Supplement of

Mass accommodation and gas–particle partitioning in secondary organic aerosols: dependence on diffusivity, volatility, particle-phase reactions, and penetration depth

Manabu Shiraiwa and Ulrich Pöschl

Correspondence to: Manabu Shiraiwa (m.shiraiwa@uci.edu) and Ulrich Pöschl (u.poschl@mpic.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1. Temporal evolution of the gas phase concentration of organic compounds interacting with semisolid seed aerosol particles under the same conditions as in Fig. 2 but with $\alpha_s = 0.1$ instead of 1. (a) Non-reactive partitioning of compounds with different volatilities ($C^0 = 0.1$ to $1000 \, \mu g\, m^{-3}$) and (b) partitioning of semi-volatile compounds ($C^0 = 100 \, \mu g\, m^{-3}$) undergoing particle-phase reactions with different first-order loss rate coefficients ($k_b = 10^{-4}$ to $0.1 \, s^{-1}$). The red lines are simulated with KM-GAP and the blue lines are simulated by an aerosol dynamic model that employs the Fuchs-Sutugin approximation with α_{eff} for non-reactive partitioning (a) and for reactive uptake (b). The gray lines represent the MOSAIC approximate (dashed) and transient solutions (solid) (Zaveri et al., 2014).