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Abstract. Ozone formation regimes are closely related to
the ratio of volatile organic compounds (VOCs) to NOx .
Different ranges of HCHO/NO2 indicate three formation
regimes, including VOC-limited, transitional, and NOx-
limited regimes. Due to the unstable interactions between a
diversity of precursors, the range of the transitional regime,
which plays a key role in identifying ozone formation
regimes, remains unclear. To overcome the uncertainties
from single models and the lack of reference data, we em-
ployed two models, polynomial simulation and convergent
cross-mapping (CCM), to identify the ranges of HCHO/NO2
across China based on ground observations and remote sens-
ing datasets. The ranges of the transitional regime estimated
by polynomial simulation and CCM were [1.0, 1.9] and [1.0,
1.8]. Since 2013, the ozone formation regime has changed to
the transitional and NOx-limited regime all over China, indi-
cating that ozone concentrations across China were mainly
controlled by NOx . However, despite the NO2 concentra-
tions, HCHO concentrations continuously exert a positive in-
fluence on ozone concentrations under transitional and NOx-
limited regimes. Under the circumstance of national NOx
reduction policies, the increase in VOCs became the major
driver for the soaring ozone pollution across China. For an
effective management of ozone pollution across China, the

emission reduction in VOCs and NOx should be equally con-
sidered.

1 Introduction

With the significant improvement of PM2.5 pollution, sur-
face ozone has become a major airborne pollutant across
China since 2017 (Li et al., 2019a; Lu et al., 2020). Due to
its severe threat to public health even during a short-period
exposure, ozone pollution has received growing emphasis
from governments and scholars (H. Liu et al., 2018; Xie et
al., 2019). In the past several years, spatiotemporal distribu-
tion of ozone concentrations (Wu and Xie, 2017; Shen et
al., 2019a) and the influence of meteorological conditions
(Chen et al., 2019c; Cheng et al., 2019, 2020) and anthro-
pogenic emissions (Chen et al., 2019b; Cheng et al., 2018; Li
et al., 2019a, 2020) on ozone concentrations have been mas-
sively studied. However, due to the highly complicated ozone
formation regime, effective ozone control remains challeng-
ing.

Different from PM2.5, whose main precursors are NOx ,
volatile organic compounds (VOCs), and SO2, the forma-
tion and decomposition of ozone are closely related to two
types of precursors, VOCs and NOx . There is a diversity of
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reactions between VOCs and NOx under different meteoro-
logical conditions and concentration scenarios (Wang et al.,
2017). Since VOCs and NOx can either promote or restrict
ozone production, the VOCs/NOx ratio is crucial for sur-
face ozone concentrations. However, the thresholds at which
VOCs/NOx may promote or restrict ozone production re-
main unclear (Jin et al., 2017; Schroeder et al., 2017). For
instance, under a specific VOCs/NOx scenario, the reduc-
tion in NOx may conversely increase surface ozone concen-
trations (Sillman et al., 1990; Kleinman, 1994). Furthermore,
given the large variations in meteorological conditions and
the ozone level across China, the effects of VOCs/NOx on
surface ozone concentrations also demonstrate notable spa-
tiotemporal patterns. In this case, a comprehensive under-
standing of how the variations in VOCs and NOx could in-
fluence ozone concentrations under different VOCs/NOx cir-
cumstances is crucial for setting effective emission reduction
policies accordingly in different regions.

To examine the complicated nonlinear relationship be-
tween ozone concentrations and multiple precursors, a large
body of studies has been conducted (Duncan et al., 2010;
Choi et al., 2012; Pusede and Cohen, 2012; Chang et
al., 2016; Jin et al., 2020). Through small-scale experiments,
NO2 and HCHO proved to be effective proxies for NOx and
VOCs (Sillman et al., 1990; Martin et al., 2004). Since NO2
and HCHO can be monitored using remote sensing data, the
two precursors have been increasingly considered in ozone–
precursor sensitivity research (Jin et al., 2020; X. Zhang et
al., 2020). Cheng et al. (2018) proved that NO2/NO pre-
sented a good consistence with long-term ozone concentra-
tions in Beijing. However, NO was not an easily recordable
precursor based on satellite observations and not applica-
ble in large-scale monitoring. Cheng et al. (2019) suggested
that satellite-retrieved HCHO/NO2 was strongly correlated
with surface ozone concentrations in Beijing. Different
HCHO/NO2 indicates distinct ozone formation regimes, in-
cluding VOC-limited, transitional, and NOx-limited regimes.
For the VOC-limited (NOx-saturated) regime, the control
of VOC emissions leads to the reduction in organic radi-
cals (RO2), the RO2–NOx reactions and thus ozone concen-
trations (Milford et al., 1989). In contrast, the decrease in
NOx promotes VOC–CO reaction, leading to the increase in
ozone concentration (Kleinman, 1994). For the NOx-limited
regime, the reduction in NOx slows down NO2 photolysis,
which produces free oxygen atoms for ozone formation and
reduces ozone concentrations. The variations in VOCs exert
limited influences on ozone concentrations for this regime
(Kleinman, 1994). For the transitional (VOC–NOx mixed)
regime, both VOCs and NOx impose positive influences on
ozone concentrations. Since the transitional regime divides
VOC-limited and NOx-limited regimes, the estimation of the
transitional regime range plays a key role in identifying dif-
ferent ozone formation regimes.

Duncan et al. (2010) calculated the transitional regime
range as [1.0, 2.0] using the Community Multiscale Air

Quality Modeling System (CMAQ) model, whose uncertain-
ties may influence the estimation accuracy (Schroeder et al.,
2017). Jin et al. (2020) employed a polynomial model and
calculated the transitional regime range over US urban ar-
eas as [3.2, 4.1] based on decades of remote sensing and
ground observation data. However, given the notable dif-
ference in meteorological conditions, ozone levels, and the
composition of precursors across different countries, whether
the transitional regime range extracted in the US is appli-
cable to other countries remains unclear. Furthermore, the
polynomial model may ignore the complicated inner inter-
actions between multiple precursors, meteorological factors,
and ozone concentrations in the atmospheric environment
(Chen et al., 2020) and may lead to large uncertainties. Con-
sequently, ozone–precursor sensitivity, especially the transi-
tional regime range across China, requires further in-depth
analysis.

To this end, this research attempts to investigate the spa-
tiotemporal variations in ozone formation regimes across
China and identify the transitional regime range of
HCHO/NO2 based on the cross-verification of multiple
models. Firstly, long-term variations in HCHO and NO2
across China were analyzed. Next, the datasets of HCHO,
NO2, and ozone were examined using a polynomial model
and a causality model, respectively, to reveal the crucial
thresholds of HCHO/NO2 that separate the NOx-limited,
VOC-limited, and transitional regimes. Specifically, due to
the large area of China and potential spatial variations in
ozone formation regimes, we respectively investigated ozone
formation regimes in several major regions, including the
North China Plain (NCP), Yangtze River Delta (YRD), Pearl
River Delta (PRD), and Sichuan Basin (SCB) (the geographi-
cal locations of four megacity clusters were shown in Fig. 1),
to explore the spatiotemporal variations in ozone formation
regimes. Meanwhile, we also compared the ozone formation
regimes in urban and rural areas. This research sheds useful
light for better modeling the complicated ozone–precursor
relationship, understanding the major drivers for enhanced
ozone pollution, and implementing specific emission reduc-
tion measures to mitigate ozone pollution across China.

2 Materials and methods

2.1 Data sources

In this study, Ozone Monitoring Instrument (OMI)
HCHO/NO2 datasets were employed for exploring the
spatiotemporal variations in HCHO and NO2 in China
and calculating HCHO/NO2. We connected surface ozone
network data to HCHO, NO2, and HCHO/NO2, which
served as the input data for running third-polynomial model
and convergent cross-mapping (CCM). The MODIS land
cover product provided the spatial distribution of urban
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Figure 1. The May-to-September mean hourly surface ozone net-
work data from 2014 to 2019. Mean hourly surface ozone con-
centrations are calculated on the 0.25◦× 0.25◦ grid. Purple, blue,
green, and red outlines indicate the boundaries of North China Plain
(NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD), and
Sichuan Basin (SCB), respectively.

areas, which was employed for identifying urban and rural
pixels.

2.1.1 OMI HCHO/NO2

The Ozone Monitoring Instrument (OMI), on board the Aura
satellite, monitors global solar backscatter in the UV–vis
domain (270–500 nm). The OMI provides daily global ob-
servations and crosses the Equator at 13:38 LT (Levelt et
al., 2006). In this study, we employed the daily level-3 grid-
ded OMI HCHO product (OMHCHOd) from the Smith As-
trophysical Observatory (SAO) (González Abad et al., 2015).
The HCHO vertical columns are the weighted mean values
for the 0.1◦× 0.1◦ grid. Backscattered solar radiation, rang-
ing from 328.5–356.5 nm, was used for fitting HCHO slant
columns. Air mass factors (AMFs) were employed for con-
verting HCHO slant columns to vertical columns (González
Abad et al., 2015). The validation report suggested that the
error in this product was effectively controlled within 30 %
over polluted areas (González Abad et al., 2015) and vali-
dated for detecting long-term variations in HCHO columns
(Zhu et al., 2017; Shen et al., 2019b). The daily level-3 grid-
ded OMI NO2 product (OMNO2d), provided by NASA’s
Goddard Space Flight Center, was utilized in this study (Buc-
sela et al., 2013; Lamsal et al., 2014). The spatial resolu-
tion of OMNO2d is 0.25◦, and each grid is generated as the
weighted average of the corresponding level-2 data pixels
(Krotkov et al., 2017). Differential optical absorption spec-
troscopy (DOAS) was employed for retrieving the NO2 slant
columns, which were successively transformed into tropo-
spheric and stratospheric vertical columns through AMFs

(Bucsela et al., 2013). The OMI NO2 column product agrees
well with other satellite products, and its overall uncertain-
ties range from 30 %–60 % (Bucsela et al., 2013; Lamsal et
al., 2014). To reduce uncertainties, we only selected those
OMI HCHO and NO2 data that (1) passed quality checks,
(2) had a cloud coverage less than 30 %, (3) had a solar
zenith angle less than 60◦, and (4) were not affected by
row anomalies for this study (Kroon et al., 2011; Zhu et
al., 2014; Krotkov et al., 2017). The May-to-September OMI
HCHO and NO2 products were acquired from NASA’s God-
dard Earth Sciences Data and Information Services Center
(https://disc.gsfc.nasa.gov/, last access: 1 September 2021).

2.1.2 Surface ozone network data

The May-to-September hourly surface ozone concentrations
from 2014 to 2019 were obtained from the China Ministry of
Ecology and Environment (MEE) (https://quotsoft.net/air/,
last access: 1 September 2021). The unit of surface ozone
concentrations in this dataset is µgm−3. The network had
1633 monitoring stations, which were distributed among 330
cities across China in 2019. We used the observation data
from 13:00 to 14:00 LT to match the overpass time of the
OMI. This dataset has been employed in many studies to
investigate the variations in surface ozone concentrations in
China (Li et al., 2019a; Shen et al., 2019a; Lu et al., 2020).

2.1.3 MODIS land cover product

The annual MODIS land cover product (MCD12C1) with a
spatial resolution of 0.05◦ from 2005 to 2019 was employed
for extracting urban and rural areas. The urban and water
pixels from the International Geosphere–Biosphere Program
(IGBP) classification layer were employed for the following
processing. The land cover product was generated based on
a decision tree algorithm with boosting techniques, and its
overall accuracy was about 75 % (Palmer et al., 2015; Ba-
jocco et al., 2018). The MCD12C1 product was obtained
from NASA’s Earth System Data and Information System
(https://earthdata.nasa.gov/, last access: 1 September 2021).

2.1.4 Data pre-processing

Due to the different spatial resolution of OMI HCHO, OMI
NO2, and MCD12C1, a bilinear interpolation method was
used for resampling all abovementioned products to the
same spatial size (0.25◦× 0.25◦). Meanwhile, we also cal-
culated mean hourly surface ozone concentrations on the
0.25◦× 0.25◦ grid (Fig. 1).

2.2 Methods

Chemical transport models, such as the global chemical
transport model (GEOS-Chem) (Jin et al., 2017; Li et
al., 2019a) and the Community Multiscale Air Quality Mod-
eling System (CMAQ) (Duncan et al., 2010), have been
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frequently employed for exploring the ozone sensitivity to
VOCs and NOx . However, there were large biases in esti-
mating the range of the transitional regime based on chemi-
cal transport models (Jin et al., 2017, 2020) due to the uncer-
tainties in the emission inventory and the setting of model pa-
rameters. Employing observation data alone could effectively
overcome these limitations, and the relationships between
ozone and its precursors were fitted using linear and polyno-
mial models (Sun et al., 2018; Jin et al., 2020). Meanwhile,
convergent cross-mapping (CCM) (Sugihara et al., 2012), as
a robust causality analysis model, has been widely employed
for quantifying the influences of meteorological factors on
surface ozone and PM2.5 concentrations (Chen et al., 2018,
2019c, 2020). It is a promising tool for investigating the re-
lationships between ozone and its precursors. To increase the
reliability of the estimated range of the transitional regime,
both the polynomial model and CCM were employed in this
research. We employed the third-order polynomial model
for fitting surface ozone concentrations to the indicator of
HCHO/NO2. CCM was employed for quantifying the influ-
ences of HCHO and NO2 on surface ozone concentrations,
and the Wilcoxon test (Gehan, 1965) was used for examining
whether the differences between the causality of HCHO on
ozone and NO2 on ozone at different ranges of HCHO/NO2
was significant. Since the algorithms of the two models are
quite different, their cross-verification provides useful refer-
ence for their reliability. Meanwhile, the Mann–Kendall (M–
K) test (Kendall, 1970) was employed for exploring the spa-
tiotemporal variations in HCHO, NO2, and ozone formation
regimes in China. Furthermore, we extracted all urban and
rural areas in China and compared the differences in ozone
formation regimes over these two types of areas. The work-
flow of the models employed in this study is shown in Fig. 2.

2.2.1 Estimating the transitional range of the ozone
formation regime using polynomial simulation

HCHO and NO2 are considered to be proxies for VOCs and
NOx , respectively. HCHO/NO2, as an effective indicator,
has been widely employed for determining ozone formation
regimes (Duncan et al., 2010; Jin and Holloway, 2015; Jin
et al., 2017, 2020; Cheng et al., 2019). Pusede and Cohen
(2012) suggested that ozone exceedance probability (OEP)
was an effective indicator to interpret the ozone sensitiv-
ity to its precursors. The indicator is defined as the propor-
tion of non-attainment events (surface ozone concentrations
exceeding 200 µgm−3) in total events at a given range of
HCHO/NO2:

OEP=
Eventsnon-attainment

Eventsattainment+Eventsnon-attainment
, (1)

where Eventsattainment and Eventsnon-attainment denote the at-
tainment and non-attainment events, respectively (Pusede
and Cohen, 2012; Jin et al., 2020).

In this study, we used a third-order polynomial model (Jin
et al., 2020) to explore the quantitative relationships between
HCHO/NO2 and ozone exceedance probability. There were
174 868 paired observations of surface ozone concentrations
and HCHO/NO2 from 2014 to 2019. The peak of fitting
curve highlights the turning point of VOC-limited and NOx-
limited regimes (Jin et al., 2020). The range of HCHO/NO2,
which corresponded to the top 10 % ozone exceedance prob-
ability, was defined as the transitional regime. Since we
aimed to apply a global model to determine the transitional
range, it was necessary to examine whether the surface ozone
concentrations in China were of spatially stratified hetero-
geneity (SSH), as suggested by Wang et al. (2016). We em-
ployed the geographical detector (Wang et al., 2010) to mea-
sure the SSH of surface ozone concentrations. The geograph-
ical detector calculates the q statistic to quantify SSH, and
the equation is summarized as follows:

q = 1−
∑L
h=1Nhσ

2
h

Nσ 2 , (2)

where N and σ 2 denote the number of samples and the vari-
ance of population, and h is the number of stratifications.
The range of the q statistic is [0, 1]. The larger the q statistic
is, the stronger the SSH is. In this study, the boundaries of
four megacity clusters served as strata. If the SSH is detected
based on the abovementioned stratification, we could apply
the polynomial model in each strata separately.

2.2.2 Estimating the transitional range of the ozone
formation regime using convergent
cross-mapping

We also employed a causality model named convergent
cross-mapping (CCM) (Sugihara et al., 2012), which could
reduce the influences of other factors such as meteorological
conditions (Chen et al., 2019c, 2020), to extract the causal
influences of HCHO and NO2 on surface ozone concentra-
tions. Thanks to its capability of detecting weak coupling,
CCM is advantageous for reliably comparing the influences
of different meteorological factors on surface ozone concen-
trations (Chen et al., 2020). Therefore, we employed CCM
to compare the sensitivity of ozone to HCHO and NO2 at
different ranges of HCHO/NO2. CCM utilizes convergent
maps to demonstrate the bidirectional coupling between the
time series of two variables. A convergent curve indicates
that one variable imposes influences on the other variable,
whilst a non-convergent curve denotes no causality between
two variables. The main idea of CCM is summarized as fol-
lows. Firstly, CCM defines {X} and {Y } as the temporal vari-
ations in two variables X and Y . {X} generates the shadow
manifold MX. Following this, the location of the lagged-
coordinate vector onMX, x(t) is determined, and then E+1
nearest neighboring points of x(t) are extracted. Finally, the
cross-mapped estimate of Y (t), Y (t)|MX is calculated as fol-
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Figure 2. The workflow of the polynomial simulation and the causality analysis.

lows:

Y (t)|MX =

E+1∑
i=1

ωiY (ti), (3)

where ωi stands for a weight calculated based on the dis-
tance between X(t) and its ith nearest neighboring point.
Y (ti) stands for the contemporaneous value of Y . CCM cal-
culates cross-map skill (ρ value), which explains the quan-
titative relationships. Number of dimensions for the attrac-
tor reconstruction (E), time lag (τ ), and number of near-
est neighbors to use for prediction (b) are required param-
eters for CCM. According to previous studies (Chen et al.,
2019c, 2020), E, τ , and b were set as 3, 2, and 4, respec-
tively. Since the existence of missing values imposes nega-
tive impacts on CCM results, only the consecutive time series
were retained for this research. There were 1660 observation
records of HCHO time series, NO2 time series, and corre-

sponding surface ozone time series. CCM was implemented
using the “pyEDM” package in Python. The Wilcoxon test
(Gehan, 1965) was used to examine whether the differences
in ρ values between HCHO and NO2 were significant at the
given HCHO/NO2. No significant difference was regarded
as the transitional regime, while significant difference indi-
cated the VOC-limited or NOx-limited regime.

2.2.3 Trend analysis

The Mann–Kendall (M–K) (Kendall, 1970) test, which has
been used in recent studies on HCHO and NO2 (Cheng et
al., 2019; Wang et al., 2019; Zeb et al., 2019), was employed
to estimate the significance of trends. The M–K test is ca-
pable of processing samples with random distributions and
mitigating the effects of outliers. The Z value is calculated
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Figure 3. The geographical locations of urban area, urban fringe,
and rural area.

as follows:

Z =

[
S−1
√

Var(S)
(S > 0)

S+1
√

Var(S)
(S < 0)

]
, (4)

where S denotes the statistic to be tested, and Var(S) stands
for the variance of S. The sign and absolute value of Z in-
dicate the direction and significance of trends, respectively.
Specifically, the positive and negative values of Z indicate
the upward and downward trend; 1.28, 1.64, and 2.32 are the
threshold values of |Z|, indicating that the trends of samples
pass the tests at 90 %, 95 %, and 99 %, respectively.

2.2.4 Comparison of ozone formation regimes in urban
and rural areas in China

To compare the differences in ozone formation regimes in
urban and rural areas in China, the key step is to extract ur-
ban and rural pixels, respectively. Urban pixels were used for
buffer analysis (Imhoff et al., 2010) to identify rural pixels.
Following Peng et al. (2018), two buffers were set for ur-
ban pixels to extract candidate rural pixels (Fig. 3). We set
the size of each buffer as 27.75 km, which was close to the
size of the 0.25◦× 0.25◦ grid (27.75km≈ 0.25◦). The first
and second buffers were determined as the urban fringes and
candidate rural areas, respectively. Water pixels were firstly
removed from candidate rural areas to avoid following uncer-
tainties. Consequently, rural areas were regarded as buffers
of 27.75–55.50 km surrounding urban areas. The use of two
buffers not only assisted a complete separation of the urban
and rural areas but also minimized the uncertainties in mete-
orological conditions (Yao et al., 2019).

3 Results

3.1 Spatial and temporal variations in HCHO and NO2

Given the national Clean Air Action implemented in 2013,
we set this year as a break point to explore the spatial and
temporal variations in HCHO and NO2 in 2005–2012 and
2013–2019, respectively. Figure 4 shows the spatial distri-
bution of HCHO in the two periods. The mean HCHO val-
ues during the period of 2005–2012 and 2013–2019 were
4.335×1015 and 4.845×1015 molec.cm−2, characterized by

a 12 % increase. Both periods presented an increasing trend
of HCHO, and the averaged values during the two peri-
ods were 0.164× 1015 and 0.213× 1015 molec.cm−2 yr−1

(Fig. 5). A faster increasing trend was detected during the
period of 2013–2019. The variation trend of HCHO agreed
well with previous studies (Jin and Holloway, 2015; Shen et
al., 2019b). We also calculated the overall linear trends of
HCHO in four megacity clusters from 2005 to 2019 (Fig. 6).
The largest and smallest increasing trends were shown in
the NCP and SCB, with a mean value of 0.136× 1015 and
0.046× 1015 molec.cm−2 yr−1. The increasing trends of the
YRD and PRD were 0.066 and 0.058 molec.cm−2 yr−1, re-
spectively. Meanwhile, reversed trends were detected for
NO2 during the two periods (Fig. 5), which was consis-
tent with previous studies (Jin and Holloway, 2015; Li et
al., 2019a). From 2005 to 2012, the averaged NO2 was
2.027× 1015 molec.cm−2, and the annual mean increasing
trend was 0.098× 1015 molec.cm−2 yr−1. Thanks to the im-
plementation of the Clean Air Action, the averaged NO2 was
reduced to 1.900×1015 molec.cm−2, with a decreasing trend
of −0.029× 1015 molec.cm−2 yr−1 from 2013 to 2019. Ex-
cept for the SCB, all other megacity clusters presented signif-
icant downward trends of NO2 from 2005 to 2019. Amongst
these megacity clusters, NO2 in the YRD demonstrated the
largest decreasing trend of 0.104× 1015 molec.cm−2 yr−1.
NO2 in the NCP and PRD decreased by 0.010× 1015 and
0.092× 1015 molec.cm−2 yr−1, respectively. A slightly in-
creasing trend of 0.012×1015 molec.cm−2 yr−1 was detected
in the SCB (Fig. 7).

3.2 Transitional range of the ozone formation regime

According to HCHO/NO2, we divided the paired observa-
tions into 200 bins for the whole country, and the ozone ex-
ceedance probability was calculated for each bin. The third-
order polynomial was employed for fitting ozone exceedance
probability to HCHO/NO2. As shown in Fig. 8a, the peak of
the fitting curve was 1.4, and the vertical shaded area indi-
cated that the transitional regime over China ranged from 1.0
to 1.9. We employed a geographical detector to examine the
SSH of annual May-to-September mean surface ozone con-
centrations in China. As shown in Table 1, all the q statistics
from 2014 to 2019 were greater than zero, which indicated
that the surface ozone concentrations in China were of SSH.
As suggested by Chen et al. (2020), meteorological factors
including temperature, humidity, and sunshine duration im-
posed great impacts on surface ozone concentration. More-
over, the composition of ozone precursors was closely related
to ozone levels (Cheng et al., 2019). Both the meteorological
conditions and ozone precursors contributed to the SSH of
surface ozone concentrations across China. Therefore, in ad-
dition to the regime range extracted at the national scale, we
also examined the range of ozone formation regimes in four
major megacity clusters. The paired observations of these
megacity clusters were divided into 100 bins. The range of

Atmos. Chem. Phys., 21, 15631–15646, 2021 https://doi.org/10.5194/acp-21-15631-2021



R. Li et al.: Identifying the spatiotemporal variations in ozone formation regimes across China 15637

Figure 4. May-to-September averaged HCHO and NO2 across China during the period of 2005–2012 and 2013–2019.

Figure 5. The linear trends of May-to-September HCHO and NO2 across China during the period of 2005–2012 and 2013–2019.

the transitional regime for the NCP, YRD, PRD, and SCB
was [1.2, 2.1], [1.0, 1.9], [0.9, 1.8], and [1.1, 2.0], respec-
tively, which was generally consistent with the range at the
national scale. The small differences between four megacity
clusters across China suggested that the range of the transi-

tional regime at the national scale [1.0, 1.9] can be employed
to regional- or local-scale research if small-scale data and in-
vestigation were not available.

Statistical bootstrapping was used for estimating the un-
certainty in the fitting model. Specifically, we iteratively ex-
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Figure 6. The time series of HCHO columns in the four megacity clusters from 2005 to 2019. Black lines indicate the linear trend of HCHO
columns. Red, white, and blue areas stand for VOC-limited, transitional, and NOx -limited regimes, respectively.

Figure 7. The time series of NO2 columns in the four megacity clusters from 2005 to 2019. Black lines indicate the linear trend of NO2
columns. Red, white, and blue areas stand for VOC-limited, transitional, and NOx -limited regimes, respectively.
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Figure 8. (a) Fitting ozone exceedance probability to HCHO/NO2
through the third-order polynomial model. The curve indicates the
fitting result of the third-order polynomial. The vertical line de-
notes the maximum of the curve, and the shaded area represents
the top 10 % ozone exceedance probability. (b) The cross-map skill
of HCHO and NO2 on surface ozone (the skill of using HCHO and
NO2 for predicting surface ozone concentrations) at different ranges
of HCHO/NO2. The symbols and texts above the bars are the re-
sults of the Wilcoxon test. ∗∗∗ and ∗∗ indicate that the difference
was significant at the p = 0.01 and 0.05 confidence level, respec-
tively. NS suggests non-significant differences.

Table 1. The q statistic and p value calculated by the geographi-
cal detector, which indicate the SSH of annual May-to-September
mean surface ozone concentrations in China. ∗, ∗∗, and ∗∗∗ of the p
value indicate statistical significance at the α = 0.05∗, 0.01∗∗, and
< 0.001∗∗∗ level, respectively.

Year q statistic p value

2014 0.295∗∗∗ 9.621× 10−10

2015 0.325∗∗∗ 8.059× 10−10

2016 0.366∗∗∗ 4.803× 10−10

2017 0.609∗∗∗ 9.975× 10−10

2018 0.512∗∗∗ 2.647× 10−10

2019 0.708∗∗∗ 2.199× 10−10

tracted 50 randomly selected subsets from the paired obser-
vations to run the model, and the uncertainty was defined
as 2 standard deviations from the peak of the fitting curve.
The uncertainty for the third-polynomial model was 0.4, in-
dicating a significant nonlinear relationship between ozone
exceedance probability and HCHO/NO2.

Due to the limited data used for running CCM, we set
the bin size of HCHO/NO2 as 0.2 for collecting sufficient
ρ values to conduct the Wilcoxon test. As shown in Fig. 8b,
there was no significant difference between ρ of HCHO and
NO2 when HCHO/NO2 ranged from 0.9 to 1.9, which in-
directly defined the range of the transitional regime. For
HCHO/NO2 < 0.9, ρ of HCHO was notably higher than that
of NO2, and this range was regarded as the VOC-limited
regime. Similarly, HCHO/NO2 > 1.9 suggested the NOx-
limited regime. Through the cross-verification, it was an im-
portant finding that the range of the transitional ozone for-
mation regime estimated using the third-order polynomial
model and CCM was highly close, indicating the reliability
of the extracted range.

3.3 Ozone formation regimes in China

NO2 demonstrated a significant downward trend since 2013,
while HCHO kept the increasing trend during the entire
study period. Consequently, HCHO/NO2 increased in a ma-
jority of regions across China. Specifically, the annually in-
creasing trend of HCHO/NO2 in the NCP, YRD, and PRD
was 0.035, 0.023, and 0.034 yr−1, respectively. Meanwhile,
there were no significant trends in the SCB during this pe-
riod (Fig. 9). The variations in HCHO/NO2 indicated the
shrinkage of the VOC-limited regime and the expansion of
the transitional and NOx-limited regimes. Since the range of
the transitional regime estimated by the third-order polyno-
mial model and CCM was very close, and the former in-
cluded more reliable observation data, [1.0, 1.9] was em-
ployed for identifying different ozone formation regimes.
In 2005, areas with the VOC-limited regime were concen-
trated in the NCP, YRD, and PRD. The proportions of areas
with the VOC-limited regime in the NCP, YRD, and PRD

https://doi.org/10.5194/acp-21-15631-2021 Atmos. Chem. Phys., 21, 15631–15646, 2021



15640 R. Li et al.: Identifying the spatiotemporal variations in ozone formation regimes across China

were 26 %, 16 %, and 6 %, respectively. Areas with the tran-
sitional regime were mainly distributed in the marginal re-
gions of those megacity clusters and scatteredly distributed in
the SCB. Areas with the transitional regime occupied 60 %,
50 %, 14 %, and 20 % in the NCP, YRD, PRD, and SCB.
The NOx-limited regime dominated other areas (Fig. 10a). In
2019, areas with the VOC-limited regime decreased signifi-
cantly; this regime was simply found in the fringe areas of the
NCP and YRD. The proportion of the VOC-limited regime in
the NCP and YRD was 2 % and 9 %, respectively. The tran-
sitional regime was widely distributed throughout the NCP,
YRD, and SCB and occupied 71 %, 56 %, and 36 % of the
total areas. The NOx-limited regime still spread over a ma-
jority of China (Fig. 10a). We calculated the annual mean ρ
of HCHO and NO2 over those megacity clusters from 2014
to 2019 (Fig. 10b). For all megacity clusters, the ρ of NO2
was higher than HCHO, indicating that NO2 was the dom-
inant factor for surface ozone concentrations. Both models
suggested that NO2 played a more important role in affecting
surface ozone concentrations than HCHO. In the past several
years, NOx-oriented emission reduction has been conducted
across China, leading to the continuous decrease in NOx con-
centrations. Since both VOCs and NOx imposed positive in-
fluences on surface ozone concentrations under the transi-
tional and NOx-limited ozone formation regime, the upward
trend of HCHO across China might explain recent soaring
ozone concentrations across China (Shen et al., 2019a; Lu
et al., 2020). It is noted that the difference between the ρ of
NO2 and HCHO decreased notably in the NCP and YRD.
This may be attributed to the following reason. The NCP and
YRD are the regions that received severe PM2.5 pollution,
and strict NOx reduction policies have been conducted since
2013. With the remarkably reduced NO2 concentrations, the
variations in HCHO concentrations plays an increasingly im-
portant role in affecting ozone concentrations in the NCP and
YRD. The reduction in VOC emissions is key for an effec-
tive management of surface ozone pollution in the NCP and
YRD.

3.4 Variations in ozone formation regimes in urban
and rural areas

Previous studies suggested that the differences in ozone for-
mation regimes existed between urban and rural areas (Tong
et al., 2017; Y. Liu et al., 2018; Cheng et al., 2019). We ex-
tracted HCHO and NO2 columns in urban and rural pixels in
those megacity clusters and calculated the annually averaged
HCHO/NO2 (Fig. 11). For the NCP, HCHO/NO2 in urban
areas was higher than 1.0 since 2015, indicating a transfor-
mation from the VOC-limited to the transitional regime. The
increase in HCHO/NO2 was attributed to the reversed vari-
ation trends of HCHO and NO2. The rising HCHO resulted
from the increase in anthropogenic emissions and biogenic
volatile organic compounds (BVOCs) (Shen et al., 2019b;
Wang et al., 2020), while the implementation of the Clean Air

Action imposed notable influences on the decrease in NO2
(Chen et al., 2019a). HCHO/NO2 in rural areas was in the
range of [1.0, 1.9], indicating that rural areas were occupied
by the transitional regime from 2005 to 2019. For the YRD,
which was occupied by the transitional regime, no variation
in ozone formation regime was found in urban areas. In ru-
ral areas, HCHO/NO2 temporally exceeded the threshold
of 1.9 from 2016 to 2018, indicating that the ozone forma-
tion regime changed from transitional to NOx-limited. This
phenomenon was attributed to the slight decline in HCHO,
which might be attributed to the restrictions on crop residue
burning in this area (Zhuang et al., 2018; Shen et al., 2019b).
Due to the large differences in NO2 concentrations, the urban
and rural areas in the PRD were dominated by the transitional
regime and NOx-limited regime. For the SCB, HCHO/NO2
in both urban and rural areas fluctuated around the threshold
value of 1.9, and no significant difference between urban and
rural areas was found.

4 Discussion

This research employed CCM and a third-order polynomial
model to estimate the transitional regime of ozone formation
across China, and the calculated range of HCHO/NO2 was
[0.9, 1.9] and [1.0, 1.9], respectively. Our findings were gen-
erally consistent with previous studies. For the US, Duncan
et al. (2010) and Choi et al. (2012) employed the OMI and
GOME-2 data, whose 0.25◦ resolution was close to this re-
search, and calculated the range of the transitional regime
as [1.0, 2.0]. The similar range of the transitional regime in
the US and China further proved the reliability of the calcu-
lated range [1.0, 1.9] at a national scale. On the other hand,
the range of the transitional regime can vary significantly
across regions (Schroeder et al., 2017; Jin et al., 2020). Sun
et al. (2018) employed station-based data and calculated the
range of the transitional regime in Anhui Province, China,
as [1.3, 2.8], which was notably higher than the range across
China. Jin et al. (2020) calculated the range of the transi-
tional regime in several major regions in the US using the
QA4ECV dataset, whose spatial resolution was 0.125◦, and
the output [3.2, 4.1] was much larger than the averaged range
of the transitional regime across the US. One reason could
be the severe ozone pollution in megacities, leading to dif-
ferent ranges of the transitional regime. Meanwhile, the cal-
culated range of the transitional regime is closely related to
the spatial resolution of employed HCHO and NO2 data, and
high-resolution data are more advantageous in extracting the
sensitivity of ozone concentrations to precursors at the local
scale (Martin et al., 2004; Jin et al., 2017, 2020). In addi-
tion to the generally consistent outputs, some advances of
this research are listed as follows. First, only a few parame-
ters are required for the polynomial model and CCM, which
effectively reduced the uncertainties in model setting. Sec-
ond, considering the differences between model and satellite-
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Figure 9. The time series of HCHO/NO2 in the four megacity clusters from 2005 to 2019. Black lines indicate the linear trend of
HCHO/NO2. Red, green, and blue dots stand for VOC-limited, transitional, and NOx -limited regimes, respectively.

retrieved datasets (Jin et al., 2020), only observation data
were employed in this research, which reduced potential data
inconsistences and uncertainties. Most importantly, given the
lack of actual reference data, this research employed two dif-
ferent models to examine ozone formation regimes, and the
close outputs further proved the reliability of this research.

Despite a generally reliable output, some uncertainties ex-
ist. First, the accuracy of the estimated range of the transi-
tional regime might be influenced by the scaling biases be-
tween station-based observations of surface ozone and space-
based HCHO and NO2. Since ozone monitoring stations
are mainly distributed in urban areas, and a 0.25◦× 0.25◦

grid might cover both the urban and rural areas, the sur-
face ozone concentrations of a grid may be overestimated.
Second, the uncertainties in OMI HCHO and NO2 datasets
might impose negative influences on the estimation of the
transitional regime range (Duncan et al., 2010; Jin et al.,
2017, 2020; Schroeder et al., 2017). On one hand, errors
exist in the retrieval of HCHO and NO2 vertical columns.
On the other hand, vertical mixing was not homogeneous,
weakening the capability of using HCHO and NO2 vertical
columns to explore the near-surface ozone–precursor sensi-
tivity. Therefore, future improvement of earth observation
techniques and the spatiotemporal resolution of HCHO and
NO2 products can further enhance the accuracy of the esti-
mated range of the transitional regime. In general, according
to the cross-verification and comparison with previous stud-

ies, [1.0, 1.9] from this research is a reliable range for the
transitional ozone formation regime across China and can be
used as an approximate criterion to follow when implement-
ing national emission reduction policies. On the other hand,
given the potential variations in transitional regimes in differ-
ent regions, when conducting small-scale research, the range
of [1.0, 1.9] may be adapted accordingly based on local data.

Previous studies on the range of ozone formation regimes
were mainly conducted using statistical models or chemical
transport models. For this research, we employed both a sta-
tistical and a causality model to cross-verify the range of the
transitional regimes. Despite a relatively high fitting accu-
racy in terms of uncertainties, the findings from these studies
could not be effectively compared or interpreted due to the
lack of reliable reference data. To this end, as well as numer-
ical models, lab experiments should also be considered to ex-
tract a more precise description of the ozone–precursor rela-
tionship. With the rapid development of atmospheric science,
smog chambers have been increasingly employed to investi-
gate complicated interactions between multiple precursors.
By setting specific meteorological conditions (e.g., tempera-
ture and humidity) and gradually adjusting the proportion of
different precursors, how the proportion of NO2 and HCHO
affects the ozone formation regime can be better explained in
a theoretical environment. With more reliable experimental
reference data, the model-based analysis on the range of the
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Figure 10. (a) The spatial distribution of HCHO/NO2 across China in 2005 and 2019. The boundaries of the NCP, YRD, PRD, and SCB are
denoted with the purple, blue, yellow, and red bold lines. Red, green, and blue stand for VOC-limited, transitional, and NOx -limited regimes.
(b) The annual mean cross-map skill (ρ value) of four megacity clusters. The red and blue shadow areas indicate the standard deviations.

transitional regime at the local, regional, and national scale
can be further improved accordingly.

According to the temporal variations in OMI NO2 con-
centrations across China, a notable decreasing trend was ob-
served in three major megacity clusters: NCP, YRD, and
PRD. These regions were heavily polluted by PM2.5, and the
notable decrease in NO2 was mainly attributed to the national
Clean Air Action since 2013 (Zheng et al., 2018), which
aimed to reduce PM2.5 concentrations by cutting NOx emis-
sions. The influence of the Clean Air Action on the reduction
in PM2.5 concentrations and NOx has been investigated by
previous studies. Zheng et al. (2018) employed index decom-
position analysis to quantify the contribution of the Clean
Air Action and suggested that the decreasing rate of NOx
significantly accelerated since 2013. Moreover, Y. Zhang et

al. (2020) employed a random forest algorithm to remove
the effects of meteorological conditions and evaluated the
impacts of the Clean Air Action. The results demonstrated
that the deweathered NO2 concentrations in winter 2007 and
2017 were 70.3 and 59.1 µgm−3, with a decreasing rate of
16 %. Conversely, HCHO concentrations during this period
increased remarkably across China due to the combined ef-
fects of anthropogenic and biogenetic emissions (Shen et
al., 2019b; Wang et al., 2020). The distinct temporal varia-
tions in NO2 and HCHO led to the increase in HCHO/NO2
and the increase in transitional areas and NOx-limited regime
areas. From 2013–2019, all these regions were dominated
by the transitional or NOx-limited regimes. Attributed to the
long-term variation in formation regimes, a more compli-
cated and fragmented spatial pattern was observed across
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Figure 11. The temporal variations in HCHO/NO2 from 2005 to 2019 in the NCP, YRD, PRD, and SCB. The two dashed red lines indicate
the threshold values of 1.0 and 1.9, which separate the NOx -limited, transitional, and VOC-limited regime.

China. Consequently, for an effective control of ozone pol-
lution, the emission reduction in both NOx and VOCs is re-
quired. Especially for the NCP and YRD, where the NOx has
been remarkably reduced, effective approaches for control-
ling VOC emissions are essential for preventing ozone pol-
lution. This finding was consistent with previous studies (Li
et al., 2019b), which recommended the simultaneous reduc-
tion in NOx and VOCs for mitigating the composite airborne
pollution in China. Admittedly, compared with NOx reduc-
tion, the VOC reduction is more complicated, and the out-
put of anthropogenic VOC reduction is more unpredictable.
In this case, reducing biogenic VOC emissions can also be
a potential solution. VOCs emitted by vegetation take up to
50 % of total VOCs in the atmospheric environment, espe-
cially in summer. The key factor that may cause enhanced
biogenic emissions is summertime high temperature (Chen
et al., 2020). Therefore, such projects as wind corridors or
contingent artificial precipitation, which can effectively re-
duce urban heat effects, should be implemented properly to
avoid summertime heat waves and successive ozone pollu-
tion (e.g., summer, 2017).

The large spatial variations in HCHO/NO2, especially the
rapid increase in transitional regime areas across China, in-
dicate that a unified NOx–VOC reduction strategy is not fea-
sible for the entire country. Instead, to effectively reduce
ozone concentrations, the specific proportion of NOx and
VOC reduction should be carefully set according to local
HCHO/NO2. Meanwhile, due to the large differences in ve-
hicle and industrial emissions (Cheng et al., 2019), the con-
centration of NOx is notably higher in urban areas. There-
fore, the further reduction in NOx emissions exerts a stronger
influence on ozone reduction in rural areas compared to ur-
ban areas.

5 Conclusions

To better understand the spatiotemporal variations in ozone
formation regimes across China, we employed the third-
order polynomial model and CCM to estimate the range of
the transitional regime from 2005 to 2019, the results of
which were [1.0, 1.9] and [0.9, 1.9], respectively. The close
outputs from two distinct models proved the reliability of the
extracted range. At the regional scale, we also investigated
the range of the transitional regime in four megacity clusters
and found that the range in the NCP, YRD, PRD, and SCB
demonstrated limited differences and was generally consis-
tent with the range at the national scale. The reverse trends
of HCHO and NO2 led to the increase in HCHO/NO2, in-
dicating that China was dominated by the transitional and
NOx-limited regimes in recent years. We also found that the
ρ of NO2 was higher than HCHO in all megacities, suggest-
ing that the reduction in NOx emissions would become more
effective in controlling surface ozone concentrations. Mean-
while, given the rising VOC emissions, the simultaneous re-
duction in NOx and VOCs would be more effective than the
sole reduction in NOx in mitigating ozone pollution. Finally,
the comparison of ozone regimes in urban and rural areas
suggested that the reduction in NOx emissions would im-
pose stronger impacts on the control of ozone pollution in
rural areas.
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