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Abstract. We collected 1 year of aerosol chemical specia-
tion monitor (ACSM) data in Magadino, a village located in
the south of the Swiss Alpine region, one of Switzerland’s
most polluted areas. We analysed the mass spectra of organic
aerosol (OA) by positive matrix factorisation (PMF) using
Source Finder Professional (SoFi Pro) to retrieve the ori-
gins of OA. Therein, we deployed a rolling algorithm, which
is closer to the measurement, to account for the temporal
changes in the source profiles. As the first-ever application
of rolling PMF with multilinear engine (ME-2) analysis on a
yearlong dataset that was collected from a rural site, we re-
solved two primary OA factors (traffic-related hydrocarbon-
like OA (HOA) and biomass burning OA (BBOA)), one
mass-to-charge ratio (m/z) 58-related OA (58-OA) factor, a
less oxidised oxygenated OA (LO-OOA) factor, and a more
oxidised oxygenated OA (MO-OOA) factor. HOA showed
stable contributions to the total OA through the whole year
ranging from 8.1 % to 10.1 %, while the contribution of
BBOA showed an apparent seasonal variation with a range of
8.3 %–27.4 % (highest during winter, lowest during summer)
and a yearly average of 17.1 %. OOA (sum of LO-OOA and
MO-OOA) contributed 71.6 % of the OA mass, varying from
62.5 % (in winter) to 78 % (in spring and summer). The 58-
OA factor mainly contained nitrogen-related variables which
appeared to be pronounced only after the filament switched.
However, since the contribution of this factor was insignif-
icant (2.1 %), we did not attempt to interpolate its potential

source in this work. The uncertainties (σ ) for the modelled
OA factors (i.e. rotational uncertainty and statistical variabil-
ity in the sources) varied from ±4 % (58-OA) to a maximum
of±40 % (LO-OOA). Considering that BBOA and LO-OOA
(showing influences of biomass burning in winter) had sig-
nificant contributions to the total OA mass, we suggest reduc-
ing and controlling biomass-burning-related residential heat-
ing as a mitigation strategy for better air quality and lower
PM levels in this region or similar locations. In Appendix A,
we conduct a head-to-head comparison between the conven-
tional seasonal PMF analysis and the rolling mechanism. We
find similar or slightly improved results in terms of mass
concentrations, correlations with external tracers, and factor
profiles of the constrained POA factors. The rolling results
show smaller scaled residuals and enhanced correlations be-
tween OOA factors and corresponding inorganic salts com-
pared to those of the seasonal solutions, which was most
likely because the rolling PMF analysis can capture the tem-
poral variations in the oxidation processes for OOA com-
ponents. Specifically, the time-dependent factor profiles of
MO-OOA and LO-OOA can well explain the temporal via-
bilities of two main ions for OOA factors,m/z 44 (CO+2 ) and
m/z 43 (mostly C2H3O+). Therefore, this rolling PMF anal-
ysis provides a more realistic source apportionment (SA) so-
lution with time-dependent OA sources. The rolling results
also show good agreement with offline Aerodyne aerosol
mass spectrometer (AMS) SA results from filter samples, ex-
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cept for in winter. The latter discrepancy is likely because
the online measurement can capture the fast oxidation pro-
cesses of biomass burning sources, in contrast to the 24 h
filter samples. This study demonstrates the strengths of the
rolling mechanism, provides a comprehensive criterion list
for ACSM users to obtain reproducible SA results, and is a
role model for similar analyses of such worldwide available
data.

1 Introduction

Atmospheric particulate matter (PM) affects human health
and climate. In particular, it influences the radiative balance
(IPCC, 2014; von Schneidemesser et al., 2015), reduces vis-
ibility (Chow et al., 2002; Horvath, 1993), and negatively af-
fects human health by triggering respiratory and cardiovas-
cular diseases and allergies (Daellenbach et al., 2020; Dock-
ery and Pope, 1994; Mauderly and Chow, 2008; Monn, 2001;
Pope and Dockery, 2006; von Schneidemesser et al., 2015).
Fine PM exposure strongly correlates with the global mor-
tality rate. Lelieveld et al. (2015) estimated that outdoor air
pollution, mostly PM2.5 (PM with an aerodynamic diameter
smaller than 2.5 µm), causes 3.3 million premature deaths per
year worldwide. Despite this correlation, different aerosol
sources may have strongly different effects on health (Dael-
lenbach et al., 2020). Thus, both climate and health effects
are affected by particle chemical composition, which is re-
lated to emission sources of primary particles and precursor
gases for secondary aerosol (IPCC, 2014; Jacobson et al.,
2000; Jacobson, 2001; Lelieveld et al., 2015; Ramanathan
et al., 2005).

Organic aerosol (OA) constitutes 20 %–90 % of fine PM
(Jimenez et al., 2009; Murphy et al., 2006; Zhang et al.,
2007) and contain millions of chemical compounds. Since
OA is the subject of an extremely complex mixture of chem-
ical constituents, with highly dynamic spatial and temporal
(seasonal, diurnal, etc.) variability in directly emitted par-
ticles and gas-phase precursors and complex chemical pro-
cessing in the atmosphere, elucidation of the chemical com-
position and physical properties of OA remains challenging.
Identification and quantification of OA sources with a sophis-
ticated interpolation of spatial and temporal variabilities are
essential for developing effective mitigation strategies for air
pollution and a better assessment of the aerosol effect on both
health and climate.

OA source apportionment (SA) and PM composition have
been studied extensively using an Aerodyne aerosol mass
spectrometer (AMS) (Canagaratna et al., 2007). However,
due to the complexity of the AMS measurements and their
high operational expenses, AMS campaigns are often limited
to short periods of a few weeks to months. The aerosol chem-
ical speciation monitor (ACSM) allows for unattended long-
term observation (> 1 year) of non-refractory aerosol parti-

cles (Ng et al., 2011a; Fröhlich et al., 2013). It also makes
it possible to investigate the long-term temporal variations in
OA sources, which is crucial for policymakers to introduce
or validate aerosol-related environmental policies.

Positive matrix factorisation (PMF; see Sect. S3.1 in the
Supplement) has been used in various studies for SA of
OA (Lanz et al., 2007; Aiken et al., 2009; Hildebrandt et
al., 2011; Zhang et al., 2011; Mohr et al., 2012; Schurman
et al., 2015). The multilinear engine (ME-2) implementa-
tion of PMF (Paatero, 1999) improves model performance
by allowing the use of a priori information (constraints on
source profiles and/or time series) to direct the model to-
wards environmentally meaningful solutions (Canonaco et
al., 2013; Crippa et al., 2014; Fröhlich et al., 2015; Lanz et
al., 2008; Ripoll et al., 2015). For long-term data (1 year or
more) with a high time resolution, the composition of a given
source could change considerably due to meteorological and
seasonal variabilities. However, a major limitation of PMF
is the assumption of static factor profiles, such that it fails
to respond to these temporal changes. Therefore, long-term
chemically speciated data have been evaluated monthly or
seasonally (Petit et al., 2014; Canonaco et al., 2015; Minguil-
lón et al., 2015; Ripoll et al., 2015; Bressi et al., 2016; Reyes-
Villegas et al., 2016) to take at least the seasonal variations
into account. To improve the analysis of long-term ACSM
datasets, a novel approach that utilises PMF analysis over a
shorter rolling time window was first proposed by Parworth
et al. (2015) and further refined using ME-2 by Canonaco et
al. (2021). The short length of the rolling PMF window al-
lows the PMF model to take the temporal variations in the
source profiles into account (e.g. biogenic versus domestic
burning influences on oxygenated organic aerosol (OOA)),
which normally provides better separation between OA fac-
tors. In addition, using this technique together with bootstrap
resampling and a random a-value approach allows users to
assess the statistical and rotational uncertainties in the PMF
results (Canonaco et al., 2021; Tobler et al., 2020).

In this work, we conducted a 1-year ACSM measurement
campaign from September 2013 to October 2014 in Maga-
dino, located in an alpine valley in southern Switzerland. We
present a comprehensive analysis of the ACSM dataset mea-
sured in Magadino using a novel PMF technique, the “rolling
PMF”. In addition, we also compare the results of the rolling
PMF with the SA of offline AMS filter samples (Vlachou et
al., 2018) and conventional seasonal PMF analysis.

2 Methodology

2.1 Sampling site

Magadino, where the sampling site is located, is in a Swiss
alpine valley (46◦90′37′′ N, 85◦60′2′′ E; 204 m a.s.l.). This
site belongs to the Swiss National Air Pollution Moni-
toring Network (NABEL, https://www.empa.ch/web/s503/
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nabel, last access: 20 July 2021). It is around 1.4 km away
from the local train station, Cadenazzo; around 7 km away
from Locarno Airport; and nearly 8 km away from Lake
Maggiore. This station is surrounded by agricultural fields
within a rural area and is considered a rural background site.
It can be potentially affected by domestic wood burning, ad-
jacent agricultural activity, and transit traffic through the val-
ley. The site topography favours quite high PM levels due
to stagnant meteorological conditions or boundary layer in-
versions, especially in winter. Magadino remains one of the
most polluted regions in Switzerland, and it has often ex-
ceeded the annual average PM10 limit value for Switzerland
(20 µgm−3) (Meteotest, 2017; The Swiss Federal Council,
2018). Therefore, there is an increasing need for a more ef-
fective mitigation strategy.

2.2 ACSM measurements

This study measured chemical composition and mass load-
ings of non-refractory constituents of ambient submicron
aerosol particles (NR-PM1) by an Aerodyne quadrupole
ACSM (Ng et al., 2011a). The ACSM uses the same sam-
pling and detection technology as the AMS but is simpli-
fied and designated for long-term monitoring applications by
reducing maintenance frequency at the cost of lower sensi-
tivity, restriction to the integer mass resolution, and no size
measurement. As for the AMS, sampled submicron particles
enter the instrument through a critical orifice (100 µm i.d.) at
a flow rate of 1.4 cm3 s−1 (at 20 ◦C and 1 atm). The sampling
flow will pass either through a particle filter or directly into
the system using an automated three-way switching valve
that is switched every ∼ 30 s. An aerodynamic lens focuses
the sampled particles into a narrow beam which impacts on a
tungsten surface of around 600 ◦C, where the non-refractory
particles vaporise and are subsequently ionised by an elec-
tron impact source (70 eV). A quadrupole mass spectrometer
detects the resulting ions up to a mass-to-charge ratio (m/z)
of 148 Th. The particle mass spectrum is represented by the
difference between the total ambient air and particle-free sig-
nals.

The quantification of ACSM data requires an estimation
of the fraction of NR-PM1 that bounces off the oven without
being vaporised and therefore is not detected (Canagaratna
et al., 2007; Matthew et al., 2008). In this study, a constant
collection efficiency (CE) factor of 0.45 was applied to take
it into account. The details of determinations of the CE value
is described in Sect. S1 in the Supplement. In this study, we
recorded the data with a time resolution of 30 min. During the
campaign, the ACSM filament burnt out on 14 April 2014.
This was addressed by switching to the backup filament in-
stalled within the instrument (no venting required). Calibra-
tion of the relative ionisation efficiencies (RIEs) of partic-
ulate nitrate, sulfate, and ammonium was conducted using
size-selected (300 nm) pure NH4NO3 and pure (NH4)2SO4
particles. Calibrations of the RIE, m/z scale, and the sam-

pling flow were performed every 2 months. In this study, we
used the averaged RIEs for nitrate, sulfate, and ammonium.
The exact values are shown in Fig. S1 of the Supplement.

2.3 Complementary measurements

Meteorological data, including temperature, precipitation,
wind speed, wind direction, and solar radiation, are moni-
tored at the NABEL station. In addition, concentrations of
trace gases (SO2, O3, NOx), equivalent black carbon (eBC),
and PM10 were measured with a time resolution of 10 min.
We used an aethalometer (AE31 model by Magee Scientific)
to measure eBC concentrations. Therefore, we conducted SA
of eBC by following Zotter et al. (2017) using Ångström
exponents for eBC from traffic αtr = 0.9 and wood burning
αwb = 1.68. More details about eBC source apportionment
are provided in Sect. S2 of the Supplement.

2.4 Preparation of the data and error matrices for
PMF

In this study, we used acsm_local_1610 software (Aerodyne
Research Inc.) to prepare the PMF input matrix. In total, this
dataset includes 19 708 time points and 67 ions. Of these,
CO+2 -related variables (IO+ (m/z 16), IHO+ (m/z 17), and
IH2O+ (m/z 18)) were excluded from the spectral matrix
prior to a PMF analysis. They are reinserted into the OA
factor mass spectra after the PMF analysis using the ratio
from the fragmentation table (Allan et al., 2004); the factor
concentrations are likewise adjusted. According to Allan et
al. (2003, 2004), the measurement error matrix was calcu-
lated with a minimum error considered for the uncertainty in
all variables in the data matrix as in Ulbrich et al. (2009). Fol-
lowing the recommendations in Paatero and Hopke (2003)
and Ulbrich et al. (2009), the measurement uncertainty for
variables (m/z) with a signal-to-noise ratio (S /N)< 2 (weak
variables) and S /N< 0.2 (bad variables) was increased by a
factor of 2 and 10, respectively. In total, 27 weak ACSM vari-
ables were down-weighted. Additionally,m/z 12 andm/z 13
were not considered during the PMF analyses due to being
noisy and their overall negative signal. Moreover, m/z 15
was not only very noisy (S /N= 0.09) but maybe also af-
fected by high biases due to potential interference with air
signals.

2.5 Rolling PMF analysis with ME-2

In this study, we conducted a series of steps (Sect. S3.2 and
S3.3 in the Supplement) to obtain the results we present in
this paper. In summary, we first tested potential sources for
each season with seasonal PMF pre-tests. Secondly, we ob-
tained stable seasonal solutions from bootstrap seasonal anal-
ysis. Then, we conducted rolling PMF with certain settings
(constraints, number of repeats, length of the window size,
and step of rolling window). Lastly, we were able to retrieve
robust results using specific criteria to define environmen-
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tally reasonable solutions. Please refer to Sect. S3.2 and S3.3
in the Supplement for more detailed description of each step.
This section focuses on the general introduction of rolling
PMF with ME-2, the differences between our method vs. the
method developed by Canonaco et al. (2021), and the general
settings of the rolling PMF analysis in this study.

Running PMF over the long-term ACSM datasets assumes
that the OA source profiles are static within this time win-
dow. It can lead to large errors since OA chemical finger-
prints are expected to vary over time (Paatero et al., 2014).
For example, Canonaco et al. (2015) showed that summer
and winter OOA variability cannot be accurately represented
by a single pair of OOA profiles. A common way to reduce
the model uncertainty arising from this source is to choose
a proper number of OA factors (Sug Park et al., 2000) and
then perform a PMF analysis on a subset of measurements to
capture temporal features of OA chemical fingerprints. Such
characterisation of OA sources on a seasonal basis has been
demonstrated in several studies (Lanz et al., 2008; Crippa et
al., 2014; Petit et al., 2014; Minguillón et al., 2015; Ripoll
et al., 2015; Zhang et al., 2019). Parworth et al. (2015) in-
troduced the rolling PMF by running PMF in a small win-
dow (14 d), which advanced with a step of 1 d. This novel
technique enables the source profiles to adapt to the tempo-
ral variabilities. Canonaco et al. (2021) combined the rolling
PMF technique with ME-2 (Sect. S3.1 in the Supplement) to
deal with the rotational ambiguity of the PMF analysis. In ad-
dition, it also used the bootstrap resampling strategy (Efron,
1979) and random a values (Sect. S3.2.2 in the Supplement)
to estimate the statistical and rotational uncertainties in the
PMF analysis.

This study mostly followed the methods developed by
Canonaco et al. (2021) but with some modifications. The set-
tings of the rolling PMF window is explicitly explained in
Sect. S3.2.3 of the Supplement). In addition, we also per-
formed a test of the rolling window size (i.e. 1, 7, 14, and
28 d) using a similar approach (Sect. S4 in the Supplement).
As Canonaco et al. (2021) did, we also used the criteria-based
selection function developed by Canonaco et al. (2021) to
evaluate our PMF runs. The settings of the criteria are pro-
vided in Sect. S3.2.4 of the Supplement.

However, instead of using published reference factor pro-
files like Canonaco et al. (2021) have done, we retrieved the
reference profiles of primary and local factors from seasonal
bootstrap analysis (Sect. S3.2 in the Supplement). Specif-
ically, the reference profiles of the hydrocarbon-like OA
(HOA) factor and biomass burning OA (BBOA) factor were
retrieved from the winter (December, January, and Febru-
ary; DJF) bootstrapped PMF solution as shown in Fig. S4,
and we obtained the m/z 58-related (58-OA) factor profile
from the summer (June, July, and August; JJA) bootstrapped
PMF solution (Fig. S4). The 58-OA factor was dominated
by nitrogen-containing fragments (at m/z 58, m/z 84, and
m/z 98). In general, the ACSM estimates the organicm/z 98
signal by dividing organic m/z 84 by a factor of 2 according

to the fragmentation table of organic species that was pro-
vided by Allan et al. (2004). Thus, the intensity of m/z 98
is always half of the intensity of m/z 84 in each factor. This
58-OA factor appeared only after the filament was switched
on 14 April 2014. The instrument setup thus strongly influ-
enced the sensitivity of these components due to influences
of surface ionisation. The nitrogen-containing ion, m/z 58,
was also observed in Hildebrandt et al. (2011) due to the en-
hanced surface ionisation in a certain period. In addition, the
potassium signal was enhanced at the same time, which fur-
ther corroborated our hypothesis of the enhanced surface ion-
isation. Also, since this factor was constrained through the
whole dataset, the PMF model overestimated the mass con-
centration of this factor significantly, which leads to high un-
certainties for the 58-OA factor. Therefore, the time series of
this source should be considered the upper limit, and the real
mass concentration of it could be substantially lower. How-
ever, with the low mass concentration of the 58-OA factor
during the whole campaign, we considered it a minor fac-
tor. Thus, this factor was considered in the PMF analysis,
but no further interpretation of its potential source will be at-
tempted in this paper. Moreover, we took a different path to
define “good” PMF solutions by using a novel Student t-test
approach to determine the environmentally reasonable so-
lutions quantitatively with minimum subjective judgements
(Sect. S3.3 in the Supplement). Overall, we provided a com-
prehensive analysis of a long-term ACSM dataset using this
state-of-the-art technique in this work. The results are pre-
sented in the following section.

3 Results and discussion

3.1 Overview of PM1 sources in Magadino

Considering that the major part of eBC is within PM1
(Schwarz et al., 2013), we added eBC to the total NR-PM1
from the ACSM to perform a mass closure analysis using
independent measurements of PM2.5 and PM10 from filters.
The gravimetric PM2.5 and PM10 show a high correlation
with the total estimated PM1 (NR-PM1+ eBC) (Fig. S1c).
The slopes of the linear fits (±1 standard deviation) are
1.62± 0.05 (r2

= 0.81; N = 79) for PM2.5 vs. PM1 and
1.84± 0.03 (r2

= 0.67; N = 335) for PM10 vs. PM1. This
means that the estimated PM1 comprised 62 % and 54 %
of the PM2.5 and PM10 mass, respectively. The daily aver-
ages of inorganic species concentrations measured by the
ACSM and those measured on the filters by ion chromatog-
raphy showed a good correlation, with r2

= 0.83 for SO2−
4 ,

r2
= 0.82 for NO−3 and r2

= 0.50 for Cl−, with slopes close
to 1 (Fig. S1a). The 2-week average of total ammonium and
total nitrate measured by the offline AMS technique agreed
rather well with the ACSM ammonium (r2

= 0.47) and ni-
trate (r2

= 0.79), as shown in the plots in Fig. S1b. The ion
balance of particulate ammonium, sulfate, and nitrate mea-
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sured by the ACSM showed that the measured aerosol parti-
cles were mostly neutral.

The daily average PM1 components are shown in Fig. 1a,
with an annual average PM1 concentration (including eBC)
from September 2013 to October 2014 equal to 10.2 µgm−3.
In winter, the average PM1 concentration was highest
(13.8 µgm−3), with OA contributing 54 % to the total PM1
mass. In summer, the average PM1 mass concentration was
below 10 µgm−3, but the relative contribution of the OA frac-
tion increased to 62 %.

Seasonally averaged diurnal cycles of NR-PM1 compo-
nents and eBC are displayed in Fig. 2. In this study, all
the data are based on local time (central European time).
In autumn, spring, and summer, the diurnals of these pol-
lutants seem to be mainly affected by the development of
the boundary layer height (BLH). Most of the species show
similar diurnal trends for these three seasons. In addition,
summer has the highest sulfate concentration due to en-
hanced photochemical production. In winter, air pollutants
accumulate during the evening and night due to thermal in-
version. In general, eBC and organics have higher levels due
to enhanced biomass burning emissions and a lower BLH.
We observed distinct midday peaks of organics, sulfate, ni-
trate, ammonium, chloride, and NOx in the winter. Magadino
experienced a series of windless and cold but sunny peri-
ods from December 2013 to January 2014, including such
sharp peaks (Fig. S6a). This was due to advection within
the shallow boundary layer as both primary and secondary
pollutants increased simultaneously. At the same time, the
local wind speed near the ground was very low. One po-
tential explanation was that the locally and regionally in-
duced orography-influenced winds, including vertical diffu-
sion processes, caused these delayed midday peaks. How-
ever, these processes remain difficult to track without spa-
tially distributed measurements. Such phenomena were not
observed during cloudy, cold, and windless days (Fig. S6b)
without thermally induced meteorological processes. Unlike
in other seasons, the dilution process due to vertical mixing
happened only after noon due to strong inversions during the
night and late irradiation of the valley surface in the winter.

3.2 Seasonal PMF pre-tests

The automated rolling PMF analysis requires the knowledge
of the reference profiles as well as the number of factors.
This section presents how the number of factors was deter-
mined based on seasonal PMF pre-tests (refer to Sect. S3.2.1
in the Supplement for methodology). Initially, unconstrained
PMF (three to six factors) was performed separately for the
different seasons by following the SA guidelines provided
by Crippa et al. (2014). Typically, the HOA profile is char-
acterised by a high contribution of alkyl fragments (e.g.
m/z 43, m/z 57) and the corresponding alkenyl carboca-
tions (e.g.m/z 41,m/z 55), and the factor profile is relatively
consistent over time and different locations. The BBOA pro-

file exhibits significant signals at m/z 60 and m/z 73, which
are well-known fragments arising from the fragmentation of
anhydrous sugars present in biomass-related emissions (Al-
farra et al., 2007). The HOA profile is present throughout the
whole year for the unconstrained PMF runs, while the BBOA
profile exists for all seasons except in summer. However, as
shown in Fig. S2, the measured fraction of m/z 60 during
summer was above the background level of 0.3 %± 0.06 %
for biomass-burning-related air masses (Aiken et al., 2009;
Cubison et al., 2011; DeCarlo et al., 2008). In addition, the
scaled residual at m/z 60 was decreased when a BBOA fac-
tor profile was constrained. Thus, we decided to constrain
the BBOA factor for all seasons to potentially capture local
events, such as open fires and barbecues in summer.

No evidence for the presence of a cooking-related OA
(COA) factor was found based on the seasonal pre-analysis
of the key fragments (m/z 55 and m/z 57). Figure S3 shows
no difference in the slope of the absolute mass concentra-
tion of m/z 55 vs. m/z 57 for different hours of the day
(Fig. S3a), while different seasons show different slopes
(Fig. S3b). Therefore, a COA factor was not considered in
the PMF model. Moreover, a rapid increase in the measured
fraction ofm/z 58,m/z 84, andm/z 98 together withm/z 39
(potassium signal) was observed after a filament exchange
on 14 April 2014. It was likely that the ACSM’s sensitivity
towards those ions was changed by the filament exchange.
Also, this 58-OA factor was present for spring, summer, and
autumn in 2014 in unconstrained PMF runs all the time after
the filament change. Therefore, we kept this factor for these
three seasons.

For the factor(s) with a secondary origin, we performed
PMF models with a different number of factors (three–six)
to assess if the oxygenated OA (OOA) factor is separable
without mixing with primary organic aerosol (POA) factors
(with a high contribution of m/z 44 that is likely dominated
by the CO+2 ion, derived from decomposition of carboxylic
acids; Duplissy et al., 2011). We conducted these tests (with
a different number of factors) independently for the differ-
ent seasons (autumn 2013, winter, spring, summer, autumn
2014).

We analysed the winter data first by constraining an HOA
factor profile (Crippa et al., 2013) with a tight a value of 0.05.
The three-factor solution (with one OOA factor, i.e. less oxi-
dised OOA (LO-OOA) and more oxidised OOA (MO-OOA))
showed similarly good agreement of HOA and BBOA with
the external tracers (NOx , eBC from traffic sources (eBCtr),
eBC from wood burning sources (eBCwb)) to that of the four-
factor solution (with two OOA factors). However, the scaled
residual of m/z 60 was reduced for the solution with two
OOA factors. Moreover, the solution with one OOA factor
was not sufficient to explain the variabilities in measured f44
vs. f43 (excluding the primary organic aerosol (POA) fac-
tors). For five- and six-factor solutions, the BBOA and LO-
OOA factors started to split. Eventually, we selected the four-
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Figure 1. Chemical composition of PM1 in Magadino 2013–2014 – daily (a), seasonal (b), and annual (c) averages. The labels indicate
non-refractory organics (Org), sulfate (SO4), nitrate (NO3), ammonium (NH4), and chloride (Cl) measured by the ACSM and equivalent
black carbon (eBC) measured by light absorption.

Figure 2. Seasonal, diurnal cycles of the measured PM1 components (hourly averages) for the organic and inorganic species (sulfate, nitrate,
ammonium, and chloride) of the ACSM and equivalent black carbon.

factor solution (HOA, BBOA, MO-OOA, LO-OOA) as the
best representation of the winter data.

After the bootstrap seasonal PMF runs of the winter data
(details in Sect. S3.2.2 of the Supplement), we extracted
the HOA and BBOA profiles to use them as the reference
factor profiles (Fig. S4) for the pre-tests of other seasons.
For the spring, summer, and autumn seasons, three- to six-
factor PMF solutions were modelled separately for each sea-
son by constraining the HOA (a value= 0.1) and BBOA
(a value= 0.3) profiles. For the three-factor solution, we ob-
served an OOA factor with some signals at m/z 58, m/z 84,
andm/z 98, which we could not relate to a specific source or
process. Also, the scaled residuals of variables showed sig-
nificant levels for these three ions. In addition, the time se-
ries and factor profile of 58-OA were so distinct that PMF
could easily resolve it. When we increased the number of
OA factors from three to four, a factor dominated bym/z 58,
m/z 84, andm/z 98 emerged, named the 58-OA factor. How-
ever, the OOA factor still showed slight signals at m/z 58,

m/z 84, and m/z 98. An increase in the number of factors
from four to five resulted not only in a decrease in Q

Qexp
but

also in “clean” OOA factors without mixing with the 58-OA
factor. A further increase in the number of factors did not
change Q

Qexp
substantially (< 1 %), and the sixth factor was

a mathematical split of the 58-OA factor with m/z 58 as the
dominating variable. Thus, the five-factor PMF model was
chosen as the most appropriate for the spring, summer, and
autumn 2014 to isolate this instrumental artefact via PMF.
We did not add the 58-OA factor for the autumn season in
2013 since it appeared only after the filament exchange on
14 April 2014. This 58-OA factor was included while run-
ning PMF because of the rapid drop of the Q

Qexp
from four to

five factors in the PMF model, but the source of this factor
will not be discussed in the paper.
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3.3 Full-year rolling PMF analysis

Here we present the optimised time window size (14 d) (de-
tails of the time window optimisation are given in Sect. S4
of the Supplement and in Fig. S10). In total, we considered
53.4 % of the PMF runs (11 087 out of 20 750) with only
11 non-modelled data points. The results of the full-year
PMF analysis of the 30 min resolved ACSM data are sum-
marised in Fig. 3. The relative contributions of the OA factors
are in addition shown in Fig. 3b. The primary traffic-related
HOA had tiny variation (seasonal averages between 8.1 %
and 10.1 %) throughout the year (Fig. 4). In contrast, BBOA
showed a distinct yearly cycle (8.3 %–27.4 %) with a yearly
averaged contribution of 17.1 %. They increased significantly
(to 27.4 %) in winter which is typical of Alpine valleys (Szi-
dat et al., 2007). This means that biomass burning was the
most important primary OA source during the cold season in
Magadino. The eBCwb showed similar trends to those of the
BBOA factor time series during the cold seasons (Fig. 3c).
The contribution of the 58-OA factor remained small before
the filament was changed on 14 April 2014, which was ex-
pected because we could not retrieve this factor in seasonal,
unconstrained PMF runs before April 2014.

In this study, we retrieved two OOA factors, LO-OOA and
MO-OOA. Total OOA (LO-OOA+MO-OOA) contributed
substantially to the total OA mass throughout the whole year,
with an average contribution of 71.6 % (Figs. 3b, 4). In gen-
eral, the contribution of OOA to the total OA mass did not
vary distinctly over the seasons but reached a maximum of
90.1 % on 12 June 2014, the day with the highest daily aver-
age temperature (30.7 ◦C).

In this work, we made head-to-head comparisons between
the seasonal bootstrap solutions and the rolling PMF results
(see Figs. A1–A3 and Table A1 in the Appendix) in terms
of mass concentrations, factor profiles, scaled residuals, and
correlations between time series for each factor and corre-
sponding external tracers. We found consistent factor pro-
files and mass concentrations for the constrained factors (i.e.
HOA, BBOA, and 58-OA), while OOA factors showed some
noticeable differences in both mass concentrations and factor
profiles. Rolling PMF provided slightly better correlations
and smaller scaled residuals. Therefore, we consider rolling
PMF results to be more environmentally reasonable than
those of the seasonal PMF (more details in Appendix A).

3.3.1 Optimised OA factors retrieved from a rolling
PMF model

The primary and secondary OA factors retrieved as an an-
nual mean of all optimised PMF solutions together with their
diurnal cycles for all seasons are shown in Fig. 5. Note that
the primary factors (HOA, BBOA, and 58-OA) were con-
strained: the 58-OA profile was tightly constrained with an
a value of 0.05 due to the uniqueness of its chemical profile,
while the HOA and BBOA model profiles varied more due to

looser constraints (Fig. S8). HOA and BBOA had averaged
a values of 0.207± 0.036 and 0.195± 0.050, respectively.
In addition, they both showed good agreement with previ-
ous studies (Crippa et al., 2014; Ng et al., 2011b). The prob-
ability distribution function (PDF) of applied a values for
selected PMF runs vs. time was also investigated (Fig. S8).
Most selected runs chose a values of 0.1–0.3 for HOA and
BBOA. The OOA factors show more significant variations
in the chemical profiles because these two factors were not
constrained due to the high variability in oxidation processes
governing the secondary factors.

Due to extensive residential wood combustion combined
with winter inversions, the concentrations of BBOA and
eBCwb were 3 times higher at night than at midday. As dis-
cussed above, during winter, all of the air pollutants, includ-
ing all PMF factors, peaked concurrently at 10:00–11:00 (lo-
cal time) due to delayed illumination of the valley site and
slow wind speed near the ground (light blue markers in Fig. 2
for total PM1 and Fig. 5b). In summer, additional local pho-
tochemical production led to an increasing MO-OOA mass
during the day (yellow markers in Fig. 5b), which is similar
to the sulfate diurnal behaviour (r2

= 0.63). A nighttime in-
crease and a daytime decrease in the LO-OOA mass during
spring and summer apparently followed condensation and re-
evaporation cycles of semi-volatile species, which is similar
to the behaviour of ammonium nitrate. Additionally, noctur-
nal chemistry of NO3 and N2O5 radicals could lead to the
formation of HNO3 via N2O5 hydrolysis and of organic ni-
trates via oxidation of volatile organic compounds (VOCs)
(Brown et al., 2004; Dentener and Crutzen, 1993), thus in-
fluencing the diurnal cycles of both particulate nitrate and
LO-OOA (with r2

= 0.48 for spring and r2
= 0.36 for sum-

mer).
Figure 6 also presents the diurnal cycles of HOA, eBCtr,

and NOx with different patterns for weekdays and weekends.
The hourly averages of HOA and eBCtr and the NOx mix-
ing ratio peak during the morning and evening rush hours
over the weekdays, while on the weekends, there is only an
evening pollution increase coinciding with the time when
people come back from holidays or nighttime leisure activi-
ties.

3.3.2 f44–f43 analysis of secondary OA factors

While m/z 44 is mostly from the fragment of CO+2 , a fin-
gerprint of oxygenated species, m/z 43 can originate from
C2H3O+ (a fingerprint of semi-volatile species) or C3H+7
(a fingerprint of the primary emissions of hydrocarbon-like
species) (Canonaco et al., 2015; Chirico et al., 2010; Ng et
al., 2010). Thus, f44 and f43 are often used to identify the
oxidation state of the factors, which is crucial to differenti-
ate the MO-OOA and LO-OOA factors. Under the premise
that the POA factors and the 58-OA factor are all well re-
solved, it is essential to investigate the relationship between
the m/z 44 and m/z 43 signals in the OOA factors to deter-
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Figure 3. Annual cycles of OA components: (a) absolute and (b) relative OA contributions plotted as 30 min resolved time series, and
(c) black carbon source apportionment.

Figure 4. OA pie charts for the whole year and for the different seasons.
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Figure 5. Overview of the primary and secondary OA components in Magadino in 2013–2014: (a) OA factor profiles and (b) seasonal diurnal
cycles of HOA, BBOA, 58-OA, MO-OOA, and LO-OOA. The ambient temperature is shown in the LO-OOA diurnal plots. In (a) the error
bar is the standard deviation; the black bars show the maximum and the minimum that the variable was allowed to vary from the reference
profiles. The average, 10th, and 90th percentiles for a values of HOA are 0.195, 0.007, and 0.378, respectively. Also, the average, 10th, and
90th percentiles for a values of BBOA are 0.202, 0.025, and 0.379, respectively.
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Figure 6. Diurnal cycles of HOA (grey symbols), black carbon apportioned to traffic emissions eBCtr (dashed lines), and NOx (dotted lines)
for weekdays (a) and weekends (b). The shaded areas represent the interquartile range for HOA (1 h averages).

mine whether or not one/two OOA factors are sufficient to
explain the dataset. In addition, the shapes of the yellow and
red dots shown in an f44–f43 plot (Fig. 7) may also include
some source-related information. Figure 7 depicts the rela-
tionship between f44 and f43 of two modelled OOA factors
for the different seasons. The yellow cloud of data points rep-
resents the measured f44 vs. f43 after subtracting them/z 44
andm/z 43 signals contributed by the primary HOA, BBOA,
and 58-OA factors (Eqs. S11 and S12). They are colour-
coded by the total OA mass concentration (data points with
OA mass concentration below 2 µgm−3 are hidden).

As shown in Fig. 7a, the data points in September–October
(in both 2013 and 2014) were located on the right side of the
triangle first presented by Ng et al. (2010), while the Novem-
ber (2013) data points were located within the triangle. In
addition, the spring and summer data points (Fig. 7c and d)
were all located instead on the right side of the triangle, but
the winter points lay within the triangle (Fig. 7b). We made
a similar plot but with a monthly resolution and different
colour codes in Fig. S9. The data points located within the
triangle correspond to the time with a lower temperature than
that of those that are closer to the right side of the triangle in
Fig. S9. This could be explained by the increased biogenic
OOA contributions when the temperature was higher, as bio-
genic OOA tends to be distributed along the right side of the
triangle (Canonaco et al., 2015; Pfaffenberger et al., 2013).
Also, when the temperature decreases, the increased biomass
emissions make the OOA points lie vertically within the tri-
angle (Canonaco et al., 2015; Heringa et al., 2011), which is
the case for the winter data (Fig. 7b).

In July 2014, the rolling PMF LO-OOA moved towards
the left side of the plot due to increasing influences from
m/z 80, m/z 94 (C2H6S+2 ), m/z 95, and m/z 96 (Fig. S7).
Because the OA signal of m/z 80 is directly calculated
from m/z 94 (Allan et al., 2004), we did not investigate the
sources of m/z 80. In July, a potential source of these dis-

tinct ions was some oxidation products of dimethyl disulfide,
which show signals at m/z 94, m/z 95, and m/z 96 (NIST
Mass Spectrometry Data Center, 2014). Dimethyl disulfide
is widely used in pesticides. Considering that the sampling
site is in the middle of farmland and the diurnal variation in
m/z 94 appeared to peak during the daytime, we considered
the LO-OOA in July to be highly affected by agricultural ac-
tivities. However, the static factor profiles of summer LO-
OOA from the seasonal summer solution had much smaller
intensities form/z 80 andm/z 94 (Fig. S4), which enhanced
the scaled residuals for these two variables in the seasonal
solutions.

In winter, LO-OOA (Fig. 9b) was highly affected by
biomass burning emissions characterised by the presence of
m/z 60, m/z 73 (Alfarra et al., 2007), and the LO-OOA po-
sition in the f44–f43 space moved towards the top-right di-
rection in the plot due to the increasing biogenic influence as
the temperature rose (Figs. 7b, S9) (Canonaco et al., 2015).

Figure 7 also highlights the advantages of rolling PMF
over seasonal PMF due to its time-dependent source pro-
files. Both seasonal and rolling results show that the linear
combinations of OOA factors could adequately explain most
of the measured OOA points for all the seasons. However,
with the static OOA factors for seasonal PMF solutions, it
remains challenging to capture the variabilities in some mea-
sured data points. In contrast, the rolling PMF OOA fac-
tors can move correspondingly with the temporal changes
in the clouds, which moves the factor profiles closer to re-
ality and potentially decreases the scaled residuals signif-
icantly (Fig. A3). Figure S9 also shows the movements of
LO-OOA and MO-OOA factor profiles monthly, where LO-
OOA moves towards the right direction as the temperature
increases, except for the two light blue squares (June and
July) in Fig. S9a. It is clear that temperature plays an im-
portant role for the positions of LO-OOA and MO-OOA in
the f44–f43 space due to its influences on the OOA sources
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Figure 7. The f44 and f43 of OOA (after subtraction of signals contributed by the primary HOA, BBOA, and 58-OA factors) for four different
seasons. The small yellow and red crosses of data points represent f44 vs. f43. They are colour-coded by the total OA mass concentration.
The bigger sizes of triangles and hexagons represent the ratios between f44 and f43 intensities within the factor profiles of MO-OOA and
LO-OOA in seasonal solutions, respectively. The smaller sizes of circles and squares are ratios between f44 and f43 intensities within the
factor profiles of MO-OOA and LO-OOA from rolling PMF analysis, which are colour-coded by date and time. The dashed lines represent
Sally’s triangle from Ng et al. (2010) and depict the region where OOA from multiple PMF analyses during the last decade resided in the
f44–f43 space.

(biogenic or anthropogenic) as well as the atmospheric pro-
cesses, which is consistent with previous studies in Zurich
(Canonaco et al., 2015).

3.3.3 Statistical and rotational uncertainties

As suggested by Canonaco et al. (2021), combining the boot-
strap resampling and the random a-value techniques together
with the rolling mechanism, we calculated the standard de-
viation (σ ) and the mean (µ) of the mass concentration for
each data point from each OA factor in selected good PMF
runs. We estimated the uncertainty in each OA factor using
the slope of the linear fit of σ vs. µ (Fig. 8). Since the 58-
OA factor was tightly constrained with an a value of 0.05,
it had the smallest variability (4 %). Overall, we found rel-
atively smaller errors in HOA, BBOA, and MO-OOA (i.e.
18 %, 14 %, and 19 %, respectively) and an error of 25 %

for LO-OOA, which is comparable with the previous study
(Canonaco et al., 2021). The errors for both the MO-OOA
and the LO-OOA factor showed some temperature depen-
dence. However, this actually varied with time, and the er-
rors did not significantly change when we divided the dataset
into four different temperature groups. Still, data points with
higher temperature tended to have larger error for the total
OOA than with lower temperature (Fig. 8f). This was most
likely due to the increase in biogenic emissions and the in-
creasing photochemistry (high O3 and NO2 concentration) at
high temperatures (> 20 ◦C), which caused the complexity of
the OOA sources.

3.3.4 Online vs. offline

The mass concentrations for HOA, BBOA, and total OOA
were compared with corresponding offline AMS results
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Figure 8. Absolute statistical uncertainties in PMF for HOA, BBOA, 58-OA, LO-OOA, MO-OOA, and total OOA (LO-OOA+MO-OOA)
for all data. The data points are colour-coded by temperature. The PMF error (uncertainties) of selected PMF runs and rotational uncertainties
are estimated using the slope of the linear regression of standard deviation (σ ) vs. the averaged mass concentration (µ) for each factor.
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Figure 9. (a) Time series of total oxygenated organic aerosol (LO-OOA+MO-OOA) from online and offline source apportionment solutions,
together with f60 in LO-OOA for online solutions and levoglucosan in PM10 filters; (b) averaged LO-OOA factor profile from the online
solution during DJF (December, January, and February), when online total OOA is significantly higher than that of the offline solution.

(Vlachou et al., 2018) (Fig. S11). Despite some disagree-
ment during winter (BBOA and total OOA), BBOA showed a
high correlation – with the offline results for both PM10 and
PM2.5 having r2 values of 0.83 and 0.84, respectively. The
correlation for total OOA was somehow lower, with r2 val-
ues of 0.31 and 0.46 for the offline results of PM10 and PM2.5
OOA, respectively. Figure 9a shows that the rolling results
had a higher OOA concentration during the winter season
than the offline PM2.5 and PM10 results, while the rolling re-
sults present a lower BBOA concentration during the winter
season than the offline PM2.5/PM10 results (Fig. S11b). As
shown in Fig. 9b, LO-OOA in the rolling results was heav-
ily affected by biomass burning with apparent biomass trace
ions (i.e.m/z 60 andm/z 73). The offline results apportioned
these biomass-burning-affected LO-OOA to BBOA, whereas
the online ACSM measurements with a higher time resolu-
tion could capture the fast oxidation process of biomass burn-
ing sources. In addition, the rolling PMF technique enabled
the LO-OOA factor profile to adapt to the temporal viabilities
of OA sources, so the relatively aged biomass burning OA
fraction was apportioned into LO-OOA during wintertime by
rolling PMF. The yellow line in Fig. 9a depicts the mass con-
centration of m/z 60 within LO-OOA, which clearly shows

significant enhancements during winter and a good agree-
ment with the total OOA time series from the rolling results.
Figure S11 shows that HOA did not correlate at all, which
is expected because HOA is typically not water-soluble and
therefore has a very low recovery rate of 0.11 for the offline
AMS technique based on Daellenbach et al. (2016).

4 Conclusions

In this study, we conducted the first rolling PMF analysis
on a 13-month set of ACSM data collected at a rural site
in Switzerland. With the help of the small rolling PMF time
window and the random a value and bootstrap resampling
analysis, we obtained a time-dependent SA result with er-
ror estimations. Overall, we resolved a comprehensive five-
factor solution with HOA, BBOA, 58-OA, MO-OOA, and
LO-OOA. The contribution of HOA was constant during the
year (8.1 %–10.1 %), while BBOA showed a clear seasonal
variation (8.3 %–27.4 %), which peaked during winter (due
to an increased residential-heating source) and contributed
least in summer. OOA was a dominant source throughout
the year, with a contribution of 71.6 % on a yearly average.
However, the biomass burning source had a strong influence
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on LO-OOA formation in winter. When summing up LO-
OOA and BBOA, it makes residential heating a considerable
source at Magadino during winter. Therefore, mitigation of
residential wood combustion should be considered to reduce
PM levels in Magadino and similar locations, especially in
winter. Hüglin and Grange (2021) showed that the reduction
in residence wood combustion has already shown some ef-
fects in PM mitigation in Magadino. However, the biomass
burning contribution remains significant in this region.

This paper also provided a recommended criterion list (Ta-
ble S1) and a novel way to define thresholds with minimum
subjective judgements (Student’s t test), which could be a
leading example for other Source Finder Professional (SoFi
Pro) users to conduct rolling PMF. To ensure a good repre-
sentation of the modelled POA factors and to validate the SA
results, we also used the correlations between the PMF factor
time series and external data. Both HOA and BBOA agreed
well with the corresponding external tracers (NOx , eBCtr,
and eBCwb) for the yearly cycles, except for in summer. This
is because the aethalometer model for eBC SA has higher
uncertainties with smaller eBCwb mass concentrations. Also,
NOx could originate from multiple sources in this season.
Therefore, we used HOA vs. eBC and EV60,BBOA to justify
these two factors in summer. The correlation of HOA vs. eBC
had an r2 of 0.28, with an EV60,BBOA of 0.55 in summer.
Moreover, the MO-OOA and LO-OOA factors were well cor-
related with inorganic SO4 and NO3, respectively. The iden-
tified primary and secondary OA factor profiles were consis-
tent with the OA factors previously found at various urban,
rural, and remote European locations.

This paper assessed the statistical and rotational uncertain-
ties in the PMF solution by combining the bootstrap resam-
pling technique and the random a-value approach. It shows
relatively small errors for constrained factors compared with
a previous study in Zurich (Canonaco et al., 2021) and com-
parable errors for the OOA factors.

We also presented a head-to-head comparison between
seasonal PMF solutions and the rolling PMF solution. The
POA factors showed good agreement between seasonal
and rolling PMF solutions, while the OOA factors exhib-
ited greater differences. Overall, the rolling PMF provided
slightly better agreements with external tracers, especially
between the OOA factors and corresponding inorganic salts.
In addition, the rolling PMF results provided a better rep-
resentation of the measurements by adapting the temporal
variations in OOA factors in the f44–f43 space, which also
led to much smaller scaled residuals than for the seasonal
PMF. Therefore, the rolling PMF is highly useful when the
user wishes to better separate OOA factors (especially dur-
ing cold seasons) and better represent the measurements. In
addition, we will also recommend using the rolling PMF to
facilitate the analysis of long-term trends of OA sources with
some prior knowledge of OA sources. However, it remains
challenging to objectively define the transition point to an im-
proved source apportionment for rolling PMF analysis when

a different number of OA factors is necessary for different
periods. An upcoming paper (Via et al., 2021) will present
more details of the comparison between rolling and seasonal
results for multiple datasets. The time series of BBOA and to-
tal OOA agreed well with those from offline AMS SA results
(Vlachou et al., 2018), except for in winter when the offline
AMS technique did not capture the fast oxidation processes
of biomass burning emissions.

Knowledge of diurnal, seasonal, and annual changes in OA
sources is essential for interpreting the yearly cycles of OA
and defining mitigation strategies for air quality. With the
help of more accurate and realistic OA sources, together with
an estimation of the statistical uncertainty in PMF, more con-
straints can be provided for both climate and air quality mod-
els. These improved results are therefore highly valuable for
policymakers to solve aerosol-related environmental issues.

Appendix A: Comparison between seasonal and rolling
PMF solutions

The bootstrapped seasonal PMF solutions were compared
with the full-year rolling PMF results as follows. The corre-
lations with external data, the ion intensities in the factor pro-
files, and the mass concentrations retrieved from the two dif-
ferent source apportionment techniques were compared for
each factor. The correlations of the factor time series with
external data (i.e. NOx , eBCtr, eBCwb, eBCtotal, SO4, NO3,
and NH4) are presented in Table A1. The rolling results gen-
erally showed slightly better correlations between LO-OOA
and NO3, MO-OOA and SO4, and total OOA with NH4 than
the seasonal PMF results, which is consistent with the com-
parison results from Canonaco et al. (2021). A significant
improvement was evident for LO-OOA vs. NO3 in spring
(with r2 increasing from 0.02 to 0.48). Concerning the corre-
lations of POA factors with external data, rolling results and
seasonal results were similar.

Figure A1 shows a good agreement for two techniques,
except for MO-OOA and LO-OOA. In general, the slope of
1.09 for rolling total OOA vs. seasonal OOA suggests the
seasonal PMF method tends to apportion more OOA compo-
nents, while the slope (< 1) for HOA and BBOA suggests
that the seasonal PMF technique tends to apportion fewer
HOA and BBOA. In addition, 58-OA shows the best agree-
ment between the seasonal and rolling solutions due to the
tight constraint of 58-OA with an a value of 0.05.

The LO-OOA and MO-OOA factors showed worse agree-
ment than the POA factors for the whole dataset. They had
good correlations in each meteorological season, however,
with different slopes. For instance, seasonal PMF underesti-
mated LO-OOA in spring and autumn 2014, but both seasons
showed a high correlation with rather narrow scattering. The
over-apportionment of MO-OOA compensated for the under-
apportionment of LO-OOA by seasonal PMF for these two
seasons. Therefore, the summed OOA still showed a high
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Table A1. Correlation coefficients (r2
Pearson) between the factor contributions and expected tracers over the year and for individual meteoro-

logical seasons (p < 0.05). n/a means not applicable, and the slashes in the first column denote correlations between variables.

Factor Yearly SON_2013 DJF MAM JJA SON_2014

Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling

HOA /NOx 0.37 0.35 0.52 0.5 0.46 0.47 0.34 0.36 0.15 0.15 0.44 0.42
HOA / eBCtr 0.34 0.33 0.29 0.35 0.41 0.42 0.39 0.31 n/a n/a 0.38 0.39
HOA / eBC 0.55 0.51 0.79 0.77 0.77 0.73 0.5 0.41 0.29 0.28 0.5 0.47
BBOA / eBCwb 0.82 0.82 0.81 0.79 0.84 0.81 0.67 0.6 n/a n/a 0.3 0.27
MO-OOA /SO2−

4 0.58 0.49 0.49 0.61 0.52 0.49 0.62 0.66 0.63 0.57 0.43 0.46
LO-OOA /NO−3 0.11 0.32 0.28 0.42 0.28 0.23 0.02 0.48 0.33 0.36 0.19 0.29
OOA /NH+4 0.46 0.44 0.52 0.55 0.34 0.26 0.73 0.75 0.48 0.47 0.57 0.59

Figure A1. Comparison of the mass concentrations resulting from rolling PMF and from the seasonal analysis for each factor (colour-coded
by date and time).

correlation between rolling and seasonal PMF results. This
is expected, as the rolling PMF allows the source profiles to
adapt to temporal variations, while seasonal PMF has only
static source profiles.

The differences in the major variables of the OOA factors
(i.e. m/z 44, m/z 43, and m/z 60) shifted the mass concen-
trations significantly. Therefore, we also compared the fac-
tor profiles for both techniques (Fig. A2). For instance, LO-
OOA during spring showed higher intensity at m/z 44 for
the rolling PMF results than for the seasonal PMF results
(Fig. A2), which caused the underestimation of LO-OOA
for the seasonal PMF in spring. When we averaged the total

OOA factor using mass-weighted MO-OOA and LO-OOA
factors, rolling PMF yielded higher m/z 60 for all seasons.
As a result, seasonal PMF apportions slightly fewer summed
OOA factors by around 9 %, while it apportions slightly more
POA factors within 6 %.

The profiles of the constrained factors (HOA, BBOA, 58-
OA) from the rolling results show a very high correlation
with the seasonal results (Fig. A2), which suggests that the
primary factors and the tightly constrained factor (58-OA)
were consistent with the static profiles from the seasonal
PMF analysis.

https://doi.org/10.5194/acp-21-15081-2021 Atmos. Chem. Phys., 21, 15081–15101, 2021



15096 G. Chen et al.: Time-dependent source apportionment of OA in an alpine valley

Figure A2. Profile comparisons between rolling results and seasonal results for each factor (log scale).

Figure A3. Distribution of the scaled residuals over the whole year for the seasonal solution (a) and the rolling solution (b).

We compared the scaled residuals from both source appor-
tionment techniques (Fig. A3). The rolling PMF solution had
smaller scaled residuals (narrower histogram and the centre
is closer to 0) than those of the seasonal PMF solution, which
is expected because rolling PMF had more flexibility to adapt
to the temporal variabilities in the OA sources.

Summarising, HOA and BBOA were consistent for rolling
and seasonal PMF analysis in terms of the time series, cor-
relations with external tracers, and factor profiles due to the

consistency of their chemical factor profiles. In contrast, the
MO-OOA and LO-OOA factors were more scattered in aver-
aged factor profiles and mass concentration, suggesting that
seasonal PMF analysis was insufficient for capturing these
temporal variations in their oxidation processes. Also, rolling
PMF showed smaller scaled residuals. Therefore, we con-
clude that the rolling PMF analysis provides more realistic
results than the seasonal analysis.
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