ideal
gas (qrs2p) and the one-dimensional translation (qrs 4.5). Thus, overall, the partition function of the TS is similar to that of a
3D ideal gas, confined, however, to a thin layer.

The energy reference for the internal energy is the gas phase molecule at rest (T = 0 K). The molecule in the TS is

activated to the level of the energy barrier for desorption or adsorption. Hence, for the internal energy, we obtain

Urs — Urs(0) = — (alg—g”)ﬂ = —Nrg (MS—ZTS)A = _%(63_;5)& = —Nrg (Q_D (— 23;?3) = ;NTSkBT (62)

Since the molecule in the TS does not have any interactions with the surface but sits on top of the energy barrier, qp, thus, we
obtainat T = 0 K, Urs(0) = Nygel = &2, so that:



Urs =2 NyskpT + & (63)

and in molar quantities

Ursm = %RT+E,‘,’ . (64)
The internal energy of the TS includes the two translations in the horizontal and the orthogonal translation along the reaction
axis. In contrast, the activation internal energy associated with the TS corresponds to the TS with the translational motion
along the desorption or adsorption direction omitted, and thus, is a 2D gas. Here, the activation process can be conceptionally
envisioned by bringing the molecules in the 2D ideal gas from the zero-point energy to the actual energy level that allows for
the formation of the TS. In other words, without bringing up the adsorbed molecules to the actual energy level, desorption
cannot progress. For the remainder of the manuscript the subscript “act” refers to the TS described as a 2D ideal gas. Therefore,

we obtain the corresponding internal energy of activation, neglecting vibrations:

Unce = Ugee(0) = =g (P57522) = —chece (200822) =~y (1) (= ) = Mgk T (65)

with U, (0) = &f and in molar quantities
Ugetm = RT+EY . (66)
For the enthalpy, we proceed analogously:

3
Hrs — Hys(0) = — (2522 QTS)A ki TA (T52) = 2 Npghep T+ MR (HES) = 2Ny e T 4 M0 G =

ap ars oA Jr 2 dA A3
> NrskpT + NrgkyT = 2 NpsksT. (67)
For the same reasons as above, the reference conditions are in such a way that for T = 0, Hys(0) = £, and thus
Hrs = 2 NyghkpT + £ and Hrg, = :—x = ZRT+E . (68)

Correspondingly, for the enthalpy of activation (assuming 2D ideal gas only), we obtain
Hact = ZNTSkBT + 88 aﬂd Hact,m = 2RT+E19 (69)
Following with the derivation of Gibbs free energy

al
Grs — Grs(0) = —kgT In Qrs + kgTA (%)T = —kgTNrsInqrs + kT (NpsIn Npg — Nrg) + NrskpT =

—NypksT In (;LTi) . (70)
AtT = 0K, Grs(0) = Urs(0) = £, thus, we obtain

Grs = —NpoksT In (;’,—ﬁ) +ef. (71)
In molar quantities, we obtain

Grsm = —RTIn (%) +EY. (72)

The Gibbs free energy of activation, which does not include the motion along the desorption coordinate, is derived as,
with Gact(o) = Uact(O) = 51()]’



Gact - NTskBTln <—S) + 58 = _NTSkBT ln (T_:SD) + 51? (73)

ars,desNTs
and
_ qars,m 0 _ _ qTs,2D,m 0
Gactm = —RTIn (—qm,desw) +E® = —RTIn (—NA ) +E. (74)

Lastly, for the entropy we write

Urs—UTs(0 3
STS = TS—TS() + kB ln QTS = ENTSkB + NTSkB ll’l qTS - NTSkB 11‘1 NTS + NTSkB = NTskB(ln e+ ln qTS - ln NTS +

T
3/2) — e*%ars
Ine3/?) = Nkg ln( Nrs ), (75)
with the corresponding molar quantities
2qrs arsm\ _ e5/24d(2mmkgT /n2)*/?
Srsm = Rln( o~ )=Rn (—NA )_Rln( o . (76)
For the activation entropy, we obtain
_ elqrsop) e2qrsapm) _ e2=/1(27'5"111615'7"/?12)2/2
Sectm = RIn (—NTS ) =RlIn (—NA )=R ln< 2 . (77)

The chemical potential for the TS can be derived the following way

3
Hrs(T) = prg(0) = T = 7 (22215) - - = kT2 = —kyTn [(Z"m)ZL] _
T,A

Nrs ONTs h2B) Nrts

3 Ng 3 3

(2”’")2%% = —kzTIn [(2"’") qdm 1| _ kgT In [(Z"m) d%] +kgTlnars . (78)
CAO

h2B ) Nrs h2g Ny ars h2p
m

_kBTln

Grs(0) _ Urs(0) _

€5 , we obtain
Nrs Nrs

2mm

3 0
pirs(T) = —kyT In [(hz B) d‘;‘;—’:] + ksTInags + €2. (79)

Applying
urs(T) = #?‘S(T) + kgTInarg , (80)
we can express the standard chemical potential of the TS as

3
©2s(T) = —kgT In [(i’;’;)z d ‘”m] + €. (81)

The chemical potential for the activated state can be derived the following way

2
an)z 1

Gac _Gac 0 ’
Hace(T) = pace(0) = Saot—Saer®) _ = —NrskpTIn <7s) = —NrskpTIn (q;izD) = —kpTIn [(hzﬁ Nrs

Nrs ars,desNTs
2 Na

—kyTIn (2”’")2 A “l"l —ksTn [(“’”)ﬁL = —kyTIn [(an)%]+kBTlnaTs. (82)

h2p /) Nrs h2B) Ny ars h2g
A9

GaCt(O) UaCt(O)
Nrs Nts

Since pg.(0) = = ¢f , we obtain

10



2mm

A
faet(T) = —ksT In [(ﬁ) N—A] +kpTInags + €2 . (83)

Applying
Hact (T) = cht (T) + kBT In ars , (84)
we can express the standard chemical potential of activation as
0 _ 2mm ﬁ 0
1 (T) = —kpTIn | (% B) NA] + €. (85)

S3 Standard molar enthalpies, entropies, and Gibbs free energies

For the relationship to the equilibrium constant, we need the standard molar Gibbs free energies. Those are derived in the

following subsections for the 3D ideal gas, 2D ideal gas, 2D ideal lattice gas, and TS.

S3.1 3D ideal gas

_ 0InQgm 0lnQgm\ _ 3 RTV 9qgm\ _ 3 _5
Hym = (—aﬁ )V +kpTV (—av )T = JRT + 0 (—av )T =2RT +RT =2RT (86)
and
o _ _(%InQgm aang,m) _3 RTVS, (aqg,m) _3 _5
Hg . = <—6,8 >V + kBTV< v ), = 2RT + _qg,m s, ), = 2RT + RT = 2RT. (87)
_ es/zqg,m _ (35/2(217:kaT/h2)3/2
Sgm =RIn (N—A) =R ln( o) (88)
and
5/2,0 5/2 2)3/2
S‘g'm — R ln (ENM) — R ln (e (ZﬂkaTéh ) > ) (89)
A (Ng/V)
dg,
Ggm = —RTIn (5_:) (90)
and
qo,m
G3m = —RTn (%), (91)
with g3, = V3 (2rmksT/h?)*/? (92)

where the standard molar partition function gy .,, is the molar partition function evaluated using the standard molar volume

Vo
S3.2 Adsorbed 2D ideal gas

Hads,ZD,m - Hads,ZD,m(O) = ZRT_Eges (93)
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and

am@Q? aIn Q2 RTAY, [dq
0 0 _ ads,2D,m 0 ads,2Dm 0 _ m ads,2Dm 0 _
Hads,ZD,m - Hads,ZD,m(O) == ( )ﬂo + kgTAn ( —Eges = RT + ( )T —Eges =
T
m

op acﬂ?n dads2Dm aﬂ?n
2RT—ES, . (94)
- ¢®dads2pm) _ e?(2mmkpT/n2)*?
Saaszpm = R1n ( Na ) =RIn ( ) (95)
and
0 _ e2q%as2pm _ 6’2(27rkaT/h2)2/2
SSus2pm = RIn (88:22m) = R1n (—(Nads ). (%6)
Gadspm = —RT In (14222m) _pgg, (97)
2D, Ny
and
qO
6l4szpm = —RTIn (424222 e, (98)
o A
with quS,ZD,m = "q;)n (ZTEkaT/hZ) ’ (99)

where the standard molar partition function g4, 2p m is the molar partition function evaluated using the standard molar area

AL,
S3.3 Adsorbed 2D ideal lattice gas

Ng4-hv In(1-6)

Hads,latt,m = Bhv_1 RT 9 _Ez(i)es (100)
and
Nah In(1-6°
Hgds,latt,m = eﬂiv_vl —RT (90 )_Eges i (101)
d0Inqqggsla (1-9) In(1-6)
Sads,latt,m =R (ln Qads,latt — B (*)) +R (11’1 (T) - nT) (102)
and
dInqgqsia 1-6° In(1-6°
St(z)ds,latt,m =R (ln ads,latt — ﬁ (%)) +R (ln (%) - %) : (103)
(1-6)
Gads,latt,m = —RTIn Qads,latt — RTIn ( 9 ) _Et(i)es (104)
and
1-6°
ngs,latt,m = —RTIn qus,latt —RTIn (( 90 )) _Et(i)es . (105)

Note that in the first term, the molecular partition function is used (not the molar). Because the vibrational q,;;, are independent

of the surface coverage,

1
Qaasjatt = 9xvibQyvib9zvib = T ~phv - (106)
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S3.4 Transition state for desorption or adsorption

H 5
Hrgm = Hfsm = n—:j =_RT+E) (107)
and
Hact,m = Hz(z)ct,m = 2RT+El(7) (108)
_ e>2qrsm\ _ es/zcﬂd(ZHkaT/hz)S/Z
Srsm = RIn (—NA ) =R ln( — (109)
and
0 _ es/zlho“s_m) _ es/zd(ZHkaT/h2)3/2
Stsm = R1In (—NA =RIn (re/ A . (110)
_ e2qrsapm) e2=/1(217:mk3T/hZ)2/2
Sectm = RIn (—NA )=R ln( 2 (111)
and
S = R1n (Lohs0m) _ p (e2ammisr /ity (112)
actm = F\ ™=y =) = R T g /a0 '
Grsm = —RTIn (%) +E? (113)
and
0
G, = —RTIn (‘*Lﬂ) +Ep. (114)
! A
Gactm = —RT In (1222 4 ) (115)
and
0
Gleom = —RTIn (H2222) 4 g (116)
A
with q’(I)'S,m = Q’(I)‘S,ZD,quS,des = C’qgnd(znkaT/hz)3/2 (117)
and q’(I)'S,ZD,m = Jl%(ankBT/hz) , (118)

where the standard molar partition function g, is the molar partition function evaluated using the standard molar area A,.
Note that the thickness d as part of qrs 4.s remains as is and is not normalized to a standard length. grs 4.5 acts as a

multiplicator to the standard molecular partition function of the 2D ideal gas and remains specified by the thickness of the
layer assumed.
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S4 Derivation of equilibrium constants

Here, we derive the thermodynamic functions that describe the equilibrium constants between the gas phase and the adsorbed

state for the different adsorbate models and TS.
4.1 Standard molar thermodynamic functions and equilibrium constant between 2D ideal gas and 3D ideal gas
The standard molar change in Gibbs free energy for desorption from a 2D ideal gas is given by:

qg,m
Ny

0 0
AG(ge‘s,ZD,g,m = Ggo.m - Gc(l)ds,ZD,m = —RTIn <q£—:1) - [_RT In (qad;%) _Ec(i)es] = Etges — RTIn

<qus,2D,m> -
Ng
lIgm
—E®
—RT |[—%£ + In (119)
RT qads sz
For the change in enthalpy, we can write
5 1
AI_I((i)es,ZD,g,m = Hg,m - Hads,ZD,m = ERT — 2RT + Er(i)es = ERT + Eges . (120)
For the change in entropy, we derive
es/qu, ezqo 2D, 81/2q0'
ASYes20,gm = Sem — Seaszpm = RIn (Tg’") —RIn (%) =RIn (ﬁ) : (121)

The equilibrium constant, K2y »p 4. is also related to the free energy change, AGoys2p g.m., Via

0 _ —AGY /RT
Kdes,zD,g =e des,zD.gm : (122)

We can, thus, express the equilibrium constant as

(M) 0 . £0
N des des
0 _ A _ dgm -
Kaes2p,9 = 770 RT = e RT . (123)
9ads,2D,m Aads2D,m
Ny

When setting in the expressions for the standard molar partition functions:

3/2 Eoes 0 Eoes 0
W = 20 (Qmnk,T /h?)V/2e TR = % (2mmkgT /h2)/2e =Rt . (124)
m Ng/

We should obtain the same result, when assuming equilibrium and using the chemical potential of the gas and the adsorbed

KO vm(ankBT/hZ)
des,2D.g ™ 49 (2mmkgT/h?)

2D ideal gas:
Ug (T) = #2 (T) + kT lnz% = Hads,2D (T = #gds,zn (T) + kgT In Qads,2D - (125)
We use above derivations to write
2 Y Eoes
—kpTIn [(i’;’;)z ’;—T +kpTInLy = —kepTn [(iﬁ?)zf;—’:e% + kT In aggsp (126)
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E9ps
—kpTIn |2 gV’"] + kyTIn 3L = = —kyTln [q“‘;w ﬂ:e # | + kgTIn
AO

N““l . (127)

Rearranging terms yields

ksTInge — kpTIn |2 = kyTIn ["g Vm] kgTIn [q“d”" Ain 3?5] , (128)
A Ny
Vm
A VY Edes
kBTll’l [aadSZD] = kBTll’l KdesZDg = kBTll’l [qadsZD;Jl—oe RT ] y (129)
0 0 0
ag AV _Edes  (2mmkpr/n2)*? 12 _M iy
Klesana = qoals S ® 1 = Gomigrn e ® 1 = g Qrmks /)2 (130)

This is the same result for K2, ,,, , We obtained when solving for the Gibbs free energy.

4.2 Standard molar thermodynamic functions and equilibrium constant between 2D ideal lattice gas and 3D ideal gas

The standard molar change in Gibbs free energy for desorption from a 2D ideal lattice gas is given by:

q m 1-6
AGdeslattgm = Ggm Gt(z)dslattm _[ —RT In (g ] [ RTIHQadslatt RT In (( )) Edes] Edes

(m) . qgm

Ng _ -Eg

RT In w = —RT RTes +In (- 90) (131)
qads latt™ g0 qads latt™ g0

For the change in enthalpy, we can write
ln(l 0)

5 N4 hv
AI_I((i)es,latt,g,m = Hg,m - Hads,latt,m = ERT - eﬁiv 1 + RT +E((1)es ’ (132)
when neglecting the vibrational term:
ln(l 0)
Angs,latt,g,m = Hg,m - Hads,latt,m = RT + RT +E¢(1)es . (133)

For the change in entropy, we derive

e5/2¢9 m dInqgasa 1-6° In(1-6°
Asges,latt,g,m = Sg,m - St(l)ds,latt,m =RIn (N_Ag> —R (ln Qads,latt — ﬁ (%)) —R (ln (%) - %) .

(134)
Note that 45,4 Only consists of vibrations and as such does not refer to a standard state. When neglecting the contribution
of vibrations, we obtain
Asges,latt,g,m = 5£,m - Sgds,latt,m =RIn (%) - R (ln ((1;_000)) - ]n(z—;g())) . (135)
Therefore, we can express the equilibrium constant as
()
Edes +1In ta

1-60)
dads,latt 90

In Kdes latt,g = (136)
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and

0
dgm 0

0 ( Ny ) _Edes

Kdes,latt,g 1-60) e RT . (137)

dads,latt 90

When setting in the expressions for the standard molar partition functions:

3/2
v (2memkgT/h?) /
N 0 0
0 _ A _Edes _ (271:mk‘3T/h2)3/2 _Edes 138
Kaesattg = g0y € RT = o ey € KT (138)
Gads,latt—go (Ng/V) dadslatt™go

We should obtain the same result, when assuming equilibrium and using the chemical potential of the gas and the adsorbed

2D ideal lattice gas:
Hg (T) = Uyg (T) + kBT ln o —Hads,latt (T) - ﬂads latt(T) + kBT In QAads,latt - (139)

We use above derivations to write

2 KT -9° Eges
—kgTIn [(h’;’g)zp]+k3ﬂn = —kpTIn [qads,att e RT]+kBTlnaadS,att, (140)
qq V, 1-09 Ege 199
—ksTIn [9 "‘]+kBT1nN = —kpT In |qaastate —oo—€ ¥ | + kpTln | 2| (141)
v3, 1—90

Rearranging terms yields

6 E9
q 1-90 des
kT In g% — kBTln[ ] kgT In [9 m] kgT In [qmm 2w | (142)
V9, 1—90
g 118, _Edes
kpT'In |- = kT INKeg 1000 = kpTIn | — 5= e ™ xr |, (143)
ads,latt Qads,latt g0 A
0 Edes 2y3/2 0 _EY 2372 £
0 dg 1V —-des _ (2mmkpT/h?) —-des  (2mmkgT/h?) _—des
Kdes,latt,g 00y N, e RT 1-90 N_ RT = 0 (1_90)8 RT . (144)
Qadslatt 90 A dads,latt 90 A (Ng/v) dads,latt 90

This is the same result for K2, 1., , We obtained when solving for the Gibbs free energy.

4.3 Standard molar thermodynamic functions and equilibrium constant between the 2D ideal gas and the transition

state for desorption

The standard molar change in Gibbs free energy between the TS for desorption and the adsorbed 2D ideal gas is given by:
0
()

| =
qads,ZD,m
Ny

(145)

qo m qg s,2D,m
AGcfljes,ZD,TS,m = G7QS,m - ngs,ZD,m = —RTIn <%) +EI(J) - [_RT In <dT?) _E(ges] = Et(i)es—}_El(JJ —RTIn

<qu,m>

—RT (Edes+Eb) +1In Na
RT 9ads,2D,m
(e

16



In the CTST, the free energy of activation is similar to that of the TS, but with the contribution of the motion along the

desorption coordinate omitted:

q m qa s,2D,m
AGc(iJes,ZD,act,m = cht,m - Gt(z)ds,ZD,m = —RT ln( LoD, )+E0 [ RTIn ( dNZD ) Edes] Edes+Eb

(q’?"S,ZD,m> qu 2D, m
—N. _ 0 0
RTIn |t 2| = —RT |des 4 1 RT ~(BdestBp) | 1) (qu szbm )] . (146)
<qads,2D,m> RT qads 2D, m RT qads,zD,m
Ng

For the change in enthalpy we can write for the TS and activated state

1
AHrti]es,ZD,TS,m = HTS,m - Hads,ZD,m = ERT+EI()) + Ez(i)es (147)
and
AHr(iJes,ZD,act,m = Hact,m - Hads,ZD,m = El? + Eges . (148)
For the change in entropy we can write for the TS and activated state

/ 1/2,0
ASc(i)es,ZD,TS,m = S?S,m Sads 2Dm = =RIn (qqﬂ) =RlIn (M) (149)

ads,2D,m Qads,2D,m
and

q
A*S‘((l)ezs,ZD,act,m = Sz(z)ct,m - Sc(l)ds,ZD,m =RIn (q”ﬂ> . (150)

ads,2D,m
Therefore, we can express the equilibrium constant with respect to the TS as
(q’(l)“s,m>
N
In Kges2p.rs = (Ed;ST+Eb) +1In p - (151)
( ads,2D, m)
Ng
and
(ﬁ%) (E?des*'Eg) % (E?des*'Eg)
thes,ZD,TS = qo—e_ RT = ™ RT (152)
( ads,zD,m> Aads,2D,m
Ng

When setting in the expressions for the standard molar partition functions:

0 50 0 g0 0 g0
Kieaos = Shslemmsar i) 88 0! e hy e S5 = aammiy e
(153)

We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed
2D ideal gas:
urs(T) = Hgs (T) + kgTInarg = Hads,2p (T) = #2ds,2D (T) + kgT'In Qads,2D - (154)
We use above derivations to write

2mm\s  AQ 2mm\3 A9 Edes

—kgTln [(hzﬁ) N_f] +ksTInars + 2 = —kTln [(hzﬁ) ekt ] + kpTInaggssp » (155)
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Nrs

0 EO
—kpTIn [ a2 4 e TIn || + g9 = —kpTIn [M‘”m +kpT In | 2| . (156)
Ny ] m A Ny AO
Rearranging terms yields
kT In |25 | — ksTIn | 52| + g9 = kpTIn qﬂdﬁ]—k Tn “—wﬁei&—r (157)
B AO B A ap B ad N, B A Na )
[ ars des _% i
kgT In =kgTInKps,prs =kpT In e Rt |—qp = kgTln e RT | —kgTIn|eksT| =
| ads,2D dads,2D dads,2D
[ Eoes Eoe (Eges"'Eg)
ksTIn |97 k7" | — kpTIn |e k| = kpTIn |25 e=&T| (158)
EQads,ZD dads,2D
(Eges+Eg) 2 krT/h2 3/2 (Edes+Eb) ( des"'Eg)
_\Pdes™®b) /h Ad _

This is the same result for K3, ,,, 7 We obtained when solving for the Gibbs free energy.

We can express the equilibrium constant with respect to the activated state as

0
4Ts,2D,m
Ng
n

_(Eges"'El()))

0 —
In Kdes,ZD,act - RT +1 q° (160)
( ads,zD,m)
Ny
and
afs,2p
B ,m
0 ( N4 > _(E?des*'Eg) sapm _(E?des*'Eg)
Kdes,ZD,act =~ e RT =€ RT . (161)
(qads,zD,m> dads,2D,m
Ny
When setting in the expressions for the standard molar partition functions:
o‘lm(ankBT/hZ) (Edes+Eg) (NadS/C/l)O (E?ies"'Eg) (Eges"'Eg)
Kdes 2D,act — 70 2 RT = 0 RT =e RT . (162)
AY, (2mTmkpT /h2) (N1s/A)

We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and
adsorbed 2D ideal gas:
tace(T) = pacee(T) + kgTIn ars = faas2p(T) = Uaas2p(T) + kgT Inagag2p - (163)
We use above derivations to write

0 Ees
—kyT1n [(i’;’;) ‘“:1] +kpTInazs +q° = —kzTIn [(j;’;) Ain o4 ] + kT In aggsp . (164)
EO
—kyTn ["T“D ‘”m] +kpTIn |5 + 9 = —ksT In [”T“"I‘;m —] +kgTln ”‘ml. (165)
A° 4 A9

Rearranging terms yields
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E&ES
kaT In |75 | — kepT In | 75045 + gf = kT In [ 11522 ‘”m] JepT In | dadszn A =25 (166)
AO A A Ny
k Tln[ ]— kT In K° ey T'in | 9520 -Sdes] g0 = kyTIn|9Ts20. o~ lasth) (167)
B Qads,2D B ads,2D,act B dads,2D b B dads,2D !
(EQes*ED) 2 (EQestED) (EQes*ED)
qrs, _\des 5/  (2mmkpT/h®) A _
Kc[i)es,ZD,act = q;izzl; e RT - EZﬂ:mkiT/hzgz RT =e RT ' (168)

This is the same result for K, oc¢ We obtained when solving for the Gibbs free energy.

4.4 Standard molar thermodynamic functions and equilibrium constant between the 2D ideal lattice gas and the

transition state for desorption

The standard molar change in Gibbs free energy between the transition state for desorption and the adsorbed 2D ideal lattice
gas is given by:
(1-6°)

q
AGdeslattTSm_GTSm Gt(z)clslattm_[ —RT In (Tsm)+Eb] [ RT In qaqsiace — RTln( ) Edes] Edes+Eb

(qu,m>
RT In _\Na )

—(Es+ED) (qf\’im)
= —RT|—-9e_"b’ 4 |p

dads latt 1;30) - kT Qads,lattlg—go (169)
For the change in enthalpy, we can write for the TS and activated state
AHessacersim = H¥sm — Hoas atem = 2 RT — S+ RT 20D 4 FQ, +ED (170)
and
Angs,larr,act,m = Hactm — Hgds,latt,m = 2RT — ;;ﬁ;,hvl +RT ln(l =i + Eges+Ey - (171)

For the change in entropy, we can write for the TS and activated state

e5/2q2¢ . 91Inqadsia 1-69 In(1-6°
A‘S‘c(l)es,latt,TS,m = SYQS,m - Sgds,latt,m =R 11‘1< NTS' ) -R (11‘1 qads,latt - :8 ( 6; . tt)) - R (11’1 (( 90 )) - (90 )) .

A

(172)

and

ASt(i)es,latt,act,m = Sgct,m - Sgds,latt,m =RlIn (ezqglv%) -R (ln Gads,iatt — B (c’?lnqg—gs,zm)> - R (ln ((1;_090)) - 1n(19_:)9°)) :
(173)

We can express the equilibrium constant as

()
I Kusattrs = o) 4 g | "4 L (174)

dadslatt™—go
and
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0
qTS,m)
N

0 S . S
Kdes,latt,TS - 1— 90)
dads,latt™ 0 90

_(Bdes*E)

RT . (175)

When setting in the expressions for the standard molar partition functions:

cﬁl?nd(znkaT/hz)S/z
- N, 0 0 0 0
. Ny _(EQestED) d(ankBT/h2)3/2 _(Edes+Eb)
Kdes,latt,TS = (1-69) e RT = o (1 _90) RT . (176)
Qads,latt™ Q50 90 (NTs/A) Qads,latt 90

We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed
ideal 2D lattice gas:
prs(T) = u2s(T) + kpTInars = paasiare(T) = UQasiaee(T) + kT In Agag e - (177)
We use above derivations to write

2mm : A 1-6° Eges
—ksTn [( =) m] + kg T Inars + g = —ksT In [qads tatt o= € KT ] + Jeg T In Qg ace (178)
ars 3 Am _NTS 1-6° Ees (1f9)
—ksTIn [ﬂdﬂ] +hyTn | 7| + 98 = —kpTIn |qads are go-€ A7 | + kT In |C2 . (179)
L Am 1-00
Rearranging terms yields
) ) £
kBTln[NTSl kBrln[“ 9| =kyTIn [‘”Sd"‘m] ksT In [qadslattleg e m‘fs]—eg, (180)
1-00
0
ars TS 149, Zdes _ 0
kBTll’l I:aadSlatt] kBTll’l Kdes latt,TS = kBTln [qads lattlegocﬂ Na ——e€ RT ] Eb s (181)
0 (Eges"'Eb) 2 3/2 0 (Eges"'Eg) 2 3/2 (Edes"'Eg)
K aters = %i‘z_me—im %d;‘le_im _ __ d(2mmkpT/n )(1 i (182)
dads|latt—go A Gads,latt—go A (N1s/A)°qads,latt—750— 50

This is the same result for K, ;4.¢ 75 We obtained when solving for the Gibbs free energy.

For the free energy of activation (with the translation along the desorption coordinate omitted), we obtain:

qO m 1-6°
AGges,latt,act,m = Gt(z)ct,m - ngs,latt,m = [_RT In (%) +El(7)] - [_RT In Qads,latt — RT In (( 90 )) _Ec(l)es] =

(q%S,ZD,m> . . (qu 2D m)

N — N

EQ.s+EQ — RTIn 4| = R [ gy || - (183)
Qads,latte—o dads, latt™—go

Therefore, we can express the equilibrium constant as

0
<qTS,2D,m>
—(EQes+ED) Ny
des™"b
In Kdes latt,act — RT + In (1-69)

dadslatt™—go

(184)

and
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0
aTs,2D,m 0 0
0 ( Ny ) (Edes+Eb)
Kdeslattact = (1-60) € RT . (185)
dadslatt™go

When setting in the expressions for the standard molar partition functions:

Afn(2mmkpT/h?) 0 0 0 0
o (EQes+ED) 2 _(Bdes*ED)
KO _ A R T (2memkpgT /h?) i (186)
deslattact — 1—g0) € = 5 (1-60) € .
Qads,latte_o (NTs/A) dads,latt™ g0 90

We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and
adsorbed 2D ideal lattice gas:

Hact (T) = ﬂgct (T) + kBT In ars = :uads,latt(T) = /“‘gds,latt (T) + kBT In aads,latt . (187)
We use above derivations to write

2 A 1-9° Ege
_kBTln I:(’:;T;—) m] + kBT ln aTS + Gb = _kBT ln [qads latt 9 —@E€ RT ] + kBT ln aads‘latt y (188)
0
arszp A w 1-09 Edes (6/(1-6))
—kpT In [17522 ] +kpTIn| %S| = —k,TIn [qad&latt - ] + kg T In [ 20220 S 90))] —q9. (189)
Am
Rearranging terms yields
4l (6/(1-6)) arszp A 1-90 Edes
kBTln[ ”l kgT In [m] = kT In [%N—A] — kT In [qadslatt o ent ] _ (190)
a QTS,ZDC;[;,O (Eges*'Eg)
kBT In [a - ] = kBT In thes,latt,act = kBT In 1A 90) RT ! (191)
ads,latt Aqads,latt——F0 90
0
0 qrs, ZDf’A (Eges+Eb) (ZﬂkaT/hz) :/1 (Edes"'EIOJ) (27kaBT/h2) (Eges"'Eg)
Kdes,latt,act (- 90) RT = T =69 4 Ae RT = - 90)6 RT (192)
Adads,latt—7p0 90 dadslatt™—go (NTS/A)Oqads latt™go

This is the same result for K, 14¢¢,acc We obtained when solving for the Gibbs free energy.

S5. Standard molar Gibbs free energy change and equilibrium constant between the 3D ideal gas and the transition

state for adsorption

Here, we derive the thermodynamic functions that describe the interactions between the gas phase and transition state for
adsorption.

The standard molar change in Gibbs free energy between the transition state for adsorption and the 3D ideal gas is given

by:
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0 0 0
DG grsm = Glsm — Gom = [—RT In (—"E’”) +E§] - [—RT In (qlg—;”)] = —RTIn [—qqif'm] +EJ= —RTIn ["”’"] +

gm qgm
E ° Ep
RT In [eﬁ] = —RTIn [% e F’T|. (193)
dg,m
For the change in enthalpy, we can write for the TS and activated state
5 5
AHY s grsm = Hesm — Hom = ERT+E,‘,) —SRT = Ep (194)
and
5 1

AHR 45 g actm = Hicem — Hygm = 2RT+Ep — SRT = —ERT+E{,’ . (195)

For the change in entropy, we can write for the TS and activated state

%2405 m e%/2qg, aPsm 47s.2DmdTS,des
ASSusgrsm = Shsm = Sgm = RIn (52 — pin (<=18) — pin (—gm) = RIn (7”'“23””” ) (196)
and
AS? =82 m—5%,=RIn <ez"¥ﬂ) —RIn (%) =RIn (q%“”"”) (197)
ads,g,act;m actm gm Na Na el/2 qg,m .
We can express the equilibrium constant as
q Ep
InKgys,grs = In [q”’”e'ﬁ (198)
agm
and
0 q’?“Sm —i
Kaas,grs = qo' € RT. (199)
gm

When setting in the expressions for the standard molar partition functions:

0  ASd(enmkgr/n2)®? Eb 494 _Eb
Kaas,grs = RT = —4—€ RT, (200)
Lz V9, (2mmkgT /h2)3/2 9,

We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed

2D ideal lattice gas:
prs(T) = pps(T) + kgTInarg = pg(T) = pg(T) + kBTln% : (201)

We use above derivations to write

3
2 AN 2 kT
—ksTIn [(h’j;) N—A] + kgTInaps + q) = —kzTIn [(hzfg)z ] + kBTln— (202)
AY, N 49 Vih N
—ksTIn %dm] +kyTln [ftofl = —kzTIn [VQN_A] + kBTlngiaﬁ — €. (203)

Rearranging terms yields
0
ekBT

kBTln[N”l ksTInge = kpT In [q”d”‘“”] kBTln[ng] kgTIn (204)

V

I—l
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v A Ep
kT In [m] = kpTInK0ps = kpTIn |EE=22 o k7| (205)
ag dg Jl Vm
Thus, we obtain
Ep n3/2 . o E? o E?
0 _ arsV Ah -2 _ (2mmkgT/h?)™" " dAY, -2 _ dAm b
Kads,g,TS dg c/l Vm S0 € (ZHkaT/h2)3/2 -I;O e VT(TJ‘I. e . (206)

This is the same result for K , < We obtained when solving for the Gibbs free energy.

For the free energy of activation (with the translation along the adsorption coordinate omitted), we obtain:

0 0 0
AGus gactm = Gocem — Gom = [—RTln ("”Nﬂ) +E3] - [—RT In ("5—"*)] = —RTIn ["T;Oﬂ] +E) =

A A gm
2 Ep
—RT In (22221 o7Rr | | (207)
dgm
Therefore, we can express the equilibrium constant as
q Ep
In K245 g.qce = In [—T”D ™ e RT (208)
cIg m
and
_qf Ep
Kads ,g,act — TqSoZD e RT . (209)
gm

When setting in the expressions for the standard molar partition functions:

A (2mrmkgT /h?) 5 A _Eb
r/h?) b (210)

Kadsg.act = 53 Gormigr iy VO GrmigT /R Z ©
We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and

adsorbed ideal 3D gas:

Hact(T) = pce(T) + kpT I ars = g (T) = (1) + kpTIn 3. (211)
We use above derivations to write
3
_kBT ln [(i:;r;) dqm] + kBT ln aTS + Eb = kBT ln I:(i;’;)z ’;T:| + kBT ln (212)
Rearranging terms yields
kgT In [N”l ksTInge = kpT In [‘”“D ‘“’"] kgT In [q9 Vi _ g0 (213)
V
a Vv AY Eg
kpT In [aigs] = kpTIKCgee = kT [qTngZD L RT] _ (214)
Ko arswvah Tb_ mmar) s ot an (215)
ads,gact = g, A VY T (2nmkgT/h?)3/2 v, € Vm(znkaT/h2)1/2 )
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This is the same result for K, ; ... We obtained when solving for the Gibbs free energy.

6. Adsorption-desorption equilibrium

Considering the equilibrium, for the case that the adsorbed state is a 2D ideal gas, at low coverage, starting with the

thermodynamic expressions:

R R
Rads _ Rdes (216)
0 0
K (kﬂl) e AGadsg act, m/RT M = (kB;T) M e_AGz(i)es,zD,act,m/RTNads (217)
h (Ng/v)° 79 (Naas/A)°
E9 EY,+E)
Wrs/A)° o~ 4Tsm ,—L _ (Nrs/A)° a7sm e—w (218)
(Ng/v)° 79 agm (Naas/A)°™ S 40 e opm
0
N a2 » a2 _Eges
g 5 TOS,m — ads == TSm e RT (219)
(Ng/v)" agm  (Naas/A)° daasapm
0 Ed
Naas (Ng/V) — R;S qads 2Dm _ 0 1 (Ng/V) (220)
Ng (Nads/‘fq)o qgm ads.g, 20 = ngs_ng lin (Naas /A

For the case of the activity-based adsorption and desorption rates, starting with the thermodynamic expressions, we obtain

R R
Rads — Mdes (221)
0
K (kBT) e—AGadsg act;m/RT (NTs/c/l) = (kBT) W75/ A ,~AGgeszp,actm/RT " s (222)
h (Ng/V) (Ngas/A)°
0 0 0
Wrs/A)° o Bsm —5B _ (Nps/A)° 0 (EdestEh)
o Ng—o € RT = 0 Nads s e RT (223)
(Ng/V) qgm Nadgs/A) Aads,2D,m
0
N 01 » or _Eges
9__ q’l;)S,m _ ads _ 0qu.m T (224)
(Ng/V) Adgm (Nadas/D° 4qas20,m
0 EQ 0
Nads (Ng/v) _ g;s qads 2Dm K 1 — (Ng/V) 225
N, (N A0 ads,g,2D — KO — Bin A0 ( )
il (Nads/A) CIgm des,2D,g (Nads/A)

This is again consistent with our findings above.
In case the adsorbed state on the surface is treated as a 2D ideal lattice gas, using the thermodynamic expressions as a
starting point:

Ra‘j;w _ Rde;,llatt (226)
kpT\ _—AGY, ¢ m/RT (NTS/A)° — . (*8T (N7s/A)°  -AGY lattactm/RT —

K ( -z ) e ads,g,act,m —(Ng/v) ]V;] K ( ) 9/(1-07) e es,latt,actm (9/(1 6)) (227)

arsm ( 0 0)
' 0 N E +E

(N7s/A - a¥sm -Eb _(N7s/A)° 4 —des_b)

irs/ 0 e B o (0/(1~0) ——Lgre™ 1 (228)

(Ng/v)° "9 agm (8°/(1-6%) (qadslatt(lggo))
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b £O
Ny 1 (6/(1-6)) Na des

— = — e RT (229)
(Ng/V)’ agm  (6°/(1-6%) qads,latt(lggo)
90
©/a-0)_(Ng/V)"  _Fles daasiaee 5o _ = K? -1 - _(wg/m)° (230)
N, ©°/(1-6%) ° (tag_m) ads.glatt = i rateg "9 (6°/(1-69)
Ng

For the case of the activity-based adsorption and desorption rates, starting with the thermodynamic relationships, we

obtain:
a _ pa
ads,2D — Rdes latt (231)
0 Y 0 _po 0
K (M) e_AGadsg act, m/RT M dq_:;n = (M) e_AGdes,latt,act,m/RT MM aads latt (232)
h (NQ/V) g Vm h 0%  Nadsmax !
!
<qTS m) 0 0
0 N EY  +E
o/ E A
(N7s/A)° A% Arsm —-b (1-6°) (Nps/A)° _w
050 o € RTag = 0 (1-09) e RT  Qgdslatt (233)
(Ng/V)" Vm 4gm 6% Nadsmax (Qads latt™—go )
0 L EY
a A 1 N ——aes q
) o_gno_ — A e RT ads,latt (234)
(Ng/V) Vm dgm dads,latt Nadsmax
Qadslatt _ Nadsmax A dads,late Eges 2\— Eges A A
e = 0 0 /40 e RT = Nads,max(znkaT/h ) e RT o = ads,maxKLangv_o- (235)
g (Ng/v) m < g,m) m m
Ng

This is again consistent with our findings above.

We can relate the microscopic picture to thermodynamic functions to obtain the pre-exponential factor A,,s,p under

equilibrium conditions:

kgT\ (4ars/A Fba vl kgT\ a4 (Edes*Ep)
B —— m B R — A
* (T) ( ngS/v ) € RT3 a9 Zpo =K (T) qadT:ZD e  RT Qqgsop (236)
0 0
kT c/19,1 _ _(Edes+Eb)
(%) asg Yo (2mmkyT/h?)™/2 = Ages2p€ RT  Qgds,2p (237)
kpT\  An 2y-1/2, @ ag
Ageszn = (“25) @S2t (2mmksT/h2) (238)
’ h QAads,2D
(EGes*ED)
kgT
Adesan = (“25) s 52 @rmkyT /h3) ™ /2¢ 7 Kegng (239)
kp 2)-1/2, M —AGY /RT
Ades,ZD = (T) 293 0 (ZﬂkaT/h ) e des,2D,gm (240)
kp G des+Eg) —(AHO _TAS® )/RT
Ades,ZD = (T)a o (ank T/hZ) 1/2o e des,2D,g,m des,2D,g,m (241)
(BQes*ED) 1
Ageszp = (2) as 3t b (2, T /h2)-1/2e R ¢~ GRT+Edes) BT gAS30s 20, g m/ R o)
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£
Ageszo = (“25) a, 2 2rmky T /h2) /26~ 2emte Shesavan/® (243)

We can relate the microscopic picture to thermodynamic functions to obtain the pre-exponential factor A, 4. Under

equilibrium conditions:

(kBT) (q,Ts/cﬂ> B (vg/v)’(1-6°) (kBT) (ars/+A) (Ples+Eh) 244
K\— € RT a =K(—)|—————¢ RT a
h qg/V Nadsmax 9 60 Qads,lattN ads;max ads latt ( )
9 0 (E" +ED)
keT\ (aps/A\ b 1 (Ng/v) (1-6°) destEp
k (%) ( ;;/V ) e RT N adsmax ag ‘ 90 Ades latt® RT Qaas,latt (245)
0 0
ksT 1 (Ng/V)°(1- 0% _ _(EqestED)
ag ( 2 )(ankBT/hz) 1/2 Nadsmax ag = 90 des latte RT aads,latt (246)
Ng/v)°(1-6%) (Edes*FD)
Alesjate = s (RBTT) (2mmkyT/h?)~1/? ¥ L/ )90( ) RT 4 (247)
ads,max Aqds,latt
K L (/)60 (Pdes*h)
Ages,latt = as( IZ )(ankBT/hz) 1/ adsmax = 90 Kdes latt,g (248)
0 0 AGO
k 1 (N /v) (1- 90) (EQes*ED) des,latt,gm
Ages,latt = U ( i ) (ankBT/hz) /2 N adsmax g 90 RT e RT (249)
0 0)  aHY -TASY
k 1 (N /V) (1 00 (Edes"'Eb) des,latt,gm des,latt,gm
Ages,latt =as ( IZ ) (ZTEkaT/hZ) 1z Nadsmax £ 90 ) RT e RT (250)
0 0 SRT+EY +RT1n(1_90)> As©
knT _ 1 (Ng/v)°(1- 90) (Edes+Eb) (2 es 60 des,latt,gm
Ages,latt = U (%) (ankBT/hz) /2 N ads.max g )90 RT e RT e R (251)
1 (Ng/)’(1-6°) L ) ASdeslattgm

"(1 0°) e%erTe” R : (252)

kgT _
Ages,latt = A (%) (27rkaT/h2) 1/2

ads,max 60
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Table S1. Physical Parameters and Standard States Applied in Calculations for Figures 2 to 15.

T/IK | M/gmol? m [ kg R /JK1mol? kgl JK? hlls N, / molec. mol*
298 100 1.6605%x10% 8.3145 1.38065%x10% | 6.62607x103* 6.02214x10%
V2 [ m® mol? (ﬁ)o /3 AL, I m? mol? (M)O / m?2 Naasmax | M2 a°
v A
0.0248 2.4283x10% 5.1471x106 1.17x10Y 1x10%° 0.0117
d/m K qg,m qus,ZD,m Qads latt q’?s,m drs,des q%S‘ZD,m = q%;‘m
1x10%0 1 2.3976x10% | 5.0325x10% 1 4.9761x10%° 9.8880 5.0325x10%
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