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This Supplement includes all necessary derivations of the thermodynamic equations for 3D ideal gas, 2D ideal gas, 2D ideal 

lattice gas, and transition state (TS). Many of these equations can be found in Campbell et al. (2016) and in classical textbooks 

such as by Kolasinski (2012) and Hill (1986).  The Supplement consists of the following sections: (S1) Definition of desorption 

and adsorption equilibrium constants; (S2) Derivation of thermodynamic functions for desorption and adsorption; (S3) 

Standard molar enthalpies, entropies, and Gibbs free energies; (S4) Derivation of equilibrium constants; (S5) Standard molar 

Gibbs free energy change and equilibrium constant between the 3D ideal gas and the transition state for adsorption; (S6) 

Adsorption-desorption equilibrium. 

S1 Definition of desorption and adsorption equilibrium constants 

When defining the equilibrium constant and thermodynamic quantities, the subscripts describe the process direction in the 

order of (from left to right) process (adsorption or desorption), educt, and product. We are defining the equilibrium between 

the adsorbed 2D ideal gas and the 3D ideal gas as 

𝑋𝑎𝑑𝑠,2𝐷 ↔ 𝑋𝑔, and 𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 =

𝑎𝑔

𝑎𝑎𝑑𝑠,2𝐷
=

(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0

(𝑁𝑎𝑑𝑠 𝒜⁄ )

(𝑁𝑎𝑑𝑠 𝒜⁄ )
0

=

(𝑁𝑔 𝒱⁄ )

(𝑁𝐴 𝒱𝑚
0⁄ )

(𝒩𝑎𝑑𝑠)

(𝑁𝐴 𝒜𝑚
0⁄ )

 .       (1) 

We define the equilibrium between the adsorbed 2D ideal lattice gas and the 3D ideal gas as 

𝑋𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 ↔ 𝑋𝑔, and 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 =

𝑎𝑔

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
=

(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

=

(𝑁𝑔 𝒱⁄ )

(𝑁𝐴 𝒱𝑚
0⁄ )

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

 .      (2) 

We define the equilibrium between the adsorbed 2D ideal gas and the TS for desorption as 

𝑋𝑎𝑑𝑠,2𝐷 ↔ 𝑋𝑇𝑆, and 𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆
0 =

𝑎𝑇𝑆

𝑎𝑎𝑑𝑠,2𝐷
=

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝑇𝑆 𝒜⁄ )
0

(𝑁𝑎𝑑𝑠 𝒜⁄ )

(𝑁𝑎𝑑𝑠 𝒜⁄ )
0

=

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝐴 𝒜𝑚
0⁄ )

(𝒩𝑎𝑑𝑠)

(𝑁𝐴 𝒜𝑚
0⁄ )

 .      (3) 

We define the equilibrium between the adsorbed 2D ideal lattice gas and the TS for desorption as 

𝑋𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 ↔ 𝑋𝑇𝑆, and 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆
0 =

𝑎𝑇𝑆

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
=

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝑇𝑆 𝒜⁄ )
0

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

=

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝐴 𝒜𝑚
0⁄ )

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

 .      (4) 

We define the equilibrium between the 3D ideal gas and the TS for adsorption as (note that the direction is different now, TS 

is the product) 

𝑋𝑔 ↔ 𝑋𝑇𝑆, and 𝐾𝑎𝑑𝑠,𝑔,𝑇𝑆
0 =

𝑎𝑇𝑆

𝑎𝑔
=

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝑇𝑆 𝒜⁄ )
0

(𝑁𝑔 𝒱⁄ )

(𝑁𝑔 𝒱⁄ )
0

=

(𝑁𝑇𝑆 𝒜⁄ )

(𝑁𝐴 𝒜𝑚
0⁄ )

(𝑁𝑔 𝒱⁄ )

(𝑁𝐴 𝒱𝑚
0⁄ )

 .       (5) 
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S2 Derivation of thermodynamic functions for desorption and adsorption 

This section establishes the partition functions and their relationship to thermodynamic variables for desorption and adsorption 

considering the 3D ideal gas, 2D ideal gas, 2D ideal lattice gas, and transition state. The 3D gas case is reiterated here for 

reference and comparison to the other cases. 

S2.1 Calculation of molecular and molar thermodynamic functions for the 3D ideal gas 

With = 𝑞𝑁/𝑁! , using Stirling’s approximation, we can approximate:    

ln 𝑄 = 𝑁 ln 𝑞 − ln 𝑁! ≈ 𝑁 ln 𝑞 − 𝑁 ln 𝑁 + 𝑁 .         (6) 

Considering translations in 3 dimensions only for a gas, 
𝑞𝑔

𝒱
= (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄ , yields (Atkins and de Paula, 2006) 

𝑞𝑔 =
𝒱

Λ3 = 𝒱 (
2𝜋𝑚

ℎ2𝛽
)

3 2⁄

= 𝒱(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄          (7) 

with Λ = ℎ (
𝛽

2𝜋𝑚
)

1 2⁄

=
ℎ

(2𝜋𝑚𝑘𝐵𝑇)1 2⁄   and 𝛽 =
1

𝑘𝐵𝑇
 .       (8) 

We can now derive the thermodynamic functions. The internal energy is 

𝑈𝑔 − 𝑈𝑔(0) = − (
𝜕 ln 𝑄𝑔

𝜕𝛽
)

𝒱
= −𝑁𝑔 (

𝜕 ln 𝑞𝑔

𝜕𝛽
)

𝒱
= −

𝑁𝑔

𝑞𝑔
(

𝜕𝑞𝑔

𝜕𝛽
)

𝑉

= −𝑁𝑔 (
Λ3

𝒱
) (−

3𝒱

2𝛽Λ3) =
3

2
𝑁𝑔𝑘𝐵𝑇.   (9) 

Note that the energy reference is set such that for 𝑇 = 0,   𝑈𝑔(0) = 0, and thus 

𝑈𝑔 =
3

2
𝑁𝑔𝑘𝐵𝑇 and 𝑈𝑔,𝑚 =

𝑈𝑔

𝑛𝑔
=

3

2
𝑅𝑇 .         (10) 

For the enthalpy we derive 

𝐻𝑔 − 𝐻𝑔(0) = − (
𝜕 ln 𝑄𝑔

𝜕𝛽
)

𝒱
+ 𝑘𝐵𝑇𝒱 (

𝜕 ln 𝑄𝑔

𝜕𝒱
)

𝑇
=

3

2
𝑁𝑔𝑘𝐵𝑇 +

𝑁𝑔𝑘𝐵𝑇𝒱

𝑞𝑔
(

𝜕𝑞𝑔

𝜕𝒱
)

𝑇
=

3

2
𝑁𝑔𝑘𝐵𝑇 +

𝑁𝑔𝑘𝐵𝑇𝑉Λ3

𝒱

1

Λ3 =
3

2
𝑁𝑔𝑘𝐵𝑇 +

𝑁𝑔𝑘𝐵𝑇 =
5

2
𝑁𝑔𝑘𝐵𝑇 .           (11) 

In this case, the reference conditions is in such a way that for 𝑇 = 0,   𝐻𝑔(0) = 0, and thus 𝐻𝑔 =
5

2
𝑁𝑔𝑘𝐵𝑇 and 𝐻𝑔,𝑚 =

𝐻𝑔

𝑛𝑔
=

5

2
𝑅𝑇 .             (12) 

For the Gibbs free energy, we derive 

𝐺𝑔 − 𝐺𝑔(0) = −𝑘𝐵𝑇 ln 𝑄𝑔 + 𝑘𝐵𝑇𝒱 (
𝜕 ln 𝑄𝑔

𝜕𝒱
)

𝑇
= −𝑘𝐵𝑇𝑁𝑔 ln 𝑞𝑔 + 𝑘𝐵𝑇(𝑁𝑔 ln 𝑁𝑔 − 𝑁𝑔) + 𝑁𝑔𝑘𝐵𝑇 = −𝑁𝑔𝑘𝐵𝑇 ln (

𝑞𝑔

𝑁𝑔
) .

             (13) 

Note that the energy reference is set such that for 𝑇 = 0,   𝐺𝑔(0) = 𝑈𝑔(0) = 0 . 

Expressed in molar quantities: 𝐺𝑔,𝑚 = −𝑅𝑇 ln (
𝑞𝑔,𝑚

𝑁𝐴
) .       (14) 

Lastly, we derive the entropy for the 3D ideal gas as 
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𝑆𝑔 =
𝑈𝑔−𝑈𝑔(0)

𝑇
+ 𝑘𝐵 ln 𝑄𝑔 =

3

2
𝑁𝑔𝑘𝐵 + 𝑁𝑔𝑘𝐵 ln 𝑞𝑔 − 𝑁𝑔𝑘𝐵 ln 𝑁𝑔 + 𝑁𝑔𝑘𝐵 = 𝑁𝑔𝑘𝐵(ln(𝑒3 2⁄ ) + ln 𝑞𝑔 − ln 𝑁𝑔 + ln 𝑒) =

𝑁𝑔𝑘𝐵 ln (
𝑒5 2⁄ 𝑞𝑔

𝑁𝑔
)            (15) 

Expressed in molar quantities, we can write 

𝑆𝑔,𝑚 = 𝑅 ln (
𝑒5 2⁄ 𝑞𝑔

𝑁𝑔
) = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚

𝑁𝐴
) = 𝑅 ln (

𝑒5 2⁄ (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

(𝑁𝑔 𝒱⁄ )
) = 𝑅 ln (

𝑒5 2⁄ (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

(
𝑝

𝑘𝐵𝑇
)

) .   (16) 

The last expression is the Sackur-Tetrode equation (Atkins and de Paula, 2006). 

The chemical potential, 𝜇𝑔, can be derived in the following way (Hill, 1986), accounting for the standard concentrations: 

𝜇𝑔(𝑇) − 𝜇𝑔(0) =
𝐺𝑔−𝐺𝑔(0)

𝑁𝑔
= −𝑘𝐵𝑇 (

𝜕 ln 𝑄𝑔

𝜕𝑁𝑔
)

𝑇,𝒱

= −𝑘𝐵𝑇 ln
𝑞𝑔

𝑁𝑔
= −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

3/2 1

𝒩𝑔
] = −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

3/2 1

𝒩𝑔

𝑁𝐴
𝒱𝑚

0

𝑁𝐴
𝒱𝑚

0

] =

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3/2 1
𝑝

𝑘𝐵𝑇

𝑝0

𝑘𝐵𝑇

𝑝0

𝑘𝐵𝑇

] = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3/2 𝑘𝐵𝑇

𝑝0

𝑝0

𝑝
] = −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

3/2 𝑘𝑇

𝑝0] + 𝑘𝐵𝑇 ln
𝑝

𝑝0  .    (17) 

The last term we identify with  

𝜇𝑔(𝑇) − 𝜇𝑔(0) = 𝜇𝑔
0(𝑇) + 𝑘𝐵𝑇 ln

𝑝

𝑝0 ,          (18) 

so that we can express the standard chemical potential of the ideal 3D gas as 

𝜇𝑔
0(𝑇) = −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

3/2 𝑘𝑇

𝑝0] .          (19) 

Note that the energy reference is set such that for 𝑇 = 0,   𝐺𝑔(0) = 𝑈𝑔(0) = 0, and thus also 𝜇𝑔(0) = 𝜇𝑔
0(0) = 0. With this 

we obtain the common general expression for the chemical potential of an ideal gas 

𝜇𝑔(𝑇) = 𝜇𝑔
0(𝑇) + 𝑘𝐵𝑇 ln

𝑝

𝑝0 .  

S2.2 Calculation of molecular and molar thermodynamic functions for molecules adsorbed as 2D ideal gas 

For the 2D ideal gas of adsorbates on a surface, the canonical ensemble still represents independent indistinguishable non-

interacting molecules on the surface, as in the 3D ideal gas case. With  
𝑞𝑡𝑟𝑎𝑛𝑠,2𝐷

𝒜
= (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ ), we can write 

𝑞𝑡𝑟𝑎𝑛𝑠,2𝐷 =
𝒜

Λ2 = 𝒜 (
2𝜋𝑚

ℎ2𝛽
)

2 2⁄

= 𝒜(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )2 2⁄  ,       (20) 

with 

Λ = ℎ (
𝛽

2𝜋𝑚
)

1 2⁄

=
ℎ

(2𝜋𝑚𝑘𝐵𝑇)1 2⁄    and 𝛽 =
1

𝑘𝐵𝑇
 .        (21) 

If the adsorbed molecule still has vibrations in the z-direction, this adds a factor 𝑞𝑧,𝑣𝑖𝑏. Then the overall partition function for 

the ideal 2D gas is 

𝑞𝑎𝑑𝑠,2𝐷 = 𝑞𝑡𝑟𝑎𝑛𝑠,2𝐷𝑞𝑧,𝑣𝑖𝑏 .           (22) 
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Here, we just consider 𝑞𝑎𝑑𝑠,2𝐷 = 𝑞𝑡𝑟𝑎𝑛𝑠,2𝐷 and obtain 

𝑈𝑎𝑑𝑠,2𝐷 − 𝑈𝑎𝑑𝑠,2𝐷(0) = −𝑁𝑎𝑑𝑠 (
𝜕 ln 𝑞𝑎𝑑𝑠,2𝐷

𝜕𝛽
)

𝒜
= −

𝑁𝑎𝑑𝑠

𝑞𝑎𝑑𝑠,2𝐷
(

𝜕𝑞𝑎𝑑𝑠,2𝐷

𝜕𝛽
)

𝒜

= −𝑁𝑎𝑑𝑠 (
Λ2

𝒜
) (−

𝒜

𝛽Λ2) = 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 .   (23) 

The energy reference for the internal energy is the gas phase molecule at rest (𝑇 = 0 𝐾). The adsorbed molecule is at the 

bottom of a potential well, at −𝜖𝑑𝑒𝑠
0  with 𝜖𝑑𝑒𝑠

0  being a positive number indicating the necessary heat for the molecule to desorb. 

At constant volume, the change in heat equals the change in internal energy. At 𝑇 = 0 𝐾, 𝑈𝑎𝑑𝑠,2𝐷(0) = −𝑁𝑎𝑑𝑠𝜖𝑑𝑒𝑠
0 = −𝜀𝑑𝑒𝑠

0 , 

thus, 

𝑈𝑎𝑑𝑠,2𝐷 = 𝑁𝑎𝑑𝑠𝑘𝐵𝑇−𝜀𝑑𝑒𝑠
0             (24) 

and in molar quantities with 𝐸𝑑𝑒𝑠
0 = 𝑁𝐴𝜖𝑑𝑒𝑠

0  

𝑈𝑎𝑑𝑠,2𝐷,𝑚 = 𝑅𝑇−𝐸𝑑𝑒𝑠
0  .           (25) 

As a reminder, 𝐸𝑑𝑒𝑠
0  represents the depth of the potential well in molar units and has a positive value. Similarly, for the 

enthalpy we can write 

𝐻𝑎𝑑𝑠,2𝐷 − 𝐻𝑎𝑑𝑠,2𝐷(0) = − (
𝜕 ln 𝑄𝑎𝑑𝑠,2𝐷

𝜕𝛽
)

𝒜
+ 𝑘𝐵𝑇𝒜 (

𝜕 ln 𝑄𝑎𝑑𝑠,2𝐷

𝜕𝒜
)

𝑇
= 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 +

𝑁𝑎𝑑𝑠𝑘𝐵𝑇𝒜

𝑞𝑎𝑑𝑠,2𝐷
(

𝜕𝑞𝑎𝑑𝑠,2𝐷

𝜕𝒜
)

𝑇
= 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 +

𝑁𝑎𝑑𝑠𝑘𝐵𝑇𝒜Λ2

𝒜

1

Λ2 = 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 + 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 = 2𝑁𝑎𝑑𝑠𝑘𝐵𝑇 .       (26) 

Also, here at 𝑇 = 0 𝐾: 

𝐻𝑎𝑑𝑠,2𝐷(0) = −𝑁𝑎𝑑𝑠𝜖𝑑𝑒𝑠
0 = −𝜀𝑑𝑒𝑠

0 , thus, 𝐻𝑎𝑑𝑠,2𝐷 = 2𝑁𝑎𝑑𝑠𝑘𝐵𝑇 −𝜀𝑑𝑒𝑠
0       (27) 

and  

𝐻𝑎𝑑𝑠,2𝐷,𝑚 = 2𝑅𝑇−𝐸𝑑𝑒𝑠
0  .           (28) 

Following with the derivation of Gibbs free energy 

𝐺𝑎𝑑𝑠,2𝐷 − 𝐺𝑎𝑑𝑠,2𝐷(0) = −𝑘𝐵𝑇 ln 𝑄𝑎𝑑𝑠,2𝐷 + 𝑘𝐵𝑇𝒜 (
𝜕 ln 𝑄𝑎𝑑𝑠,2𝐷

𝜕𝒜
)

𝑇
= −𝑘𝐵𝑇𝑁𝑎𝑑𝑠 ln 𝑞𝑎𝑑𝑠,2𝐷 + 𝑘𝐵𝑇(𝑁𝑎𝑑𝑠 ln 𝑁𝑎𝑑𝑠 − 𝑁𝑎𝑑𝑠) +

𝑁𝑎𝑑𝑠𝑘𝐵𝑇 = −𝑁𝑎𝑑𝑠𝑘𝐵𝑇 ln (
𝑞𝑎𝑑𝑠,2𝐷

𝑁𝑎𝑑𝑠
) .         (29) 

At 𝑇 = 0 K, 𝐺𝑎𝑑𝑠,2𝐷(0) = 𝑈𝑎𝑑𝑠,2𝐷(0) = −𝑁𝑎𝑑𝑠𝜖𝑑𝑒𝑠
0 = −𝜀𝑑𝑒𝑠

0 , thus, we obtain  

𝐺𝑎𝑑𝑠,2𝐷 = −𝑁𝑎𝑑𝑠𝑘𝐵𝑇 ln (
𝑞𝑎𝑑𝑠,2𝐷

𝑁𝑎𝑑𝑠
) − 𝜀𝑑𝑒𝑠

0  .         (30) 

In molar quantities, as above for the ideal 3D gas, we obtain 

𝐺𝑎𝑑𝑠,2𝐷,𝑚 = −𝑅𝑇 ln (
𝑞𝑎𝑑𝑠,2𝐷,𝑚

𝑁𝐴
) −𝐸𝑑𝑒𝑠

0 = −𝑅𝑇 ln (
𝑞𝑎𝑑𝑠,2𝐷,𝑚

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ),      (31) 

while 𝑞𝑎𝑑𝑠,2𝐷,𝑚 reflects only 2 translations and vibrations. 

Lastly, for the entropy we can write 

𝑆𝑎𝑑𝑠,2𝐷 =
𝑈𝑎𝑑𝑠,2𝐷−𝑈𝑎𝑑𝑠,2𝐷(0)

𝑇
+ 𝑘𝐵 ln 𝑄𝑎𝑑𝑠,2𝐷 = 𝑁𝑎𝑑𝑠𝑘𝐵 + 𝑁𝑎𝑑𝑠𝑘𝐵 ln 𝑞𝑎𝑑𝑠,2𝐷 − 𝑁𝑎𝑑𝑠𝑘𝐵 ln 𝑁𝑎𝑑𝑠 + 𝑁𝑎𝑑𝑠𝑘𝐵 = 𝑁𝑎𝑑𝑠𝑘𝐵(ln 𝑒 +

ln 𝑞𝑎𝑑𝑠,2𝐷 − ln 𝑁𝑎𝑑𝑠 + ln 𝑒) = 𝑁𝑎𝑑𝑠𝑘𝐵 ln (
𝑒2𝑞𝑎𝑑𝑠,2𝐷

𝑁𝑎𝑑𝑠
) ,        (32) 
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with the molar quantities 

𝑆𝑎𝑑𝑠,2𝐷,𝑚 = 𝑅 ln (
𝑒2𝑞𝑎𝑑𝑠,2𝐷

𝑁𝑎𝑑𝑠
) = 𝑅 ln (

𝑒2𝑞𝑎𝑑𝑠,2𝐷,𝑚

𝑁𝐴
) = 𝑅 ln (

𝑒2𝒜(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
2 2⁄

𝑁𝑎𝑑𝑠
) .     (33) 

This is the equivalent of the Sackur-Tetrode equation in 2 dimensions.  

The chemical potential for a mono-atomic 2D ideal gas can be derived in a similar way as shown above for the 3D ideal 

gas and considering that there are only 2 translational degrees of freedom (Hill, 1986)  

𝜇𝑎𝑑𝑠,2𝐷(𝑇) − 𝜇𝑎𝑑𝑠,2𝐷(0) =
𝐺𝑎𝑑𝑠,2𝐷−𝐺𝑎𝑑𝑠,2𝐷(0)

𝑁𝑎𝑑𝑠
= −𝑘𝐵𝑇 (

𝜕 ln 𝑄𝑎𝑑𝑠,2𝐷

𝜕𝑁𝑎𝑑𝑠
)

𝑇,𝒜
= −𝑘𝐵𝑇 ln

𝑞𝑎𝑑𝑠,2𝐷

𝑁𝑎𝑑𝑠
= −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

2

2 1

𝒩𝑎𝑑𝑠
] =

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜

𝑁𝑎𝑑𝑠

𝑁𝐴
𝒜𝑚

0

𝑁𝐴
𝒜𝑚

0

] = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜𝑚
0

𝑁𝐴

1

𝑎𝑎𝑑𝑠,2𝐷
] = − 𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 .  (34) 

Since 𝜇𝑎𝑑𝑠,2𝐷(0) =
𝐺𝑎𝑑𝑠,2𝐷(0)

𝑁𝑎𝑑𝑠
=

𝑈𝑎𝑑𝑠,2𝐷(0)

𝑁𝑎𝑑𝑠
= −𝜖𝑑𝑒𝑠

0  , we obtain 

𝜇𝑎𝑑𝑠,2𝐷(𝑇) = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 − 𝜖𝑑𝑒𝑠

0 = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜𝑚
0

𝑁𝐴
𝑒

𝑞𝑑𝑒𝑠
0

𝑘𝐵𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 =

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 .        (35) 

Applying 

𝜇𝑎𝑑𝑠,2𝐷(𝑇) = 𝜇𝑎𝑑𝑠,2𝐷
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 ,         (36) 

we can express the standard chemical potential of the adsorbed ideal 2D gas as 

𝜇𝑎𝑑𝑠,2𝐷
0 (𝑇) = −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] .         (37) 

S2.3 Calculation of molecular and molar thermodynamic functions for molecules adsorbed as 2D ideal lattice gas 

For the 2D ideal lattice gas, no translations are allowed, and the adsorbed molecules have three vibrational degrees of freedom, 

leading to (Hill, 1986)  

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 = 𝑞𝑥,𝑣𝑖𝑏𝑞𝑦,𝑣𝑖𝑏𝑞𝑧,𝑣𝑖𝑏 .          (38) 

For the vibrational partition function 𝑞𝑣𝑖𝑏, we can write, setting the zero-point level (𝜀0 =
1

2
ℎ𝜈) as 0 (Atkins and de Paula, 

2006),  

𝑞𝑣𝑖𝑏 =
1

1−𝑒−𝛽ℎ𝜈 .            (39) 

In the 2D lattice gas model, 𝑁  adsorbed molecules distribute over 𝑀  equivalent but distinguishable sites, leading to the 

canonical partition function being (Hill, 1986): 

𝑄 =
𝑀!𝑞𝑁

𝑁!(𝑀−𝑁)!
   ln 𝑄 = 𝑀 ln 𝑀 − 𝑁 ln 𝑁 − (𝑀 − 𝑁) ln(𝑀 − 𝑁) + 𝑁 ln 𝑞    (40) 



6 

 

It is worthwhile noting that this approach holds for a solid and liquid surface as long as the number of adsorption sites is given 

by 𝑀. In other words, the partition function does not consider how the 𝑀 sites are distributed over the surface and time. 

Using the definition of 𝜃 =
𝑁𝑎𝑑𝑠

𝑀
, this can also be written as: 

ln 𝑄𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 =
𝑁𝑎𝑑𝑠

𝜃
ln

𝑁𝑎𝑑𝑠

𝜃
− 𝑁𝑎𝑑𝑠 ln 𝑁𝑎𝑑𝑠 − (

𝑁𝑎𝑑𝑠

𝜃
− 𝑁𝑎𝑑𝑠) ln (

𝑁𝑎𝑑𝑠

𝜃
− 𝑁𝑎𝑑𝑠) + 𝑁𝑎𝑑𝑠 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 = −

𝑁𝑎𝑑𝑠

𝜃
ln(1 − 𝜃) +

𝑁𝑎𝑑𝑠 ln (
1−𝜃

𝜃
) + 𝑁𝑎𝑑𝑠 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 .          (41) 

Campbell et al. (2016) applied this same transformation when deriving the entropy, here derived further below. 

For the thermodynamic functions, the number of sites 𝑀 is the new variable that replaces the area (used in the 2D ideal 

gas) or the volume used in the 3D ideal gas as variables: 

𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) = − (
𝜕 ln 𝑄𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)

𝑀
= −𝑁𝑎𝑑𝑠 (

𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)

𝑀
= −

𝑁𝑎𝑑𝑠

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(

𝜕𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)

𝑀
=

𝑁𝑎𝑑𝑠∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
 .  (42) 

Like the case of the 2D ideal gas, the adsorbed molecule resides in the bottom of the potential well: 

𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) = −𝑁𝑎𝑑𝑠𝜖𝑑𝑒𝑠
0 = −𝜀𝑑𝑒𝑠

0 ,          (43) 

and thus 

𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 =
𝑁𝑎𝑑𝑠∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
− 𝜀𝑑𝑒𝑠

0  .           (44) 

In molar quantities, we derive 

𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 =
𝑁𝐴∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
−𝐸𝑑𝑒𝑠

0  .          (45) 

Note that the partition function of vibration does not depend on surface area and thus molecular partition functions are used 

here and for the remainder of the 2D ideal lattice gas discussion. 

For the enthalpy of an adsorbed 2D ideal lattice gas, we obtain 

𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) = − (
𝜕 ln 𝑄𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)

𝑀
+ 𝑘𝐵𝑇𝑀 (

𝜕 ln 𝑄𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝑀
)

𝑇
= −

𝑁𝑎𝑑𝑠

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(

𝜕𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
) + 𝑘𝐵𝑇𝑀 ln (

𝑀

𝑀−𝑁𝑎𝑑𝑠
) =

−
𝑁𝑎𝑑𝑠

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(

𝜕𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
) + 𝑘𝐵𝑇

𝑁𝑎𝑑𝑠

𝜃
(− ln(1 − 𝜃)) = −

𝑁𝑎𝑑𝑠

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(

𝜕𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
) − 𝑘𝐵𝑇

𝑁𝑎𝑑𝑠

𝜃
ln(1 − 𝜃) =

𝑁𝑎𝑑𝑠∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
− 𝑘𝐵𝑇

𝑁𝑎𝑑𝑠

𝜃
ln(1 −

𝜃) .             (46) 

Also, here at 𝑇 = 0 𝐾: 

𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) = −𝑁𝑎𝑑𝑠𝜖𝑑𝑒𝑠
0 = −𝜀𝑑𝑒𝑠

0  .         (47) 

We obtain 

𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 =
𝑁𝑎𝑑𝑠∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
− 𝑘𝐵𝑇

𝑁𝑎𝑑𝑠

𝜃
ln(1 − 𝜃)−𝜀𝑑𝑒𝑠

0  .        (48) 

In molar quantities, we can derive 

𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 =
𝑁𝐴∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
− 𝑅𝑇

ln(1−𝜃)

𝜃
−𝐸𝑑𝑒𝑠

0  .         (49) 

For the Gibbs free energy, we derive         
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𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) = −𝑘𝐵𝑇 ln 𝑄𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 + 𝑘𝐵𝑇𝑀 (
𝜕 ln 𝑄𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝑀
)

𝑇
= −𝑘𝐵𝑇 (−

𝑁𝑎𝑑𝑠

𝜃
ln(1 − 𝜃) + 𝑁𝑎𝑑𝑠 ln (

(1−𝜃)

𝜃
) +

𝑁𝑎𝑑𝑠 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡) − 𝑘𝐵𝑇
𝑁𝑎𝑑𝑠

𝜃
ln(1 − 𝜃) = −𝑁𝑎𝑑𝑠𝑘𝐵𝑇 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 ln (

(1−𝜃)

𝜃
) = 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 ln(1 − 𝑒−𝛽ℎ𝜈) −

𝑁𝑎𝑑𝑠𝑘𝐵𝑇 ln (
(1−𝜃)

𝜃
) .           (50) 

At 𝑇 = 0 𝐾, 𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) = 𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) = −𝑁𝑎𝑑𝑠𝜖𝑑𝑒𝑠
0 = −𝜀𝑑𝑒𝑠

0 , thus, we obtain  

𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 = 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 ln(1 − 𝑒−𝛽ℎ𝜈) − 𝑁𝑎𝑑𝑠𝑘𝐵𝑇 ln (
(1−𝜃)

𝜃
) −𝜀𝑑𝑒𝑠

0  .      (51) 

Expressed in molar quantities:  

𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 = −𝑅𝑇 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝑅𝑇 ln (
(1−𝜃)

𝜃
) −𝐸𝑑𝑒𝑠

0 = 𝑅𝑇 ln(1 − 𝑒−𝛽ℎ𝜈) − 𝑅𝑇 ln (
(1−𝜃)

𝜃
) −𝐸𝑑𝑒𝑠

0  .   (52) 

Lastly, we derive the entropy of the adsorbed 2D ideal lattice gas (Campbell et al., 2016): 

𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 =
𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0)

𝑇
+ 𝑘𝐵 ln 𝑄𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 = 

−
𝑁𝑎𝑑𝑠

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(

𝜕𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝜕𝛽

)

𝑇
+ 𝑘𝐵 (−

𝑁𝑎𝑑𝑠

𝜃
ln(1 − 𝜃) + 𝑁𝑎𝑑𝑠 ln (

(1−𝜃)

𝜃
) + 𝑁𝑎𝑑𝑠 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡) =

−
𝑁𝑎𝑑𝑠𝑘𝐵

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(

𝜕𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝜕𝛽

)

𝑘𝐵𝑇
+

𝑘𝐵𝑁𝑎𝑑𝑠 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 + 𝑘𝐵𝑁𝑎𝑑𝑠 ln (
(1−𝜃)

𝜃
) − 𝑘𝐵

𝑁𝑎𝑑𝑠

𝜃
ln(1 − 𝜃) = 𝑁𝑎𝑑𝑠𝑘𝐵 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (

𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) +

𝑁𝑎𝑑𝑠𝑘𝐵 (ln (
(1−𝜃)

𝜃
) −

ln(1−𝜃)

𝜃
) = 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑣𝑖𝑏 + 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑐𝑜𝑛𝑓𝑖𝑔.       (53) 

In molar quantities (Campbell et al., 2016): 

𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 = 𝑅 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (
𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) + 𝑅 (ln (

(1−𝜃)

𝜃
) −

ln(1−𝜃)

𝜃
) .     (54) 

The chemical potential of the adsorbed 2D ideal lattice gas can be derived in the following way:  

𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(𝑇) − 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) =
𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡−𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0)

𝑁𝑎𝑑𝑠
= −𝑘𝐵𝑇 (

𝜕 ln 𝑄𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝑁𝑎𝑑𝑠
)

𝑇,𝑀
= 𝑘𝐵𝑇 (−ln 𝑁𝑎𝑑𝑠 + ln 𝑁𝑎𝑑𝑠 + ln (

𝑀

𝑁𝑎𝑑𝑠
− 1) +

ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 = ln 𝜃 − ln(1 − 𝜃) − ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡) = 𝑘𝐵𝑇 ln (
𝜃

(1−𝜃)𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
).      (55) 

Accounting for the standard surface coverage, keeping the same dependence as 𝜃, we can write (Hill, 1986;Campbell et al., 

2016) 

𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(𝑇) − 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) = 𝑘𝐵𝑇 ln (
𝜃

(1−𝜃)𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
) = 𝑘𝐵𝑇 ln [

1

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜃

(1−𝜃)

𝜃0

1−𝜃0

𝜃0

1−𝜃0

] = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 ] +

𝑘𝐵𝑇 ln [

𝜃
(1−𝜃)

𝜃0

1−𝜃0

] = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 .       (56) 

Since 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0) =
𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0)

𝑁𝑎𝑑𝑠
=

𝑈𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(0)

𝑁𝑎𝑑𝑠
= −𝜖𝑑𝑒𝑠

0  , we obtain 
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𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(𝑇) = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝜖𝑑𝑒𝑠
0 = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

1−𝜃0

𝜃0 𝑒
𝑞𝑑𝑒𝑠

0

𝑘𝐵𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 =

−𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 .        (57) 

Applying 

𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(𝑇) = 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 ,        (58) 

we can express the standard chemical potential of the adsorbed 2D ideal lattice gas as 

𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
0 (𝑇) = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] .        (59) 

S2.4 Calculation of molecular and molar thermodynamic functions for molecules in the transition state for desorption 

or adsorption 

The TS for adsorption/desorption is assumed to exist at some fixed distance from the surface but within a very thin layer 

of thickness d, where it experiences an increase in potential energy (relative to the gas phase at infinite separation) to a 

maximum value expressed by the energy barrier 𝜖𝑏
0 per mole due to its interaction with the surface (e.g., due to Pauli repulsion). 

We further assume for simplicity that, at this TS distance from the surface, or at that energy barrier, the potential energy does 

not depend on the rotational orientation of the molecule nor on the location parallel to the surface (i.e., the energy barrier is 

independent of x,y-coordinates). According to TS theory, the molecules are moving in the direction of the reaction coordinate 

(thus desorption or adsorption) with the mean thermal velocity. They are treated as a 2D ideal gas in the plane parallel to the 

surface, but they feature translation in the direction orthogonal to it, which is confined to  𝑑 . Therefore, when omitting 

vibrations, the total partition function is 

𝑞𝑇𝑆 = 𝑞𝑇𝑆,2𝐷𝑞𝑇𝑆,𝑑𝑒𝑠 =
𝒜

Λ2

𝑑

Λ
= 𝒜 (

2𝜋𝑚

ℎ2𝛽
)

2 2⁄

𝑑 (
2𝜋𝑚

ℎ2𝛽
)

1 2⁄

= 𝒜𝑑 (
2𝜋𝑚

ℎ2𝛽
)

3 2⁄

= 𝒜𝑑 (
2𝜋𝑚𝑘𝐵𝑇

ℎ2 )
3 2⁄

=
𝒜𝑑

Λ3  ,   (60) 

with Λ = ℎ (
𝛽

2𝜋𝑚
)

1 2⁄

=
ℎ

(2𝜋𝑚𝑘𝐵𝑇)1 2⁄   and 𝛽 =
1

𝑘𝐵𝑇
 .        (61) 

The partition function of the TS is made up of the partition function of the TS confined to two dimensions similar to a 2D ideal 

gas (𝑞𝑇𝑆,2𝐷) and the one-dimensional translation (𝑞𝑇𝑆,𝑑𝑒𝑠). Thus, overall, the partition function of the TS is similar to that of a 

3D ideal gas, confined, however, to a thin layer.  

The energy reference for the internal energy is the gas phase molecule at rest (𝑇 = 0 𝐾). The molecule in the TS is 

activated to the level of the energy barrier for desorption or adsorption. Hence, for the internal energy, we obtain 

𝑈𝑇𝑆 − 𝑈𝑇𝑆(0) = − (
𝜕 ln 𝑄𝑇𝑆

𝜕𝛽
)

𝒜
= −𝑁𝑇𝑆 (

𝜕 ln 𝑞𝑇𝑆

𝜕𝛽
)

𝒜
= −

𝑁𝑇𝑆

𝑞𝑇𝑆
(

𝜕𝑞𝑇𝑆

𝜕𝛽
)

𝒜
= −𝑁𝑇𝑆 (

Λ3

𝒜𝑑
) (−

3𝒜𝑑

2𝛽Λ3) =
3

2
𝑁𝑇𝑆𝑘𝐵𝑇  (62) 

Since the molecule in the TS does not have any interactions with the surface but sits on top of the energy barrier, 𝑞𝑏
0, thus, we 

obtain at 𝑇 = 0 𝐾, 𝑈𝑇𝑆(0) = 𝑁𝑇𝑆𝜖𝑏
0 = 𝜀𝑏

0, so that: 
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𝑈𝑇𝑆 =
3

2
𝑁𝑇𝑆𝑘𝐵𝑇 + 𝜀𝑏

0           (63) 

and in molar quantities  

𝑈𝑇𝑆,𝑚 =
3

2
𝑅𝑇+𝐸𝑏

0 .           (64) 

The internal energy of the TS includes the two translations in the horizontal and the orthogonal translation along the reaction 

axis. In contrast, the activation internal energy associated with the TS corresponds to the TS with the translational motion 

along the desorption or adsorption direction omitted, and thus, is a 2D gas. Here, the activation process can be conceptionally 

envisioned by bringing the molecules in the 2D ideal gas from the zero-point energy to the actual energy level that allows for 

the formation of the TS. In other words, without bringing up the adsorbed molecules to the actual energy level, desorption 

cannot progress. For the remainder of the manuscript the subscript “act” refers to the TS described as a 2D ideal gas. Therefore, 

we obtain the corresponding internal energy of activation, neglecting vibrations: 

𝑈𝑎𝑐𝑡 − 𝑈𝑎𝑐𝑡(0) = −𝑁𝑇𝑆 (
𝜕 ln 𝑞𝑇𝑆,2𝐷

𝜕𝛽
)

𝒜
= −

𝑁𝑎𝑑𝑠

𝑞𝑎𝑑𝑠,2𝐷
(

𝜕𝑞𝑇𝑆,2𝐷

𝜕𝛽
)

𝒜

= −𝑁𝑇𝑆 (
Λ2

𝒜
) (−

𝒜

𝛽Λ2) = 𝑁𝑇𝑆𝑘𝐵𝑇 ,   (65) 

with 𝑈𝑎𝑐𝑡(0) = 𝜀𝑏
0 and in molar quantities  

𝑈𝑎𝑐𝑡,𝑚 = 𝑅𝑇+𝐸𝑏
0 .           (66) 

For the enthalpy, we proceed analogously: 

𝐻𝑇𝑆 − 𝐻𝑇𝑆(0) = − (
𝜕 ln 𝑄𝑇𝑆

𝜕𝛽
)

𝒜
+ 𝑘𝐵𝑇𝒜 (

𝜕 ln 𝑄𝑇𝑆

𝜕𝒜
)

𝑇
=

3

2
𝑁𝑇𝑆𝑘𝐵𝑇 +

𝑁𝑇𝑆𝑘𝐵𝑇𝒜

𝑞𝑇𝑆
(

𝜕𝑞𝑇𝑆

𝜕𝒜
)

𝑇
=

3

2
𝑁𝑇𝑆𝑘𝐵𝑇 +

𝑁𝑇𝑆𝑘𝐵𝑇𝒜Λ3

𝑑𝒜

𝑑

Λ3 =

3

2
𝑁𝑇𝑆𝑘𝐵𝑇 + 𝑁𝑇𝑆𝑘𝐵𝑇 =

5

2
𝑁𝑇𝑆𝑘𝐵𝑇.          (67) 

For the same reasons as above, the reference conditions are in such a way that for 𝑇 = 0,   𝐻𝑇𝑆(0) = 𝜀𝑏
0, and thus 

𝐻𝑇𝑆 =
5

2
𝑁𝑇𝑆𝑘𝐵𝑇 + 𝜀𝑏

0 and 𝐻𝑇𝑆,𝑚 =
𝐻𝑇𝑆

𝑛𝑇𝑆
=

5

2
𝑅𝑇+𝐸𝑏

0 .        (68) 

Correspondingly, for the enthalpy of activation (assuming 2D ideal gas only), we obtain 

𝐻𝑎𝑐𝑡 = 2𝑁𝑇𝑆𝑘𝐵𝑇 + 𝜀𝑏
0 and 𝐻𝑎𝑐𝑡,𝑚 = 2𝑅𝑇+𝐸𝑏

0        (69) 

Following with the derivation of Gibbs free energy 

𝐺𝑇𝑆 − 𝐺𝑇𝑆(0) = −𝑘𝐵𝑇 ln 𝑄𝑇𝑆 + 𝑘𝐵𝑇𝒜 (
𝜕 ln 𝑄𝑇𝑆

𝜕𝒜
)

𝑇
= −𝑘𝐵𝑇𝑁𝑇𝑆 ln 𝑞𝑇𝑆 + 𝑘𝐵𝑇(𝑁𝑇𝑆 ln 𝑁𝑇𝑆 − 𝑁𝑇𝑆) + 𝑁𝑇𝑆𝑘𝐵𝑇 =

−𝑁𝑇𝑆𝑘𝐵𝑇 ln (
𝑞𝑇𝑆

𝑁𝑇𝑆
) .           (70) 

At 𝑇 = 0 K, 𝐺𝑇𝑆(0) = 𝑈𝑇𝑆(0) = 𝜀𝑏
0, thus, we obtain  

𝐺𝑇𝑆 = −𝑁𝑇𝑆𝑘𝐵𝑇 ln (
𝑞𝑇𝑆

𝑁𝑇𝑆
) + 𝜀𝑏

0 .          (71) 

In molar quantities, we obtain 

𝐺𝑇𝑆,𝑚 = −𝑅𝑇 ln (
𝑞𝑇𝑆,𝑚

𝑁𝐴
) +𝐸𝑏

0.          (72) 

The Gibbs free energy of activation, which does not include the motion along the desorption coordinate, is derived as, 

with 𝐺𝑎𝑐𝑡(0) = 𝑈𝑎𝑐𝑡(0) = 𝜀𝑏
0, 
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 𝐺𝑎𝑐𝑡 = −𝑁𝑇𝑆𝑘𝐵𝑇 ln (
𝑞𝑇𝑆

𝑞𝑇𝑆,𝑑𝑒𝑠𝑁𝑇𝑆
) + 𝜀𝑏

0 = −𝑁𝑇𝑆𝑘𝐵𝑇 ln (
𝑞𝑇𝑆,2𝐷

𝑁𝑇𝑆
) + 𝜀𝑏

0        (73) 

and 

𝐺𝑎𝑐𝑡,𝑚 = −𝑅𝑇 ln (
𝑞𝑇𝑆,𝑚

𝑞𝑇𝑆,𝑑𝑒𝑠𝑁𝐴
) +𝐸𝑏

0 = −𝑅𝑇 ln (
𝑞𝑇𝑆,2𝐷,𝑚

𝑁𝐴
) +𝐸𝑏

0.        (74) 

Lastly, for the entropy we write 

𝑆𝑇𝑆 =
𝑈𝑇𝑆−𝑈𝑇𝑆(0)

𝑇
+ 𝑘𝐵 ln 𝑄𝑇𝑆 =

3

2
𝑁𝑇𝑆𝑘𝐵 + 𝑁𝑇𝑆𝑘𝐵 ln 𝑞𝑇𝑆 − 𝑁𝑇𝑆𝑘𝐵 ln 𝑁𝑇𝑆 + 𝑁𝑇𝑆𝑘𝐵 = 𝑁𝑇𝑆𝑘𝐵(ln 𝑒 + ln 𝑞𝑇𝑆 − ln 𝑁𝑇𝑆 +

ln 𝑒3/2) = 𝑁𝑘𝐵 ln (
𝑒5/2𝑞𝑇𝑆

𝑁𝑇𝑆
),           (75) 

with the corresponding molar quantities 

𝑆𝑇𝑆,𝑚 = 𝑅 ln (
𝑒5/2𝑞𝑇𝑆

𝑁𝑇𝑆
) = 𝑅 ln (

𝑒5/2𝑞𝑇𝑆,𝑚

𝑁𝐴
) = 𝑅 ln (

𝑒5/2𝒜𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

𝑁𝑇𝑆
) .     (76) 

For the activation entropy, we obtain 

𝑆𝑎𝑐𝑡,𝑚 = 𝑅 ln (
𝑒2𝑞𝑇𝑆,2𝐷

𝑁𝑇𝑆
) = 𝑅 ln (

𝑒2𝑞𝑇𝑆,2𝐷,𝑚

𝑁𝐴
) = 𝑅 ln (

𝑒2𝒜(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
2 2⁄

𝑁𝑇𝑆
) .     (77) 

The chemical potential for the TS can be derived the following way  

𝜇𝑇𝑆(𝑇) − 𝜇𝑇𝑆(0) =
𝐺𝑇𝑆−𝐺𝑇𝑆(0)

𝑁𝑇𝑆
= −𝑘𝐵𝑇 (

𝜕 ln 𝑄𝑇𝑆

𝜕𝑁𝑇𝑆
)

𝑇,𝒜
= −𝑘𝐵𝑇 ln

𝑞𝑇𝑆

𝑁𝑇𝑆
= −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

3

2 𝑑

𝒩𝑇𝑆
] =

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2 𝑑𝒜

𝑁𝑇𝑆

𝑁𝐴
𝒜𝑚

0

𝑁𝐴
𝒜𝑚

0

] = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2
𝑑

𝒜𝑚
0

𝑁𝐴

1

𝑎𝑇𝑆
] = − 𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

3

2
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 .   (78) 

Since 𝜇𝑇𝑆(0) =
𝐺𝑇𝑆(0)

𝑁𝑇𝑆
=

𝑈𝑇𝑆(0)

𝑁𝑇𝑆
= 𝜖𝑏

0 , we obtain 

𝜇𝑇𝑆(𝑇) = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 + 𝜖𝑏

0.       (79) 

Applying 

𝜇𝑇𝑆(𝑇) = 𝜇𝑇𝑆
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 ,          (80) 

we can express the standard chemical potential of the TS as 

𝜇𝑇𝑆
0 (𝑇) = −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

3

2
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝜖𝑏

0 .         (81) 

The chemical potential for the activated state can be derived the following way  

𝜇𝑎𝑐𝑡(𝑇) − 𝜇𝑎𝑐𝑡(0) =
𝐺𝑎𝑐𝑡−𝐺𝑎𝑐𝑡(0)

𝑁𝑇𝑆
= −𝑁𝑇𝑆𝑘𝐵𝑇 ln (

𝑞𝑇𝑆

𝑞𝑇𝑆,𝑑𝑒𝑠𝑁𝑇𝑆
) = −𝑁𝑇𝑆𝑘𝐵𝑇 ln (

𝑞𝑇𝑆,2𝐷

𝑁𝑇𝑆
) = −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

2

2 1

𝒩𝑇𝑆
] =

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜

𝑁𝑇𝑆

𝑁𝐴
𝒜𝑚

0

𝑁𝐴
𝒜𝑚

0

] = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴

1

𝑎𝑇𝑆
] = −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 .   (82) 

Since 𝜇𝑎𝑐𝑡(0) =
𝐺𝑎𝑐𝑡(0)

𝑁𝑇𝑆
=

𝑈𝑎𝑐𝑡(0)

𝑁𝑇𝑆
= 𝜖𝑏

0 , we obtain 
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𝜇𝑎𝑐𝑡(𝑇) = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 + 𝜖𝑏

0 .        (83) 

Applying 

𝜇𝑎𝑐𝑡(𝑇) = 𝜇𝑎𝑐𝑡
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 ,          (84) 

we can express the standard chemical potential of activation as 

𝜇𝑎𝑐𝑡
0 (𝑇) = −𝑘𝐵𝑇 ln [(

2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴
] + 𝜖𝑏

0 .         (85) 

S3 Standard molar enthalpies, entropies, and Gibbs free energies 

For the relationship to the equilibrium constant, we need the standard molar Gibbs free energies. Those are derived in the 

following subsections for the 3D ideal gas, 2D ideal gas, 2D ideal lattice gas, and TS. 

S3.1 3D ideal gas 

𝐻𝑔,𝑚 = − (
𝜕 ln 𝑄𝑔,𝑚

𝜕𝛽
)

𝒱
+ 𝑘𝐵𝑇𝒱 (

𝜕 ln 𝑄𝑔,𝑚

𝜕𝒱
)

𝑇
=

3

2
𝑅𝑇 +

𝑅𝑇𝒱

𝑞𝑔,𝑚
(

𝜕𝑞𝑔,𝑚

𝜕𝒱
)

𝑇
=

3

2
𝑅𝑇 + 𝑅𝑇 =

5

2
𝑅𝑇    (86) 

and 

𝐻𝑔,𝑚
0 = − (

𝜕 ln 𝑄𝑔,𝑚
0

𝜕𝛽
)

𝒱
+ 𝑘𝐵𝑇𝒱 (

𝜕 ln 𝑄𝑔,𝑚
0

𝜕𝒱
)

𝑇
=

3

2
𝑅𝑇 +

𝑅𝑇𝒱𝑚
0

𝑞𝑔,𝑚
0 (

𝜕𝑞𝑔,𝑚
0

𝜕𝒱𝑚
0 )

𝑇
=

3

2
𝑅𝑇 + 𝑅𝑇 =

5

2
𝑅𝑇.    (87) 

𝑆𝑔,𝑚 = 𝑅 ln (
𝑒5 2⁄ 𝑞𝑔,𝑚

𝑁𝐴
) = 𝑅 ln (

𝑒5 2⁄ (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

(𝑁𝑔 𝒱⁄ )
)        (88) 

and 

𝑆𝑔,𝑚
0 = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) = 𝑅 ln (

𝑒5 2⁄ (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

(𝑁𝑔 𝒱⁄ )
0 ) .        (89) 

 𝐺𝑔,𝑚 = −𝑅𝑇 ln (
𝑞𝑔,𝑚

𝑁𝐴
)           (90) 

and  

𝐺𝑔,𝑚
0 = −𝑅𝑇 ln (

𝑞𝑔,𝑚
0

𝑁𝐴
) ,           (91) 

with 𝑞𝑔,𝑚
0 = 𝒱𝑚

0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄  ,          (92) 

where the standard molar partition function 𝑞𝑔,𝑚
0  is the molar partition function evaluated using the standard molar volume 

𝒱𝑚
0 . 

S3.2 Adsorbed 2D ideal gas 

𝐻𝑎𝑑𝑠,2𝐷,𝑚 − 𝐻𝑎𝑑𝑠,2𝐷,𝑚(0) = 2𝑅𝑇−𝐸𝑑𝑒𝑠
0          (93) 
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and 

𝐻𝑎𝑑𝑠,2𝐷,𝑚
0 − 𝐻𝑎𝑑𝑠,2𝐷,𝑚

0 (0) = − (
𝜕 ln 𝑄𝑎𝑑𝑠,2𝐷,𝑚

0

𝜕𝛽
)

𝒜𝑚
0

+ 𝑘𝐵𝑇𝒜𝑚
0 (

𝜕 ln 𝑄𝑎𝑑𝑠,2𝐷,𝑚
0

𝜕𝒜𝑚
0 )

𝑇
−𝐸𝑑𝑒𝑠

0 = 𝑅𝑇 +
𝑅𝑇𝒜𝑚

0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
(

𝜕𝑞𝑎𝑑𝑠,2𝐷,𝑚

𝜕𝒜𝑚
0 )

𝑇
−𝐸𝑑𝑒𝑠

0 =

2𝑅𝑇−𝐸𝑑𝑒𝑠
0  .            (94) 

𝑆𝑎𝑑𝑠,2𝐷,𝑚 = 𝑅 ln (
𝑒2𝑞𝑎𝑑𝑠,2𝐷,𝑚

𝑁𝐴
) = 𝑅 ln (

𝑒2(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
2 2⁄

(𝑁𝑎𝑑𝑠 𝒜⁄ )
)       (95) 

and 

𝑆𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝑅 ln (

𝑒2𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

𝑁𝐴
) = 𝑅 ln (

𝑒2(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
2 2⁄

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 ) .       (96) 

 𝐺𝑎𝑑𝑠,2𝐷,𝑚 = −𝑅𝑇 ln (
𝑞𝑎𝑑𝑠,2𝐷,𝑚

𝑁𝐴
) −𝐸𝑑𝑒𝑠

0          (97) 

and 

𝐺𝑎𝑑𝑠,2𝐷,𝑚
0 = −𝑅𝑇 ln (

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

𝑁𝐴
) −𝐸𝑑𝑒𝑠

0 ,         (98) 

with 𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝒜𝑚

0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ ) ,         (99) 

where the standard molar partition function 𝑞𝑎𝑑𝑠,2𝐷,𝑚
0  is the molar partition function evaluated using the standard molar area 

𝒜𝑚
0 . 

S3.3 Adsorbed 2D ideal lattice gas 

𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 =
𝑁𝐴∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
− 𝑅𝑇

ln(1−𝜃)

𝜃
−𝐸𝑑𝑒𝑠

0          (100) 

and 

𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 =

𝑁𝐴∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
− 𝑅𝑇

ln(1−𝜃0)

𝜃0 −𝐸𝑑𝑒𝑠
0  .         (101) 

𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 = 𝑅 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (
𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) + 𝑅 (ln (

(1−𝜃)

𝜃
) −

ln(1−𝜃)

𝜃
)     (102) 

and 

𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 𝑅 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (

𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) + 𝑅 (ln (

(1−𝜃0)

𝜃0 ) −
ln(1−𝜃0)

𝜃0 ) .     (103) 

 𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 = −𝑅𝑇 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝑅𝑇 ln (
(1−𝜃)

𝜃
) −𝐸𝑑𝑒𝑠

0         (104) 

and       

𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = −𝑅𝑇 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

0 − 𝑅𝑇 ln (
(1−𝜃0)

𝜃0 ) −𝐸𝑑𝑒𝑠
0  .       (105) 

Note that in the first term, the molecular partition function is used (not the molar). Because the vibrational 𝑞𝑣𝑖𝑏 are independent 

of the surface coverage, 

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 = 𝑞𝑥,𝑣𝑖𝑏𝑞𝑦,𝑣𝑖𝑏𝑞𝑧,𝑣𝑖𝑏 =
1

1−𝑒−𝛽ℎ𝜈 .         (106) 
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S3.4 Transition state for desorption or adsorption 

𝐻𝑇𝑆,𝑚 = 𝐻𝑇𝑆,𝑚
0 =

𝐻𝑇𝑆

𝑛𝑇𝑆
=

5

2
𝑅𝑇+𝐸𝑏

0          (107) 

and       

𝐻𝑎𝑐𝑡,𝑚 = 𝐻𝑎𝑐𝑡,𝑚
0 = 2𝑅𝑇+𝐸𝑏

0          (108) 

𝑆𝑇𝑆,𝑚 = 𝑅 ln (
𝑒5/2𝑞𝑇𝑆,𝑚

𝑁𝐴
) = 𝑅 ln (

𝑒5/2𝒜𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

𝑁𝑇𝑆
)        (109) 

and 

𝑆𝑇𝑆,𝑚
0 = 𝑅 ln (

𝑒5/2𝑞𝑇𝑆,𝑚
0

𝑁𝐴
) = 𝑅 ln (

𝑒5/2𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

(𝑁𝑇𝑆 𝒜⁄ )0 ) .       (110) 

𝑆𝑎𝑐𝑡,𝑚 = 𝑅 ln (
𝑒2𝑞𝑇𝑆,2𝐷,𝑚

𝑁𝐴
) = 𝑅 ln (

𝑒2𝒜(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
2 2⁄

𝑁𝑇𝑆
)        (111) 

and 

𝑆𝑎𝑐𝑡,𝑚
0 = 𝑅 ln (

𝑒2𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
) = 𝑅 ln (

𝑒2(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
2 2⁄

(𝑁𝑇𝑆 𝒜⁄ )0 ) .       (112) 

 𝐺𝑇𝑆,𝑚 = −𝑅𝑇 ln (
𝑞𝑇𝑆,𝑚

𝑁𝐴
) +𝐸𝑏

0          (113) 

and  

𝐺𝑇𝑆,𝑚
0 = −𝑅𝑇 ln (

𝑞𝑇𝑆,𝑚
0

𝑁𝐴
) +𝐸𝑏

0.           (114) 

𝐺𝑎𝑐𝑡,𝑚 = −𝑅𝑇 ln (
𝑞𝑇𝑆,2𝐷,𝑚

𝑁𝐴
) +𝐸𝑏

0          (115) 

and 

𝐺𝑎𝑐𝑡,𝑚
0 = −𝑅𝑇 ln (

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
) +𝐸𝑏

0 ,          (116) 

with 𝑞𝑇𝑆,𝑚
0 = 𝑞𝑇𝑆,2𝐷,𝑚

0 𝑞𝑇𝑆,𝑑𝑒𝑠 = 𝒜𝑚
0 𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄        (117) 

and 𝑞𝑇𝑆,2𝐷,𝑚
0 = 𝒜𝑚

0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ ) ,         (118) 

where the standard molar partition function 𝑞𝑇𝑆,𝑚
0  is the molar partition function evaluated using the standard molar area 𝒜𝑚

0 . 

Note that the thickness 𝑑  as part of 𝑞𝑇𝑆,𝑑𝑒𝑠  remains as is and is not normalized to a standard length. 𝑞𝑇𝑆,𝑑𝑒𝑠  acts as a 

multiplicator to the standard molecular partition function of the 2D ideal gas and remains specified by the thickness of the 

layer assumed. 
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S4 Derivation of equilibrium constants 

Here, we derive the thermodynamic functions that describe the equilibrium constants between the gas phase and the adsorbed 

state for the different adsorbate models and TS.  

4.1 Standard molar thermodynamic functions and equilibrium constant between 2D ideal gas and 3D ideal gas 

The standard molar change in Gibbs free energy for desorption from a 2D ideal gas is given by: 

Δ𝐺𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 = 𝐺𝑔,𝑚

0 − 𝐺𝑎𝑑𝑠,2𝐷,𝑚
0 = −𝑅𝑇 ln (

𝑞𝑔,𝑚
0

𝑁𝐴
) − [−𝑅𝑇 ln (

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

𝑁𝐴
) −𝐸𝑑𝑒𝑠

0 ] = 𝐸𝑑𝑒𝑠
0 − 𝑅𝑇 ln [

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

] =

−𝑅𝑇 [
−𝐸𝑑𝑒𝑠

0

𝑅𝑇
+ ln [

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

]] .          (119) 

For the change in enthalpy, we can write 

Δ𝐻𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 = 𝐻𝑔,𝑚 − 𝐻𝑎𝑑𝑠,2𝐷,𝑚 =

5

2
𝑅𝑇 − 2𝑅𝑇 + 𝐸𝑑𝑒𝑠

0 =
1

2
𝑅𝑇 + 𝐸𝑑𝑒𝑠

0  .     (120) 

For the change in entropy, we derive 

ΔS𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 = 𝑆𝑔,𝑚

0 − 𝑆𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) − 𝑅 ln (

𝑒2𝑞𝑎𝑑𝑠,2𝐷,𝑚
0

𝑁𝐴
) = 𝑅 ln (

𝑒1 2⁄ 𝑞𝑔,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 ) .     (121) 

The equilibrium constant, 𝐾𝑎𝑑𝑠,2𝐷,𝑔
0 , is also related to the free energy change, ∆𝐺𝑎𝑑𝑠,2𝐷,𝑔,𝑚

0 , via 

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 = 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑔,𝑚

0 𝑅𝑇⁄
 .          (122) 

We can, thus, express the equilibrium constant as     

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 =

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇 =
𝑞𝑔,𝑚

0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇  .        (123) 

When setting in the expressions for the standard molar partition functions: 

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 =

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇 =
𝒱𝑚

0

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 =
(𝑁𝑎𝑑𝑠 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇  .  (124) 

We should obtain the same result, when assuming equilibrium and using the chemical potential of the gas and the adsorbed 

2D ideal gas: 

𝜇𝑔(𝑇) = 𝜇𝑔
0(𝑇) + 𝑘𝐵𝑇 ln

𝑝

𝑝0 = 𝜇𝑎𝑑𝑠,2𝐷(𝑇) = 𝜇𝑎𝑑𝑠,2𝐷
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 .     (125) 

We use above derivations to write 

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2 𝑘𝑇

𝑝0] + 𝑘𝐵𝑇 ln
𝑝

𝑝0 = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 ,    (126) 
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−𝑘𝐵𝑇 ln [
𝑞𝑔

𝒱

𝒱𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln

𝒩𝑔
𝑁𝐴
𝒱𝑚

0

= −𝑘𝐵𝑇 ln [
𝑞𝑎𝑑𝑠,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln [
𝒩𝑎𝑑𝑠

𝑁𝐴
𝐴𝑚

0

] .     (127) 

Rearranging terms yields 

𝑘𝐵𝑇 ln
𝒩𝑔
𝑁𝐴
𝒱𝑚

0

− 𝑘𝐵𝑇 ln [
𝒩𝑎𝑑𝑠

𝑁𝐴
𝐴𝑚

0

] = 𝑘𝐵𝑇 ln [
𝑞𝑔

𝒱

𝒱𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [

𝑞𝑎𝑑𝑠,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] ,     (128) 

𝑘𝐵𝑇 ln [
𝑎𝑔

𝑎𝑎𝑑𝑠,2𝐷
] = 𝑘𝐵𝑇 ln 𝐾𝑑𝑒𝑠,2𝐷,𝑔

0 = 𝑘𝐵𝑇 ln [
𝑞𝑔

𝑞𝑎𝑑𝑠,2𝐷

𝒜

𝒱

𝒱𝑚
0

𝒜𝑚
0 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] ,      (129) 

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 =  

𝑞𝑔

𝑞𝑎𝑑𝑠,2𝐷

𝒜

𝒱

𝒱𝑚
0

𝒜𝑚
0 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝒱𝑚
0

𝒜𝑚
0 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 =
𝒱𝑚

0

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇  .   (130) 

This is the same result for 𝐾𝑑𝑒𝑠,2𝐷,𝑔
0  we obtained when solving for the Gibbs free energy. 

4.2 Standard molar thermodynamic functions and equilibrium constant between 2D ideal lattice gas and 3D ideal gas 

The standard molar change in Gibbs free energy for desorption from a 2D ideal lattice gas is given by: 

Δ𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 = 𝐺𝑔,𝑚

0 − 𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = [−𝑅𝑇 ln (

𝑞𝑔,𝑚
0

𝑁𝐴
)] − [−𝑅𝑇 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

0 − 𝑅𝑇 ln (
(1−𝜃0)

𝜃0 ) −𝐸𝑑𝑒𝑠
0 ] = 𝐸𝑑𝑒𝑠

0 −

𝑅𝑇 ln [
(

𝑞𝑔,𝑚
0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
0 (1−𝜃0)

𝜃0

] = −𝑅𝑇 [
−𝐸𝑑𝑒𝑠

0

𝑅𝑇
+ ln [

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
0 (1−𝜃0)

𝜃0

]] .       (131) 

For the change in enthalpy, we can write 

Δ𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 = 𝐻𝑔,𝑚 − 𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 =

5

2
𝑅𝑇 −

𝑁𝐴∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
+ 𝑅𝑇

ln(1−𝜃)

𝜃
+𝐸𝑑𝑒𝑠

0  ,     (132) 

when neglecting the vibrational term: 

Δ𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 = 𝐻𝑔,𝑚 − 𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚 =

5

2
𝑅𝑇 + 𝑅𝑇

ln(1−𝜃)

𝜃
+𝐸𝑑𝑒𝑠

0  .      (133) 

For the change in entropy, we derive 

 ΔS𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 = 𝑆𝑔,𝑚

0 − 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) − 𝑅 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (

𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) − 𝑅 (ln (

(1−𝜃0)

𝜃0 ) −
ln(1−𝜃0)

𝜃0 ) .

             (134) 

Note that 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 only consists of vibrations and as such does not refer to a standard state. When neglecting the contribution 

of vibrations, we obtain 

ΔS𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0 = 𝑆𝑔,𝑚

0 − 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) − 𝑅 (ln (

(1−𝜃0)

𝜃0 ) −
ln(1−𝜃0)

𝜃0 ) .    (135) 

Therefore, we can express the equilibrium constant as 

ln 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 =

−𝐸𝑑𝑒𝑠
0

𝑅𝑇
+ ln [

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

]          (136) 
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and 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 =

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇  .          (137) 

When setting in the expressions for the standard molar partition functions: 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 =

(
𝒱𝑚

0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

(𝑁𝑔 𝒱⁄ )
0

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇 .      (138) 

We should obtain the same result, when assuming equilibrium and using the chemical potential of the gas and the adsorbed 

2D ideal lattice gas: 

𝜇𝑔(𝑇) = 𝜇𝑔
0(𝑇) + 𝑘𝐵𝑇 ln

𝑝

𝑝0 =𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(𝑇) = 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 .     (139) 

We use above derivations to write 

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2 𝑘𝑇

𝑝0] + 𝑘𝐵𝑇 ln
𝑝

𝑝0 = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 ,    (140) 

−𝑘𝐵𝑇 ln [
𝑞𝑔

𝒱

𝒱𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln

𝒩𝑔
𝑁𝐴
𝒱𝑚

0

= −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln [

𝜃
(1−𝜃)

𝜃0

1−𝜃0

] .     (141) 

Rearranging terms yields 

𝑘𝐵𝑇 ln
𝒩𝑔
𝑁𝐴
𝒱𝑚

0

− 𝑘𝐵𝑇 ln [

𝜃
(1−𝜃)

𝜃0

1−𝜃0

] = 𝑘𝐵𝑇 ln [
𝑞𝑔

𝒱

𝒱𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] ,     (142) 

𝑘𝐵𝑇 ln [
𝑎𝑔

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
] = 𝑘𝐵𝑇 ln 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔

0 = 𝑘𝐵𝑇 ln [
𝑞𝑔

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0

1

𝒱

𝒱𝑚
0

𝑁𝐴
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] ,     (143) 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 =  

𝑞𝑔

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0

1

𝒱

𝒱𝑚
0

𝑁𝐴
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0

𝒱𝑚
0

𝑁𝐴
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

(𝑁𝑔 𝒱⁄ )
0

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇 .   (144) 

This is the same result for 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0  we obtained when solving for the Gibbs free energy. 

4.3 Standard molar thermodynamic functions and equilibrium constant between the 2D ideal gas and the transition 

state for desorption  

The standard molar change in Gibbs free energy between the TS for desorption and the adsorbed 2D ideal gas is given by: 

Δ𝐺𝑑𝑒𝑠,2𝐷,𝑇𝑆,𝑚
0 = 𝐺𝑇𝑆,𝑚

0 − 𝐺𝑎𝑑𝑠,2𝐷,𝑚
0 = −𝑅𝑇 ln (

𝑞𝑇𝑆,𝑚
0

𝑁𝐴
) +𝐸𝑏

0 − [−𝑅𝑇 ln (
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
) −𝐸𝑑𝑒𝑠

0 ] = 𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0 − 𝑅𝑇 ln [
(

𝑞𝑇𝑆,𝑚
0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

] =

−𝑅𝑇 [
−(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇
+ ln [

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

]] .         (145) 
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In the CTST, the free energy of activation is similar to that of the TS, but with the contribution of the motion along the 

desorption coordinate omitted: 

Δ𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 = 𝐺𝑎𝑐𝑡,𝑚

0 − 𝐺𝑎𝑑𝑠,2𝐷,𝑚
0 = −𝑅𝑇 ln (

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
) +𝐸𝑏

0 − [−𝑅𝑇 ln (
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
) −𝐸𝑑𝑒𝑠

0 ] = 𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0 −

𝑅𝑇 ln [
(

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

] = −𝑅𝑇 [
−𝐸𝑑𝑒𝑠

0

𝑅𝑇
+ ln [

(
𝑞𝑇𝑆,2𝐷,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

]] = −𝑅𝑇 [
−(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇
+ ln (

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )] .    (146) 

For the change in enthalpy we can write for the TS and activated state 

Δ𝐻𝑑𝑒𝑠,2𝐷,𝑇𝑆,𝑚
0 = 𝐻𝑇𝑆,𝑚 − 𝐻𝑎𝑑𝑠,2𝐷,𝑚 =

1

2
𝑅𝑇+𝐸𝑏

0 + 𝐸𝑑𝑒𝑠
0        (147) 

and 

Δ𝐻𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 = 𝐻𝑎𝑐𝑡,𝑚 − 𝐻𝑎𝑑𝑠,2𝐷,𝑚 = 𝐸𝑏

0 + 𝐸𝑑𝑒𝑠
0  .        (148) 

For the change in entropy we can write for the TS and activated state 

∆𝑆𝑑𝑒𝑠,2𝐷,𝑇𝑆,𝑚
0 = 𝑆𝑇𝑆,𝑚

0 − 𝑆𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝑅 ln (

𝑒1/2𝑞𝑇𝑆,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 ) = 𝑅 ln (

𝑒1/2𝑞𝑇𝑆,2𝐷,𝑚
0 𝑞𝑇𝑆,𝑑𝑒𝑠

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 )     (149) 

and 

∆𝑆𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 = 𝑆𝑎𝑐𝑡,𝑚

0 − 𝑆𝑎𝑑𝑠,2𝐷,𝑚
0 = 𝑅 ln (

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 ) .       (150) 

Therefore, we can express the equilibrium constant with respect to the TS as 

ln 𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆
0 =

−(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇
+ ln [

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

]          (151) 

and        

𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆
0 =

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 =
𝑞𝑇𝑆,𝑚

0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .       (152) 

When setting in the expressions for the standard molar partition functions: 

𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆
0 =

𝒜𝑚
0 𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 =
(𝑁𝑎𝑑𝑠 𝒜⁄ )0

(𝑁𝑇𝑆 𝒜⁄ )0 𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 = 𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  .

             (153) 

We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed 

2D ideal gas: 

𝜇𝑇𝑆(𝑇) = 𝜇𝑇𝑆
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 = 𝜇𝑎𝑑𝑠,2𝐷(𝑇) = 𝜇𝑎𝑑𝑠,2𝐷

0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 .     (154) 

We use above derivations to write 

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 + 𝑞𝑏

0 = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

2

2 𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 ,   (155) 
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−𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝒜𝑑
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln [

𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] + 𝑞𝑏
0 = −𝑘𝐵𝑇 ln [

𝑞𝑎𝑑𝑠,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln [
𝒩𝑎𝑑𝑠

𝑁𝐴
𝐴𝑚

0

] .    (156) 

Rearranging terms yields 

𝑘𝐵𝑇 ln [
𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] − 𝑘𝐵𝑇 ln [
𝒩𝑎𝑑𝑠

𝑁𝐴
𝐴𝑚

0

] + 𝑞𝑏
0 = 𝑘𝐵𝑇 ln [

𝑞𝑇𝑆

𝒜𝑑
𝑑

𝒜𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [

𝑞𝑎𝑑𝑠,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] ,    (157) 

𝑘𝐵𝑇 ln [
𝑎𝑇𝑆

𝑎𝑎𝑑𝑠,2𝐷
] = 𝑘𝐵𝑇 ln 𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆

0 = 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] − 𝑞𝑏
0 = 𝑘𝐵𝑇 ln [

𝑞𝑇𝑆

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] − 𝑘𝐵𝑇 ln [𝑒
𝑞𝑏

0

𝑘𝐵𝑇] =

𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] − 𝑘𝐵𝑇 ln [𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] = 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 ] ,      (158) 

𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆
0 =  

𝑞𝑇𝑆

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝒜𝑑

𝒜
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 = 𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  .  (159) 

This is the same result for 𝐾𝑑𝑒𝑠,2𝐷,𝑇𝑆
0  we obtained when solving for the Gibbs free energy. 

We can express the equilibrium constant with respect to the activated state as 

ln 𝐾𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡
0 =

−(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇
+ ln [

(
𝑞𝑇𝑆,2𝐷,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

]                    (160) 

and        

𝐾𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡
0 =

(
𝑞𝑇𝑆,2𝐷,𝑚

0

𝑁𝐴
)

(
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑁𝐴
)

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 =
𝑞𝑇𝑆,2𝐷,𝑚

0

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇  .           (161) 

When setting in the expressions for the standard molar partition functions: 

𝐾𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡
0 =

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 =
(𝑁𝑎𝑑𝑠 𝒜⁄ )0

(𝑁𝑇𝑆 𝒜⁄ )0 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 = 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  .     (162) 

We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and 

adsorbed 2D ideal gas: 

𝜇𝑎𝑐𝑡(𝑇) = 𝜇𝑎𝑐𝑡
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 = 𝜇𝑎𝑑𝑠,2𝐷(𝑇) = 𝜇𝑎𝑑𝑠,2𝐷

0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 .    (163) 

We use above derivations to write 

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 + 𝑞𝑏

0 = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,2𝐷 ,    (164) 

−𝑘𝐵𝑇 ln [
𝑞𝑇𝑆,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln [

𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] + 𝑞𝑏
0 = −𝑘𝐵𝑇 ln [

𝑞𝑎𝑑𝑠,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln [
𝒩𝑎𝑑𝑠

𝑁𝐴
𝐴𝑚

0

].    (165) 

Rearranging terms yields 
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𝑘𝐵𝑇 ln [
𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] − 𝑘𝐵𝑇 ln [
𝒩𝑎𝑑𝑠

𝑁𝐴
𝐴𝑚

0

] + 𝑞𝑏
0 = 𝑘𝐵𝑇 ln [

𝑞𝑇𝑆,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [

𝑞𝑎𝑑𝑠,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] ,    (166) 

𝑘𝐵𝑇 ln [
𝑎𝑇𝑆

𝑎𝑎𝑑𝑠,2𝐷
] = 𝑘𝐵𝑇 ln 𝐾𝑎𝑑𝑠,2𝐷,𝑎𝑐𝑡

0 = 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆,2𝐷

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] − 𝑞𝑏
0 = 𝑘𝐵𝑇 ln [

𝑞𝑇𝑆,2𝐷

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 ] ,   (167) 

𝐾𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡
0 =  

𝑞𝑇𝑆,2𝐷

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝒜

𝒜
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 = 𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  .     (168) 

This is the same result for 𝐾𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡
0  we obtained when solving for the Gibbs free energy. 

4.4 Standard molar thermodynamic functions and equilibrium constant between the 2D ideal lattice gas and the 

transition state for desorption 

The standard molar change in Gibbs free energy between the transition state for desorption and the adsorbed 2D ideal lattice 

gas is given by: 

Δ𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆,𝑚
0 = 𝐺𝑇𝑆,𝑚

0 − 𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = [−𝑅𝑇 ln (

𝑞𝑇𝑆,𝑚
0

𝑁𝐴
) +𝐸𝑏

0] − [−𝑅𝑇 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝑅𝑇 ln (
(1−𝜃0)

𝜃0 ) −𝐸𝑑𝑒𝑠
0 ] = 𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0 −

𝑅𝑇 ln [
(

𝑞𝑇𝑆,𝑚
0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

] = −𝑅𝑇 [
−(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇
+ ln [

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

]] .       (169) 

For the change in enthalpy, we can write for the TS and activated state 

Δ𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆,𝑚
0 = 𝐻𝑇𝑆,𝑚

0 − 𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 =

5

2
𝑅𝑇 −

𝑁𝐴∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
+ 𝑅𝑇

ln(1−𝜃)

𝜃
+ 𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0     (170) 

and 

Δ𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 = 𝐻𝑎𝑐𝑡,𝑚

0 − 𝐻𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 2𝑅𝑇 −

𝑁𝐴∙ℎ𝜈

𝑒𝛽ℎ𝜈−1
+ 𝑅𝑇

ln(1−𝜃0)

𝜃0 + 𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0 .    (171) 

For the change in entropy, we can write for the TS and activated state 

∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆,𝑚
0 = 𝑆𝑇𝑆,𝑚

0 − 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 𝑅 ln (

𝑒5 2⁄ 𝑞𝑇𝑆,𝑚
0

𝑁𝐴
) − 𝑅 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (

𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) − 𝑅 (ln (

(1−𝜃0)

𝜃0 ) −
ln(1−𝜃0)

𝜃0 ) .

             (172) 

and 

∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 = 𝑆𝑎𝑐𝑡,𝑚

0 − 𝑆𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = 𝑅 ln (

𝑒2𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
) − 𝑅 (ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝛽 (

𝜕 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝜕𝛽
)) − 𝑅 (ln (

(1−𝜃0)

𝜃0 ) −
ln(1−𝜃0)

𝜃0 ) .

             (173) 

We can express the equilibrium constant as 

ln 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆
0 =

−(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇
+ ln [

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

]         (174) 

and 
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𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆
0 =

(
𝑞𝑇𝑆,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  .         (175) 

When setting in the expressions for the standard molar partition functions: 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆
0 =

(
𝒜𝑚

0 𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )
3 2⁄

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 =
𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

(𝑁𝑇𝑆 𝒜⁄ )0𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 .    (176) 

We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed 

ideal 2D lattice gas: 

𝜇𝑇𝑆(𝑇) = 𝜇𝑇𝑆
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 = 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(𝑇) = 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 .    (177) 

We use above derivations to write 

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 + 𝑞𝑏

0 = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡    (178) 

−𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝒜𝑑
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln [

𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] + 𝑞𝑏
0 = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln [

𝜃
(1−𝜃)

𝜃0

1−𝜃0

].   (179) 

Rearranging terms yields 

𝑘𝐵𝑇 ln [
𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] − 𝑘𝐵𝑇 ln [

𝜃
(1−𝜃)

𝜃0

1−𝜃0

] = 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝒜𝑑
𝑑

𝒜𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] − 𝜖𝑏
0 ,    (180) 

𝑘𝐵𝑇 ln [
𝑎𝑇𝑆

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
] = 𝑘𝐵𝑇 ln 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆

0 = 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0

1

𝒜

𝒜𝑚
0

𝑁𝐴
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇 ] − 𝜀𝑏
0 ,     (181) 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆
0 =  

𝑞𝑇𝑆

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0

1

𝒜

𝒜𝑚
0

𝑁𝐴
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0

𝑑𝒜𝑚
0

𝑁𝐴
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 =
𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

(𝑁𝑇𝑆 𝒜⁄ )0𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  . (182) 

This is the same result for 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑇𝑆
0  we obtained when solving for the Gibbs free energy. 

For the free energy of activation (with the translation along the desorption coordinate omitted), we obtain: 

Δ𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚
0 = 𝐺𝑎𝑐𝑡,𝑚

0 − 𝐺𝑎𝑑𝑠,𝑙𝑎𝑡𝑡,𝑚
0 = [−𝑅𝑇 ln (

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
) +𝐸𝑏

0] − [−𝑅𝑇 ln 𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 − 𝑅𝑇 ln (
(1−𝜃0)

𝜃0 ) −𝐸𝑑𝑒𝑠
0 ] =

𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0 − 𝑅𝑇 ln [
(

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

] = −𝑅𝑇 [
−(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇
+ ln [

(
𝑞𝑇𝑆,2𝐷,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

]] .     (183) 

Therefore, we can express the equilibrium constant as 

ln 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡
0 =

−(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇
+ ln [

(
𝑞𝑇𝑆,2𝐷,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

]         (184) 

and 
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𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡
0 =

(
𝑞𝑇𝑆,2𝐷,𝑚

0

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇  .         (185) 

When setting in the expressions for the standard molar partition functions: 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡
0 =

(
𝒜𝑚

0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝑁𝐴
)

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

(𝑁𝑇𝑆 𝒜⁄ )0𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 .     (186) 

We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and 

adsorbed 2D ideal lattice gas: 

𝜇𝑎𝑐𝑡(𝑇) = 𝜇𝑎𝑐𝑡
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 = 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡(𝑇) = 𝜇𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 .    (187) 

We use above derivations to write 

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 + 𝜖𝑏

0 = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 ,   (188) 

−𝑘𝐵𝑇 ln [
𝑞𝑇𝑆,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln [

𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] = −𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] + 𝑘𝐵𝑇 ln [
(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )
] − 𝑞𝑏

0 .   (189) 

Rearranging terms yields 

𝑘𝐵𝑇 ln [
𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] − 𝑘𝐵𝑇 ln [
(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )
] = 𝑘𝐵𝑇 ln [

𝑞𝑇𝑆,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

1−𝜃0

𝜃0 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 ] − 𝑞𝑏
0,    (190) 

𝑘𝐵𝑇 ln [
𝑎𝑇𝑆

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
] = 𝑘𝐵𝑇 ln 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡

0 = 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆,2𝐷

𝒜𝑚
0

𝑁𝐴

𝒜𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 ] ,     (191) 

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡
0 =  

𝑞𝑇𝑆,2𝐷
𝒜𝑚

0

𝑁𝐴

𝒜𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝒜
𝒜𝑚

0

𝑁𝐴

𝒜
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

(𝑁𝑇𝑆 𝒜⁄ )0𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 . (192) 

This is the same result for 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡
0  we obtained when solving for the Gibbs free energy. 

S5. Standard molar Gibbs free energy change and equilibrium constant between the 3D ideal gas and the transition 

state for adsorption 

Here, we derive the thermodynamic functions that describe the interactions between the gas phase and transition state for 

adsorption.  

The standard molar change in Gibbs free energy between the transition state for adsorption and the 3D ideal gas is given 

by: 
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Δ𝐺𝑎𝑑𝑠,𝑔,𝑇𝑆,𝑚
0 = 𝐺𝑇𝑆,𝑚

0 − 𝐺𝑔,𝑚
0 = [−𝑅𝑇 ln (

𝑞𝑇𝑆,𝑚
0

𝑁𝐴
) +𝐸𝑏

0] − [−𝑅𝑇 ln (
𝑞𝑔,𝑚

0

𝑁𝐴
)] = −𝑅𝑇 ln [

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0 ] + 𝐸𝑏

0 =  −𝑅𝑇 ln [
𝑞𝑇𝑆,𝑚

0

𝑞𝑔,𝑚
0 ] +

𝑅𝑇 ln [𝑒
𝐸𝑏

0

𝑅𝑇] = −𝑅𝑇 ln [
𝑞𝑇𝑆,𝑚

0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇].          (193) 

For the change in enthalpy, we can write for the TS and activated state 

Δ𝐻𝑎𝑑𝑠,𝑔,𝑇𝑆,𝑚
0 = 𝐻𝑇𝑆,𝑚

0 − 𝐻𝑔,𝑚
0 =

5

2
𝑅𝑇+𝐸𝑏

0 −
5

2
𝑅𝑇 = 𝐸𝑏

0       (194) 

and 

Δ𝐻𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0 = 𝐻𝑎𝑐𝑡,𝑚

0 − 𝐻𝑔,𝑚
0 = 2𝑅𝑇+𝐸𝑏

0 −
5

2
𝑅𝑇 = −

1

2
𝑅𝑇+𝐸𝑏

0 .      (195) 

For the change in entropy, we can write for the TS and activated state 

∆𝑆𝑎𝑑𝑠,𝑔,𝑇𝑆,𝑚
0 = 𝑆𝑇𝑆,𝑚

0 − 𝑆𝑔,𝑚
0 = 𝑅 ln (

𝑒5/2𝑞𝑇𝑆,𝑚
0

𝑁𝐴
) − 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) = 𝑅 ln (

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0 ) = 𝑅 ln (

𝑞𝑇𝑆,2𝐷,𝑚
0 𝑞𝑇𝑆,𝑑𝑒𝑠

𝑞𝑔,𝑚
0 )  (196) 

and 

∆𝑆𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0 = 𝑆𝑎𝑐𝑡,𝑚

0 − 𝑆𝑔,𝑚
0 = 𝑅 ln (

𝑒2𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
) − 𝑅 ln (

𝑒5 2⁄ 𝑞𝑔,𝑚
0

𝑁𝐴
) = 𝑅 ln (

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑒1 2⁄ 𝑞𝑔,𝑚
0 ) .    (197) 

We can express the equilibrium constant as 

ln 𝐾𝑎𝑑𝑠,𝑔,𝑇𝑆
0 = ln [

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇]           (198) 

and 

𝐾𝑎𝑑𝑠,𝑔,𝑇𝑆
0 =

𝑞𝑇𝑆,𝑚
0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 .           (199) 

When setting in the expressions for the standard molar partition functions: 

𝐾𝑎𝑑𝑠,𝑔,𝑇𝑆
0 =

𝒜𝑚
0 𝑑(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄ 𝑒−

𝐸𝑏
0

𝑅𝑇 =
𝒜𝑚

0 𝑑

𝒱𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇.        (200) 

We should obtain the same result, when assuming equilibrium and using the chemical potential of the TS and adsorbed 

2D ideal lattice gas: 

𝜇𝑇𝑆(𝑇) = 𝜇𝑇𝑆
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 = 𝜇𝑔(𝑇) = 𝜇𝑔

0(𝑇) + 𝑘𝐵𝑇 ln
𝑝

𝑝0 .       (201) 

We use above derivations to write 

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 + 𝑞𝑏

0 = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2 𝑘𝑇

𝑝0] + 𝑘𝐵𝑇 ln
𝑝

𝑝0      (202) 

−𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝒜𝑑
𝑑

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln [

𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] = −𝑘𝐵𝑇 ln [
𝑞𝑔

𝒱

𝒱𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln

𝒩𝑔
𝑁𝐴
𝒱𝑚

0

− 𝜖𝑏
0 .     (203) 

Rearranging terms yields 

𝑘𝐵𝑇 ln [
𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] − 𝑘𝐵𝑇 ln
𝒩𝑔
𝑁𝐴
𝒱𝑚

0

= 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝒜𝑑
𝑑

𝒜𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [

𝑞𝑔

𝒱

𝒱𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [𝑒

𝑞𝑏
0

𝑘𝐵𝑇]     (204) 
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𝑘𝐵𝑇 ln [
𝑎𝑇𝑆

𝑎𝑔
] = 𝑘𝐵𝑇 ln 𝐾𝑔,𝑇𝑆

0 = 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆

𝑞𝑔

𝒱

𝒜

𝒜𝑚
0

𝒱𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇] .       (205) 

Thus, we obtain 

𝐾𝑎𝑑𝑠,𝑔,𝑇𝑆
0 =  

𝑞𝑇𝑆

𝑞𝑔

𝒱

𝒜

𝒜𝑚
0

𝒱𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

3 2⁄

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄

𝑑𝒜𝑚
0

𝒱𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 =
𝑑𝒜𝑚

0

𝒱𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 .      (206) 

This is the same result for 𝐾𝑎𝑑𝑠,𝑔,𝑇𝑆
0  we obtained when solving for the Gibbs free energy. 

For the free energy of activation (with the translation along the adsorption coordinate omitted), we obtain: 

Δ𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚
0 = 𝐺𝑎𝑐𝑡,𝑚

0 − 𝐺𝑔,𝑚
0 = [−𝑅𝑇 ln (

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑁𝐴
) +𝐸𝑏

0] − [−𝑅𝑇 ln (
𝑞𝑔,𝑚

0

𝑁𝐴
)] = −𝑅𝑇 ln [

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑞𝑔,𝑚
0 ] +𝐸𝑏

0 =

−𝑅𝑇 ln [
𝑞𝑇𝑆,2𝐷,𝑚

0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇] .           (207) 

Therefore, we can express the equilibrium constant as 

ln 𝐾𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡
0 = ln [

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇]          (208) 

and 

𝐾𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡
0 =

𝑞𝑇𝑆,2𝐷,𝑚
0

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 .           (209) 

When setting in the expressions for the standard molar partition functions: 

𝐾𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡
0 =

𝒜𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄ 𝑒−

𝐸𝑏
0

𝑅𝑇 =
𝒜𝑚

0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−

𝐸𝑏
0

𝑅𝑇 .       (210) 

We should obtain the same result, when assuming equilibrium and using the chemical potential of the activated state and 

adsorbed ideal 3D gas: 

𝜇𝑎𝑐𝑡(𝑇) = 𝜇𝑎𝑐𝑡
0 (𝑇) + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 = 𝜇𝑔(𝑇) = 𝜇𝑔

0(𝑇) + 𝑘𝐵𝑇 ln
𝑝

𝑝0 .      (211) 

We use above derivations to write 

−𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

𝒜𝑚
0

𝑁𝐴
] + 𝑘𝐵𝑇 ln 𝑎𝑇𝑆 + 𝜖𝑏

0 = −𝑘𝐵𝑇 ln [(
2𝜋𝑚

ℎ2𝛽
)

3

2 𝑘𝑇

𝑝0] + 𝑘𝐵𝑇 ln
𝑝

𝑝0 ,     (212) 

Rearranging terms yields 

𝑘𝐵𝑇 ln [
𝒩𝑇𝑆
𝑁𝐴
𝐴𝑚

0

] − 𝑘𝐵𝑇 ln
𝒩𝑔
𝑁𝐴
𝒱𝑚

0

= 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆,2𝐷

𝒜

𝒜𝑚
0

𝑁𝐴
] − 𝑘𝐵𝑇 ln [

𝑞𝑔

𝒱

𝒱𝑚
0

𝑁𝐴
] − 𝑞𝑏

0       (213) 

𝑘𝐵𝑇 ln [
𝑎𝑇𝑆

𝑎𝑔
] = 𝑘𝐵𝑇 ln 𝐾𝑔,𝑎𝑐𝑡

0 = 𝑘𝐵𝑇 ln [
𝑞𝑇𝑆,2𝐷

𝑞𝑔

𝒱

𝒜

𝒜𝑚
0

𝒱𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇] .       (214) 

𝐾𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡
0 =  

𝑞𝑇𝑆,2𝐷

𝑞𝑔

𝒱

𝒜

𝒜𝑚
0

𝒱𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 =
(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )

2 2⁄

(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )3 2⁄

𝒜𝑚
0

𝒱𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 =
𝒜𝑚

0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )1 2⁄ 𝑒−

𝐸𝑏
0

𝑅𝑇 .    (215) 
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This is the same result for 𝐾𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡
0  we obtained when solving for the Gibbs free energy. 

6. Adsorption-desorption equilibrium 

Considering the equilibrium, for the case that the adsorbed state is a 2D ideal gas, at low coverage, starting with the 

thermodynamic expressions: 

𝑅𝑎𝑑𝑠

𝒜
=

𝑅𝑑𝑒𝑠

𝒜
            (216) 

𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ 𝒩𝑎𝑑𝑠    (217) 

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 =
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝒩𝑎𝑑𝑠
𝑞𝑇𝑆,𝑚

0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇         (218) 

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0 =

𝒩𝑎𝑑𝑠

(𝑁𝑎𝑑𝑠 𝒜⁄ )0

𝑞𝑇𝑆,𝑚
0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇          (219) 

𝒩𝑎𝑑𝑠

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 = 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑞𝑔,𝑚
0 = 𝐾𝑎𝑑𝑠,𝑔,2𝐷

0 =
1

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 = 𝐾𝑙𝑖𝑛

(𝑁𝑔 𝒱⁄ )
0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 .     (220) 

For the case of the activity-based adsorption and desorption rates, starting with the thermodynamic expressions, we obtain 

𝑅𝑎𝑑𝑠

𝒜
=

𝑅𝑑𝑒𝑠

𝒜
            (221) 

𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑎𝑐𝑡,𝑚
0 𝑅𝑇⁄ 𝒩𝑎𝑑𝑠    (222) 

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 =
(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 𝒩𝑎𝑑𝑠
𝑞𝑇𝑆,𝑚

0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇         (223) 

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0 =

𝒩𝑎𝑑𝑠

(𝑁𝑎𝑑𝑠 𝒜⁄ )0

𝑞𝑇𝑆,𝑚
0′

𝑞𝑎𝑑𝑠,2𝐷,𝑚
0 𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇          (224) 

𝒩𝑎𝑑𝑠

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 = 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇
𝑞𝑎𝑑𝑠,2𝐷,𝑚

0

𝑞𝑔,𝑚
0 = 𝐾𝑎𝑑𝑠,𝑔,2𝐷

0 =
1

𝐾𝑑𝑒𝑠,2𝐷,𝑔
0 = 𝐾𝑙𝑖𝑛

(𝑁𝑔 𝒱⁄ )
0

(𝑁𝑎𝑑𝑠 𝒜⁄ )0 .     (225) 

This is again consistent with our findings above. 

In case the adsorbed state on the surface is treated as a 2D ideal lattice gas, using the thermodynamic expressions as a 

starting point: 

𝑅𝑎𝑑𝑠,2𝐷

𝒜
=

𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝒜
             (226) 

𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

(𝑁𝑇𝑆 𝒜⁄ )0

(𝜃0 (1−𝜃0)⁄ )
𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝜃 (1 − 𝜃)⁄ )   (227) 

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝒩𝑔

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇 =
(𝑁𝑇𝑆 𝒜⁄ )0

(𝜃0 (1−𝜃0)⁄ )
(𝜃 (1 − 𝜃)⁄ )

(
𝑞𝑇𝑆,𝑚

0′

𝑁𝐴
)

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0 )
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇      (228) 
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𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

1

𝑞𝑔,𝑚
0 =

(𝜃 (1−𝜃)⁄ )

(𝜃0 (1−𝜃0)⁄ )

1

𝑁𝐴

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0

𝑒−
𝐸𝑑𝑒𝑠

0

𝑅𝑇         (229) 

(𝜃 (1−𝜃)⁄ )

𝒩𝑔

(𝑁𝑔 𝒱⁄ )
0

(𝜃0 (1−𝜃0)⁄ )
= 𝑒

𝐸𝑑𝑒𝑠
0

𝑅𝑇
𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

(1−𝜃0)

𝜃0

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

= 𝐾𝑎𝑑𝑠,𝑔,𝑙𝑎𝑡𝑡
0 =

1

𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0 = 𝐾𝐿𝑎𝑛𝑔

(𝑁𝑔 𝒱⁄ )
0

(𝜃0 (1−𝜃0)⁄ )
 .    (230) 

For the case of the activity-based adsorption and desorption rates, starting with the thermodynamic relationships, we 

obtain: 

𝑅𝑎𝑑𝑠,2𝐷
𝑎 = 𝑅𝑑𝑒𝑠,𝑙𝑎𝑡𝑡

𝑎            (231) 

𝜅 (
𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑎𝑑𝑠,𝑔,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0 𝑎𝑔

𝒜𝑚
0

𝒱𝑚
0 = 𝜅 (

𝑘𝐵𝑇

ℎ
) 𝑒−∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑎𝑐𝑡,𝑚

0 𝑅𝑇⁄ (1−𝜃0)

𝜃0

(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡   (232) 

(𝑁𝑇𝑆 𝒜⁄ )0

(𝑁𝑔 𝒱⁄ )
0

𝒜𝑚
0

𝒱𝑚
0

𝑞𝑇𝑆,𝑚
0′

𝑞𝑔,𝑚
0 𝑒−

𝐸𝑏
0

𝑅𝑇𝑎𝑔 =
(1−𝜃0)

𝜃0

(𝑁𝑇𝑆 𝒜⁄ )0

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(
𝑞𝑇𝑆,𝑚

0′

𝑁𝐴
)

(𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
(1−𝜃0)

𝜃0 )
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡     (233) 

𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

𝒜𝑚
0

𝒱𝑚
0

1

𝑞𝑔,𝑚
0 =

1

𝑁𝐴

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
𝑒−

𝐸𝑑𝑒𝑠
0

𝑅𝑇
𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
         (234) 

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

𝑎𝑔
=

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

𝒜𝑚
0

𝒱𝑚
0

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡

(
𝑞𝑔,𝑚

0

𝑁𝐴
)

𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇 = 𝒩𝑎𝑑𝑠,𝑚𝑎𝑥(2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−3 2⁄ 𝑒
𝐸𝑑𝑒𝑠

0

𝑅𝑇
𝒜𝑚

0

𝒱𝑚
0 = 𝒩𝑎𝑑𝑠,𝑚𝑎𝑥𝐾𝐿𝑎𝑛𝑔

𝒜𝑚
0

𝒱𝑚
0  .  (235) 

This is again consistent with our findings above. 

 

We can relate the microscopic picture to thermodynamic functions to obtain the pre-exponential factor 𝐴𝑑𝑒𝑠,2𝐷 under 

equilibrium conditions: 

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
𝒜

𝒱
𝑎𝑔

𝒱𝒜𝑚
0

𝒜𝒱𝑚
0 = 𝜅 (

𝑘𝐵𝑇

ℎ
)

𝑞𝑇𝑆
′

𝑞𝑎𝑑𝑠,2𝐷
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷       (236) 

(
𝑘𝐵𝑇

ℎ
) 𝛼𝑠𝑎𝑔

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ = 𝐴𝑑𝑒𝑠,2𝐷𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,2𝐷       (237) 

𝐴𝑑𝑒𝑠,2𝐷 = (
𝑘𝐵𝑇

ℎ
) 𝛼𝑠

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇
𝑎𝑔

𝑎𝑎𝑑𝑠,2𝐷
        (238) 

𝐴𝑑𝑒𝑠,2𝐷 = (
𝑘𝐵𝑇

ℎ
) 𝛼𝑠

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝐾𝑑𝑒𝑠,2𝐷,𝑔
0         (239) 

𝐴𝑑𝑒𝑠,2𝐷 = (
𝑘𝐵𝑇

ℎ
) 𝛼𝑠

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑒−∆𝐺𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 𝑅𝑇⁄

       (240) 

𝐴𝑑𝑒𝑠,2𝐷 = (
𝑘𝐵𝑇

ℎ
) 𝛼𝑠

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑒−(∆𝐻𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 −𝑇∆𝑆𝑑𝑒𝑠,2𝐷,𝑔,𝑚

0 ) 𝑅𝑇⁄
     (241) 

𝐴𝑑𝑒𝑠,2𝐷 = (
𝑘𝐵𝑇

ℎ
) 𝛼𝑠

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑒−(
1

2
𝑅𝑇+𝐸𝑑𝑒𝑠

0 ) 𝑅𝑇⁄ 𝑒∆𝑆𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 𝑅⁄

     (242) 
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𝐴𝑑𝑒𝑠,2𝐷 = (
𝑘𝐵𝑇

ℎ
) 𝛼𝑠

𝒜𝑚
0

𝒱𝑚
0 (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 𝑒−1/2𝑒

𝐸𝑏
0

𝑅𝑇𝑒∆𝑆𝑑𝑒𝑠,2𝐷,𝑔,𝑚
0 𝑅⁄

 .      (243)  

We can relate the microscopic picture to thermodynamic functions to obtain the pre-exponential factor 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡 under 

equilibrium conditions: 

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝜅 (
𝑘𝐵𝑇

ℎ
)

(𝑞𝑇𝑆
′ 𝒜⁄ )

𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡   (244)  

𝜅 (
𝑘𝐵𝑇

ℎ
) (

𝑞𝑇𝑆
′ 𝒜⁄

𝑞𝑔 𝒱⁄
) 𝑒−

𝐸𝑏
0

𝑅𝑇
1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡      (245) 

𝛼𝑠 (
𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥
𝑎𝑔

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 = 𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 𝑒−

(𝐸𝑑𝑒𝑠
0 +𝐸𝑏

0)

𝑅𝑇 𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡      (246) 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝛼𝑠 (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 𝑒
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇
𝑎𝑔

𝑎𝑎𝑑𝑠,𝑙𝑎𝑡𝑡
      (247) 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝛼𝑠 (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 𝑒
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝐾𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔
0       (248) 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝛼𝑠 (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 𝑒
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝑒−
∆𝐺𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0

𝑅𝑇      (249) 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝛼𝑠 (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 𝑒
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝑒−
∆𝐻𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0 −𝑇∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚
0

𝑅𝑇       (250) 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝛼𝑠 (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 𝑒
(𝐸𝑑𝑒𝑠

0 +𝐸𝑏
0)

𝑅𝑇 𝑒−
(

5
2𝑅𝑇+𝐸𝑑𝑒𝑠

0 +𝑅𝑇
ln(1−𝜃0) 

𝜃0 )

𝑅𝑇 𝑒
∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0

𝑅   (251) 

𝐴𝑑𝑒𝑠,𝑙𝑎𝑡𝑡
𝑎 = 𝛼𝑠 (

𝑘𝐵𝑇

ℎ
) (2𝜋𝑚𝑘𝐵𝑇 ℎ2⁄ )−1 2⁄ 1

𝒩𝑎𝑑𝑠,𝑚𝑎𝑥

(𝑁𝑔 𝒱⁄ )
0

(1−𝜃0)

𝜃0 𝑒−
5

2(1 − 𝜃0)−
1

𝜃0𝑒
𝐸𝑏

0

𝑅𝑇𝑒
∆𝑆𝑑𝑒𝑠,𝑙𝑎𝑡𝑡,𝑔,𝑚

0

𝑅  .   (252)   
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Table S1. Physical Parameters and Standard States Applied in Calculations for Figures 2 to 15.           

        

𝑑 / m 𝜅 𝑞𝑔,𝑚
0  𝑞𝑎𝑑𝑠,2𝐷,𝑚

0  𝑞𝑎𝑑𝑠,𝑙𝑎𝑡𝑡 𝑞𝑇𝑆,𝑚
0  𝑞𝑇𝑆,𝑑𝑒𝑠 𝑞𝑇𝑆,2𝐷,𝑚

0 = 𝑞𝑇𝑆,𝑚
0′

 

1×10-10 1 2.3976×1031 5.0325×1028 1 4.9761×1029 9.8880 5.0325×1028 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑇 / K 𝑀 / g mol-1 𝑚 / kg 𝑅 / J K-1 mol-1 𝑘𝐵 / J K-1 ℎ / J s 𝑁𝐴 / molec. mol-1 

298 100 1.6605×10-25 8.3145 1.38065×10-23 6.62607×10-34 6.02214×1023 

       

𝒱𝑚
0  / m3 mol-1 

(
𝑁𝑔

𝒱
)

0

 / m-3 
𝒜𝑚

0  / m2 mol-1 
(

𝑁𝑎𝑑𝑠

𝒜
)

0

 / m-2 
𝒩𝑎𝑑𝑠,𝑚𝑎𝑥 / m-2 𝜃0 

0.0248 2.4283×1025 5.1471×106 1.17×1017 1×1019 0.0117 
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