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Abstract. Understanding the regional surface temperature
responses to different anthropogenic climate forcing agents,
such as greenhouse gases and aerosols, is crucial for un-
derstanding past and future regional climate changes. In
modern climate models, the regional temperature responses
vary greatly for all major forcing agents, but the causes
of this variability are poorly understood. Here, we ana-
lyze how changes in atmospheric and oceanic energy fluxes
due to perturbations in different anthropogenic climate forc-
ing agents lead to changes in global and regional sur-
face temperatures. We use climate model data on ideal-
ized perturbations in four major anthropogenic climate forc-
ing agents (CO2, CH4, sulfate, and black carbon aerosols)
from Precipitation Driver Response Model Intercompari-
son Project (PDRMIP) climate experiments for six climate
models (CanESM2, HadGEM2-ES, NCAR-CESM1-CAM4,
NorESM1, MIROC-SPRINTARS, GISS-E2). Particularly,
we decompose the regional energy budget contributions to
the surface temperature responses due to changes in long-
wave and shortwave fluxes under clear-sky and cloudy con-
ditions, surface albedo changes, and oceanic and atmospheric
energy transport. We also analyze the regional model-to-
model temperature response spread due to each of these com-
ponents. The global surface temperature response stems from
changes in longwave emissivity for greenhouse gases (CO2
and CH4) and mainly from changes in shortwave clear-sky
fluxes for aerosols (sulfate and black carbon). The global sur-
face temperature response normalized by effective radiative
forcing is nearly the same for all forcing agents (0.63, 0.54,
0.57, 0.61 K W−1 m2). While the main physical processes

driving global temperature responses vary between forcing
agents, for all forcing agents the model-to-model spread in
temperature responses is dominated by differences in mod-
eled changes in longwave clear-sky emissivity. Furthermore,
in polar regions for all forcing agents the differences in sur-
face albedo change is a key contributor to temperature re-
sponses and its spread. For black carbon, the modeled dif-
ferences in temperature response due to shortwave clear-sky
radiation are also important in the Arctic. Regional model-
to-model differences due to changes in shortwave and long-
wave cloud radiative effect strongly modulate each other. For
aerosols, clouds play a major role in the model spread of re-
gional surface temperature responses. In regions with strong
aerosol forcing, the model-to-model differences arise from
shortwave clear-sky responses and are strongly modulated by
combined temperature responses to oceanic and atmospheric
heat transport in the models.

1 Introduction

Climate change projections depend highly on future scenar-
ios of climate mitigation actions. But in addition to uncer-
tainty arising from different possible futures particularly in
timescales of decades, the climate projection uncertainties
are dominated by the climate model response uncertainty
(Hawkins and Sutton, 2009; Lehner et al., 2020). This arises
from structural differences between different climate mod-
els. Climate models differ in how they represent the radia-
tive forcing of anthropogenic greenhouse gases and aerosols.
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But, perhaps more importantly, they respond differently to
the same external radiative forcing (Nordling et al., 2019).
As stated in Lehner et al. (2020), the model spread in the es-
timated temperature responses is affected by intermodel dif-
ferences in both the forcing and in how the models respond
to the forcing.

Smith et al. (2020) quantified the effective radiative forc-
ings (ERFs) for modern-day greenhouse gas and aerosol con-
centrations for a range of climate models participating in the
CMIP6 multimodel climate experiments. They showed that
since CMIP5, the spread in modeled radiative forcing has
narrowed. Despite this, the response uncertainty in CMIP6
models appears to have grown from CMIP5 models (Lehner
et al., 2020; Zelinka et al., 2020). Uncertainty in the climate
response hampers efforts to robustly define carbon emission
targets to maintain global warming below specified limits,
such as below 1.5 ◦C (Matthews et al., 2021; Rogelj et al.,
2019). Furthermore, the carbon emission targets depend on
the climate response to radiative forcers besides carbon diox-
ide, such as aerosols and methane (Tokarska et al., 2018;
Gillett et al., 2021). Modern-day anthropogenic aerosols cool
the global surface temperatures between 0.1–1.1 ◦C (Gillett
et al., 2021; Samset et al., 2018; Nordling et al., 2019), and
their future reductions can accelerate global warming and
enhance global precipitation (e.g., Merikanto et al., 2021;
Wilcox et al., 2020).

Besides the need to better understand the impacts of differ-
ent climate forcing agents on the global climate, there is an
urgent need to better understand how they impact climate on
a regional scale. The spatial distribution of aerosols is highly
heterogenous, and much of the modern-day effective aerosol
radiative forcing is concentrated over the South Asian and
East Asian regions (Fiedler et al., 2019), while the radiative
forcing of long-lived greenhouse gases is much more uni-
form (Shindell et al., 2015). Aerosols have both local and
remote climate effects which depend on the emission region
and type of aerosol (Merikanto et al., 2021; Nordling et al.,
2019; Persad and Caldeira, 2018). Furthermore, the differ-
ences in aerosol surface temperature response between mod-
ern climate models are not dominated by the model’s anthro-
pogenic aerosol description (Nordling et al., 2019). There-
fore, differences in modeled regional temperature responses
for both greenhouse gases and aerosols appear to mainly de-
pend on differences in dynamic responses of the atmosphere–
ocean–sea-ice system in the models. The main focus of this
paper is these differences in modeled responses to aerosol
and greenhouse gas perturbations in different climate mod-
els.

The Precipitation Driver Response Model Intercompari-
son Project (PDRMIP) (Myhre et al., 2017) provides a data
set that allows us to investigate how different climate forc-
ing agents affect the Earth’s climate on global and regional
scales. PDRMIP comprised idealized single-forcer scenar-
ios for several independent climate models. Previously, the
PDRMIP data set has been used to study, for example, how

different forcing agents affect the Arctic amplification (Stjern
et al., 2019) and how they produce rapid adjustments and
ERF (Smith et al., 2018). Estimating ERF is not straightfor-
ward, and different methods provide a variety of different re-
sults. For example, Tang et al. (2019) used PDRMIP data to
estimate ERF for different climate forcing agents with sev-
eral different methods. The model-mean estimated ERF for
the doubling of carbon dioxide concentrations varied from
3.65 to 4.70 W m−2, depending on the method and on how
rapid adjustments were included in the estimate. Richard-
son et al. (2019) showed that ERF calculated from fixed-sea-
surface experiments is a good predictor for the global tem-
perature change for different forcing agents and particularly
so if the adjustments due to land temperature change are in-
cluded.

The model differences in climate response are often inves-
tigated through radiative feedback analysis (e.g., Zelinka et
al., 2020). While the feedback analysis is particularly suit-
able for analyzing the root causes of model-to-model differ-
ences in the equilibrium climate sensitivity (the equilibrium
temperature response to doubled atmospheric carbon dioxide
concentrations), it is less suitable for exploring regional tem-
perature response variance between the models due to the
nonlinearity of regional feedbacks (Andrews et al., 2012).
Räisänen and Ylhäisi (2015) formulated an energy balance
framework to explore the impact of the top-of-atmosphere
(TOA) radiative fluxes, atmospheric energy transport, and the
net surface energy flux on regional surface temperatures. The
method relies on the local conservation of energy and it is
therefore mathematically an almost exact solution for the de-
composition of energetic components of the temperature re-
sponse. Its also takes into account both the horizontal energy
transport and surface energy fluxes on the local energy bal-
ance. Räisänen (2017) included a more detailed shortwave
radiative flux treatment according to Taylor et al. (2007),
and Merikanto et al. (2021) included a cloud radiative kernel
treatment for a more physical separation of longwave cloud
and clear-sky radiative fluxes. In this paper, we use this en-
ergy balance framework with climate model data from PDR-
MIP experiments to study the origins of regional temperature
response and its standard deviation in six different climate
models to four different climate forcing agents (carbon diox-
ide, methane, sulfate, and black carbon). Evaluation of the
mechanisms responsible for the model spread is key to un-
derstanding why models still exhibit a substantial spread in
temperature response even when forced identically.

2 Materials and methods

2.1 Decomposition of the surface temperature response

We attribute local surface air temperature response to dif-
ferent net energetic components, namely, to changes in lo-
cal longwave fluxes associated with changes in clear-sky
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Figure 1. Illustration of the local atmospheric energy budget in a single atmospheric column from the surface to the top of model atmo-
sphere (TOA). We attribute the change in local surface temperature to changes in different terms of the local energy budget. (a) Unperturbed
conditions, where red arrows indicate longwave (thermal) radiation, yellow arrows indicate shortwave (solar) radiation, blue arrows indicate
horizontal incoming and outgoing energy, and curvy red arrows indicate latent and sensible heat. Under perturbed conditions, we decompose
the change in the energy budget to (b) the change in TOA solar radiation due to changes in surface albedo and to the change in shortwave
clear-sky flux (separately). The change in shortwave clear-sky flux is mainly caused by changes in aerosol concentrations or changes in at-
mospheric water vapor; (c) the change in longwave TOA flux, which is mainly caused by changes in atmospheric water vapor concentrations,
atmospheric thermal structure (lapse rate) or greenhouse gas concentrations; (d) changes in longwave and shortwave TOA fluxes, separately,
due to changes in cloudiness and cloud microphysics; (e) the combined change in surface energy balance, including the change in the net
shortwave and longwave energy flux into the surface and changes in latent and sensible heat fluxes; (f) the combined change in horizontal
energy transport and internal energy of the atmospheric column, calculated from the convergence of energy.

and cloud emissivity (1LW↑TOA,clr,ε and 1LW↑TOA,cld,ε, re-
spectively, with the arrow indicating the vector direction
towards space) at TOA, changes in shortwave fluxes due
to changes in clear-sky absorption and reflection as well
as changes in cloudiness and cloud radiative properties
(1SW↓TOA,clr,ε, and 1SW↓TOA,cld), changes in surface en-

ergy fluxes (1F↓SURF, essentially representing changes in
atmosphere-to-ocean net heat flux), and convergence of at-
mospheric energy (1CONV, representing horizontal atmo-
spheric heat transport). These changes are illustrated in
Fig. 1. We use the method presented in Räisänen and Yl-
häisi (2015), Räisänen (2017), and Merikanto et al. (2021).
The method is based on a concept of planetary emissivity
(Cess, 1976), which links the local surface air temperature
(T ) to the outgoing longwave radiation at the top of the at-
mospheric column (LW↑TOA),

εeff =
LW↑TOA
σT 4 , (1)

where εeff is an effective local planetary emissivity, and σ
is the Boltzmann constant. Then, letting [ ] mark the mean
state between baseline and perturbed climates, the change in
outgoing longwave radiation between the two climate states
can be written as

1LW↑TOA = 4σ [εeff]
[
T 3
]
1T + σ1εeff

[
T 4
]

=D1T +1LW↑TOA,ε, (2)

whereD1T is the local change in outgoing thermal radiation
at constant emissivity (i.e at fixed thermal atmospheric struc-
ture and water vapor concentration); hence, D represents
the local Planck feedback parameter. 1LW↑TOA,ε is the lo-
cal change in the outgoing thermal radiation associated with
the change in the local planetary emissivity.

The rate of energy change within an atmospheric column
is given by the energy balance equation:

δE

δt
= SW↓TOA−LW↑TOA−F

↓

SURF+C
←, (3)
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where δE
δt

is the change in internal energy within the column
with respect to time, SW↓TOA is the net incoming flux of solar
radiation, and C← is the horizontal transport of energy to the
column; the net downward heat flux F↓SURF into the surface
is given by

F
↓

SURF = SW↓SURF+LW↓SURF−SH↑−LH↑. (4)

The change in LW↑TOA between two climate states can thus
be written as

1LW↑TOA =1SW↓TOA−1F
↓

SURF+1

(
C←−

δE

δt

)
. (5)

Using Eq. (2) with Eq. (5), the local change in surface tem-
perature can be decomposed to different energetic compo-
nents as

1T =−
1LW↑TOA,ε

D
+
1SW↓TOA

D
−
1F
↓

SURF
D

+
1
(
C←− δE

δt

)
D

=1TLW+1TSW

+1TSURF+1TCONV. (6)

1TLW, 1TSW, and 1TSURF can be calculated directly from
the standard energy flux output of the models, with 1TCONV
as a residual term. 1TCONV includes both horizontal en-
ergy transport and change in local atmospheric energy stor-
age which is insignificant at annual timescales. Furthermore,
1TSW can be decomposed into clear-sky, cloud, albedo, and
nonlinear terms using the Approximate Partial Radiative Per-
turbation (APRP) method (Taylor et al., 2007),

1SW↓TOA =1SW↓TOA,in+1SW↓TOA,clr+1SW↓TOA,cld

+1SW↓TOA,Albedo+1SW↓TOA,nl, (7)

where 1SW↓TOA,in is the change in incoming solar radia-

tion, 1SW↓TOA,clr is the change in net TOA solar radiation
due to changes in clear-sky radiative properties of the atmo-
sphere, 1SW↓TOA,cld the change in net TOA solar radiation

due to changes in clouds, 1SW↓TOA,Albedo the change in net
TOA solar radiation due to change in surface albedo, and
1SW↓TOA,nl is a nonlinear correction term arising from the

APRP method. 1SW↓TOA,in is constant if the incoming solar

flux is constant.1SW↓TOA,nl is typically negligibly small and
can be ignored (Räisänen, 2017; Merikanto et al., 2021).

Also 1LW↑TOA,ε can be decomposed into clear-sky (CS)
and cloud radiative effect (CRE) components:

1LW↑TOA,ε =1LW↑TOA,CS,ε +1LW↑TOA,CRE,ε. (8)

First the left-hand side in Eq. (8) is obtained by substitut-
ing the all-sky LW flux to Eq. (2). Second, the first (clear-
sky) right-hand side term in Eq. (8) is obtained by substitut-
ing the clear-sky flux into Eq. (2). The CRE component is

obtained as a residual. However, 1LW↑TOA,CRE,ε is affected
by changes in noncloud feedbacks (water vapor and air tem-
perature), making it a negatively biased approximation of the
actual cloud longwave feedback. To obtain a more accurate
estimation of the actual cloud contribution to longwave emis-
sivity change, we applied the radiative kernel method of So-
den et al. (2008). With this method, a correction factor can
be calculated:

1LW↑corr =
(
KT −K

clr
T

)
1T +

∑
i

(
KTi −K

clr
Ti

)
1Ti

+

∑
i

(
Kwi −K

clr
wi

)
1(lnq)i, (9)

whereKT ,KTi , andKwi represent radiative kernels where
each state variable (surface temperature, temperature pro-
file and water vapor respectively) is perturbed by unit
change. The corrected clear-sky and cloud longwave emis-
sivity changes then become

1LW↑TOA,clr,ε =1LW↑TOA,CS,ε +1LW↑corr, (10a)

1LW↑TOA,cld,ε =1LW↑TOA,CRE,ε −1LW↑corr. (10b)

All results have been calculated using three different ker-
nels, ECHAM (Block and Mauritsen, 2013), GFDL (Pender-
grass et al., 2018), and HadGEM2 (Smith, 2018), to obtain a
better estimate of the overall cloud effect. The correction fac-
tor of Eq. (9) has been calculated as an average of the three
kernels.

Finally, the local surface temperature responses are de-
composed as

1T =−
1LW↑TOA,clr,ε

D
−
1LW↑TOA,cld,ε

D

+
1SW↓TOA,clr

D
+
1SW↓TOA,cld

D

+
1SW↓TOA,Albedo

D
−
1F
↓

SURF
D

+
1
(
C→− δE

δt

)
D

=−1LWclr,ε −1LWcld,ε +1SWclr+1SWcld

+1SWAlbedo+1SURF+1CONV. (11)

In the above equation, the temperature responses related
to the first five components build up from a sum of the
instant radiative forcing (if any), rapid adjustments asso-
ciated with the component, and a temperature-dependent
feedback which adjusts its magnitude as the surface tem-
perature changes, normalized by D (the Planck feedback).
Therefore, temperature responses related to these terms
are functions of a constant term (forcing and adjustments)
and a time-dependent term (the impact of feedback due to
surface temperature changes). For example, the LW flux
response to a change in clear-sky longwave emissivity
is 1LW↑TOA,clr,ε ≈ F

↑

TOA,LW,clr,ε − λLR+LWWV1T in a

linearized forcing-feedback framework, where F↑TOA,LW,clr
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is the longwave component of the effective radiative forcing,
and λLR+LWWV is the combined longwave lapse-rate and
water vapor feedback (e.g., Crook and Forster, 2011).
Similarly, 1LW↑TOA,cld,ε ≈ F

↑

TOA,LW,cld,ε − λLW_cld1T ,

1SW↓TOA,clr ≈ F
↓

TOA,SW,clr+ λSWWV1T , 1SW↓TOA,cld ≈

F
↓

TOA,SW,cld+ λSW,cld1T , and 1SW↓TOA,Albedo ≈

F
↓

TOA,SW,Albedo+λSW,Albedo1T ;1F↓SURF and1
(
C→− δE

δt

)
do not have direct counterparts in the linear forcing-feedback
analysis, and they have been incorporated as part of the
energy budget in regional forcing-feedback analysis in
various ways in the literature (Crook et al., 2011; Feldl and
Roe, 2013; Lu and Cai, 2009). In the last line of Eq. (11),
the terms without TOA suffix, i.e., the radiative components
divided by D, are in units of temperature. Hereafter, we
will use these terms as shorthand notations when discussing
the various temperature responses in the text.

2.2 Decomposition of the standard deviation in surface
temperature response

Decomposing the temperature responses 1Ti also allows
us to decompose their contributions CSDi to the model-to-
model standard deviations σ1T of the total temperature re-
sponses by,

CSDi =
cov(1Ti,1T )

σ1T
= riσ1Ti , (12)

where cov(1Ti1T ) is the model-to-model covariance be-
tween the ith time-averaged local temperature response com-
ponent and the total local temperature response of a model
experiment, where ri and σ1Ti are their model-to-model cor-
relation and the standard deviation, respectively, and σ1T
is the standard deviation of time-averaged temperature re-
sponses in different models. CSDi values sum up to the in-
termodel standard deviations of the temperature responses,∑

i
CSDi = σ1T . (13)

2.3 Models and simulations

We use climate model data from (PDRMIP) (Myhre et al.,
2017). In PDRMIP, several independent climate models were
used to simulate various idealized climate perturbations. The
models used in this study are listed in Table 1. According
to Knutti (2013), all these models belong to different model
families and hence are largely independent of each other.
Our study uses data from experiments of instant doubling of
CO2 concentrations (co2x2), tripling of CH4 concentrations
(ch4x3), 5-fold increasing sulfate emission (sulx5), and 10-
fold increasing black carbon emissions (bcx10) (see Table 2).
Perturbations were relative to the baseline which had the
present-day (models except HadGEM2-ES) or the preindus-
trial (HadGEM2-ES) levels of anthropogenic forcing agents.

All simulations consisted of 100-year baseline and per-
turbed runs, and the last 50 years of these runs are used

for the temperature response analysis carried out here. The
PDRMIP experiments also included additional fixed sea sur-
face temperature runs, which we use for the calculation of
the effective radiative forcing (ERFfsst) associated with each
climate perturbation. We also calculated the effective radia-
tive forcing by regressing the top-of-atmosphere radiative
imbalance against surface temperature change (ERFbcx10reg)
by using the full 100-year time series of experiments, as
further discussed below. Aerosol emissions were either de-
fined explicitly or by multiplying predefined concentrations
derived from AeroCom Phase II (Myhre et al., 2013) (see
Table 1). Only NorESM1 and MIROC-SPRINTARS include
the aerosol indirect effect (the Twomey effect) for black car-
bon; however, the meteorological adjustments (the semidi-
rect effect) are inherent in all models. The aerosol cloud ef-
fects from sulfate are included in all models except NCAR-
ESM1-CAM4 and GISS-E2-R. We include the six PDRMIP
models which had reported all necessary fields for this anal-
ysis.

2.4 Global TOA radiative forcing and surface
temperature responses of analyzed experiments

In this paper, we focus on decomposed local and global
temperature responses normalized by the global effective
radiative forcing (ERFfsst) obtained from fixed-sea-surface-
temperature experiments for each modeled perturbation. The
normalization by ERFfsst enables us to compare the temper-
ature responses of different modeled perturbations with each
other on a level ground, as ERFfsst varies in sign and mag-
nitude between different perturbations. Also, particularly in
aerosol and methane experiments, the modeled ERFfsst val-
ues vary between different models, likely due to differences
in model aerosol setups and baseline methane concentra-
tions.

Figure 2 shows the calculated effective radiative forcings
and the global mean temperature responses (the difference in
perturbed climate for the years 50–100 and the corresponding
years from the base case) in the analyzed PDRMIP experi-
ments. The effective radiative forcing is calculated from both
fixed-sea-surface-temperature simulations (ERFfsst, no land-
warming corrections included) and by regressing the top-of-
atmosphere radiative imbalance with respect to surface tem-
perature change by using the full 100-year time series of ex-
periments (ERFreg; Gregory et al., 2004).

One of the models (NCAR-CESM1-CAM) was ran using
a slab ocean configuration, while the rest of the models con-
tained fully interactive ocean configurations. Since the equi-
librium is reached in a few decades with slab ocean config-
urations but for the fully interactive ocean configuration it
takes centuries, the perturbed experiments with models be-
sides NCAR-CESM1-CAM are still in a transient state. As
a multimodel mean over the years 50–100 of the perturbed
runs, the doubling of CO2 concentration (red marks) leads to
a 2.27 K (± 0.65 K) rise in global surface temperatures, with
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Table 1. PDRMIP models used in this study, ocean and aerosol configuration of the model, and which aerosol–cloud interactions are included.

Model Ocean setup Aerosol setup Interactive SO4/bc Key references

CanESM2 coupled Emissions yes/no Arora et al. (2011)

NCAR-CESM1-CAM4 slab ocean Fixed concentrations no/no Gent et al. (2011),
Neale et al. (2010)

GISS-E2-R coupled Fixed concentration no/no Schmidt et al. (2014)

HadGEM2-ES coupled Emissions yes/no Collins et al. (2011),
The HadGEM2 Development
Team (2011)

NorESM1 coupled Fixed concentrations yes/yes Bentsen et al. (2013),
Iversen et al. (2013),
Kirkevåg et al. (2013)

MIROC-SPRINTARS coupled HTAP2 Emissions yes/yes Watanabe et al. (2010),
Takemura et al. (2005, 2009)

Table 2. Description of PDRMIP experiments.

Experiment name Description

Baseline anthropogenic forcing agents are at present-day levels
or at preindustrial levels

co2x2 instantaneous doubling of the CO2 concentration
relative to the base case

ch4x3 instantaneous tripling of the CH4 concentration relative
to the base case

sulx5 5-fold increasing sulfate concentration or emissions
relative to the base case

bcx10 10-fold increasing black carbon concentration or emis-
sions relative to the base case

a model-to-model standard deviation (SD) of 0.65 K. The
corresponding values are for tripling of CH4 (blue marks)
0.64 K (± 0.25 K), 5-fold increasing sulfate aerosols (green
marks) −1.77 K (± 0.70 K), and 10-fold increasing black
carbon (purple) aerosols 0.77 K (± 0.54 K). The exact num-
bers for each forcer and model are shown in the Supplement
(Tables S1–S4), and the estimated equilibrium temperature
responses for each of the experiments is shown in Table S5.

The multimodel-mean ERFfsst values for co2x2,
ch4x3, sulx5, and bcx10 experiments are, respec-
tively, 3.66 W m−2 (SD 0.19 W m−2), 1.19 W m−2

(SD 0.19 W m−2), −3.08 W m−2 (SD 0.58 W m−2), and
1.16 W m−2 (SD 0.34 W m−2). When the effective forc-
ings are calculated from regressions using the full
100-year time series, the corresponding ERFreg val-
ues are 3.49 W m−2, (SD 0.41 W m−2), 0.82 W m−2

(SD 0.19 W m−2), −2.61 W m−2 (SD 0.56 W m−2), and
0.74 W m−2 (SD 0.45 W m−2). Tang (2019) has carried out
complete analysis of ERFfsst and ERFreg for the PDRMIP

data, and our values are consistent with the values presented
there. We also refer the reader to Tang (2019) for the ERFfsst
values obtained with the land warming correction accounted
for and for ERFreg calculated from the first 30 years of
perturbed experiments.

Figure 2 shows that only a weak relationship between the
model-to-model values in ERFfsst (or ERFreg) and the model-
to-model spread in temperature response can be seen for
co2x2 and ch4x3 experiments, while some relationship exists
for the sulx5 and bcx10 experiments. Correlations between
the models’ temperature response and their ERFfsst values
for co2x2 and ch4x3 are −0.52 and 0.43, while with sulx5
and bcx10 correlations are 0.61 and 0.78, respectively. As
also visible in Fig. 1 for individual models, the application of
the regression method for the full 100-year time series of ex-
periments provides consistently lower values for ERF com-
pared to values obtained from fixed sea surface temperature
calculations. Overall, ERFfsst appears to be a more suitable
choice for the surface temperature response normalization of
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Figure 2. The global average temperature responses for each experiment and each model (y axis) averaged over years 50–100 after the
sudden introduction of climate perturbations. The calculated ERFs for each experiment and model are shown on the x axis, with non-filled
marks indicating the ERFreg obtained using the Gregory method and the filled markers indicating ERFfsst obtained from fixed-sea-surface-
temperature simulations.

different experiments due to very small values of ERFreg as-
sociated with some bcx10 experiments. Tang et al. (2019)
also calculated ERF values that account for land warming
adjustment, which leads to significantly larger ERF estima-
tion than using fixed sea surface simulations. However, this
does not improve the correlation between temperature and
ERF (see Fig. S5).

3 Results

In the following sections, we present decomposed effec-
tive temperature responses for each analyzed experiment and
model-to-model spread of these decompositions. The effec-
tive surface temperature responses and their decompositions
are calculated for each atmospheric column separately from
the average differences in perturbed climates for the years
50–100 after a sudden perturbation and the corresponding
years from the baseline simulations without perturbations.
The local temperature responses are normalized by the glob-
ally averaged ERFfsst for each experiment (hence the term
effective). Scaling with ERFfsst allows for a simpler compar-
ison of responses between different forcing agents, but it also
changes the sign of responses in the case of sulx5 experi-
ments. This is because, in contrast to the other three forcing
agents, the radiative forcing is negative for increasing sulfate
concentrations.

The local temperature responses related to longwave and
shortwave TOA components build up from a combination of
the local instantaneous top-of-atmosphere radiative forcing
and rapid adjustments associated with each term, as well as
a temperature-dependent feedback which adjusts its magni-
tude as the surface temperature changes, as described in the
end of Sect. 2.1. Therefore, temperature responses related to
these components are functions of a forcing (if any), rapid
adjustments, and a time-dependent term (the impact of feed-
back as surface temperature changes).

The temperature response decomposition applied here re-
lies on a local conservation of energy in each atmospheric
column; hence, the sums of individual temperature response
components generate the local total surface temperature re-
sponses with high accuracy. Below, Sect. 3.1 presents the
globally averaged results. Section 3.2 then presents the re-
gional distributions of the decomposed surface temperature
responses and their zonal averages. Section 3.3 presents the
regional and latitudinal distributions of the model-to-model
standard deviations of the effective temperature components
and the contributions of each of the decomposed surface tem-
perature response components to the total standard devia-
tions of the responses.
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3.1 Decomposed global effective surface temperature
responses for different forcers

Figure 3 shows the globally averaged effective surface tem-
perature responses and their decomposed components for
each model and perturbation experiment, calculated by us-
ing the temperature decomposition method described in
Sect. 2.1. The components of the effective surface temper-
ature responses describe the combined global contributions
of the TOA forcing (in the case of clear-sky 1LWclr and
1SWclr components and 1LWcld and 1SWcld cloud com-
ponents) and the effects of rapid adjustments and feedbacks
associated with each component. Of the components not as-
sociated with the TOA radiative forcing, 1SWAlbedo is di-
rectly related to the response due to surface albedo feedback,
1SURF is a measure of the surface energy flux imbalance on
global surface temperatures due to oceanic heat uptake in the
models, and1CONV describes the impact of horizontal sur-
face energy transport and change in atmospheric heat uptake.
The models which have a fully coupled ocean have not fully
reached equilibrium; therefore, there is still some heat flux
from the atmosphere to the ocean. Thus, the effective temper-
ature response from this heat flux is always negative. Glob-
ally,1CONV averages effectively to zero in each experiment
since the energy transport only redistributes regional surface
temperature effects, and the change in atmospheric heat up-
take is negligible on annual or longer timescales (Räisänen,
2017).

The total effective temperature responses (tempera-
ture response divided by the ERFsst) for co2x2, ch4x3,
sulx5, and bcx10 experiments are 0.63 K W−1 m2 (SD 0.19),
0.54 K W−1 m2 (SD 0.18), 0.57 K W−1 m2 (SD 0.18) and
0.61 K W−1 m2 (SD 0.32), respectively. Hence, the mean
value and the model-to-model spread in total effective tem-
perature response is similar for different forcers, as shown in
previous PDRMIP studies (Richardson et al., 2018; Samset
et al., 2018; Stjern et al., 2017). The change in TOA long-
wave clear-sky emissivity is the key driver of the effective
temperature response for the greenhouse gas experiments
(co2x2 and ch4x3), with the multimodel-mean effective
surface temperature responses to 1LWclr matching nearly
exactly the overall responses (0.60 K W−1 m2

± 0.10 and
0.53 K W−1 m2

± 0.18, respectively). 1LWclr results from
the change in clear-sky planetary emissivity, i.e., from the
combination of the longwave clear-sky radiative forcing and
its adjustments, and the change in the thermal structure of
the atmosphere and water vapor concentrations which evolve
with the surface temperature response (lapse rate and wa-
ter vapor feedbacks). The large model-to-model spread com-
pared to other terms is discussed more in Sect. 3.3. In Sect. 4
we discuss why our model-to-model spread differs from ex-
ample values presented by Zelinkta et al. (2020). For the
aerosol experiments (sulx5 and bcx10), the effective temper-
ature response associated with1LWclr is only a small contri-
bution to the total temperature response. This is because for

aerosols the instantaneous radiative forcing associated with
the longwave clear-sky radiation is small.

The differences in effective temperature responses associ-
ated with 1SWclr between the greenhouse gas and aerosol
forcers can be understood via a similar narrative as in the
case of1LWclr responses. The total effective temperature re-
sponse for aerosol experiments (sulx5 and bcx10) is largely
dominated by the temperature response to 1SWclr, since
much of the instantaneous aerosol radiative forcing takes
place via this channel. For the greenhouse gas experiments,
the temperature response to 1SWclr originates from the
shortwave water vapor feedback and direct greenhouse gas’s
shortwave forcing (Etminan et al., 2016), and its model-mean
contribution to total effective temperature response is compa-
rable to that from the albedo response (∼ 10 %).

The multimodel-mean effective temperature responses re-
lated to 1LWcld and 1SWcld are close to zero for all exper-
iments besides bcx10, for which the cloud temperature re-
sponses modestly oppose the total effective temperature re-
sponse. With bcx10, the net cloud effect is cooling across
different latitudes, despite variations between 1LWcld and
1SWcld. The increase of low-level clouds over the Arctic
regions and reductions of clouds in upper troposphere (see
Fig. S4) due to BC forcing are typical cloud responses, and
these dominate the rapid adjustments and lead to dampen-
ing of the surface response (Stjern et al., 2017). For the
sulx5 experiment, the model-mean 1SWcld is near zero, and
its spread is high between the models. A significant part of
the spread is related to the lack of cloud–aerosol interaction
in NCAR-CESM1-CAM4 and GISS-E2-R. In these models,
1SWcld reduces the sulfate-induced global mean cooling,
whereas it amplifies the cooling in the other models.

The global effective temperature response from the
changes in surface albedo is similar across each experi-
ment. The mean effective temperature response due to albedo
change varies from ∼ 10 % (co2x2, chx3 and bcx10) to 14 %
(sulx5) of the total effective temperature response. In the
aerosol experiments the aerosol setup has a significant effect
on the temperature contribution of the surface albedo change.
Emission-driven models tend to produce a higher albedo ef-
fective temperature response than the concentration-driven
models.

3.2 Origins of regional temperature responses for
different climate forcers

The model-mean spatial distributions of effective tempera-
ture responses and their decomposed components are shown
in Fig. 4. The zonal means of different components are
shown in Fig. 5, where we have summed up the contribu-
tions of surface and atmospheric energy transport compo-
nents (1SURF and 1CONV) due to their strong tendency
to balance each other regionally. Furthermore, the total re-
sponse due to clouds (1LWcld and 1SWcld) is shown in
Fig. 5 together with individual cloud components. Again, we
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Figure 3. The global mean effective temperature response and its decomposition, calculated as the difference between means over the
last 50 years of the perturbed and the baseline experiments. (a) The effective temperature response (absolute temperature response divided
by ERFfsst) for the six models shown with different symbols and four different radiative forcers shown with different colors. (b) The
decomposition of the effective temperature response to different energetic components. Individual panels in (b) describe (from the left)
the contributions to total effective temperature response due to the change in longwave clear-sky emissivity (1LWclr,ε), change in TOA
shortwave radiation (1SWclr), change in longwave cloud emissivity (1LWcld,ε), net ocean surface heat flux (1SURF), and change in
atmospheric energy transport (1CONV).

remind the reader that scaling all results with ERFfsst changes
the sign of responses in the sulx5 experiments.

The spatial distribution of the total effective temperature
response is largely similar for each forcer, although the total
response to aerosols is stronger over the continental north-
ern midlatitudes, compared to total responses to greenhouse
gases, and weaker over the Southern Hemisphere oceans.
Regionally, local maximum effective temperature responses
are found in the Barents Sea for all forcers, with maximum
values of 2.38, 2.04, 2.96, and 2.53 K W−1 m2 for co2x2,
ch4x3, sulx5 and bcx10, respectively. This is most visible
in the LW clear-sky term. Stejrn et al. (2019) showed that the
largest local temperature responses in PDRMIP experiments
are in regions with the largest sea-ice changes. Differences
between forcers can be seen, for example, over the Antarc-
tic region where both greenhouse gas experiments (ch2x2,
ch4x3) produce Antarctic amplification which is not seen in
the aerosol experiments. The effective temperature responses
in the bcx10 experiment show higher contrasts between land
and sea regions than in the other experiments.

For greenhouse gases, the regional effective temperature
responses are mostly associated with the response to1LWclr.
However, with all forcers the spatial distribution of the

1LWclr contribution resembles the overall effective tem-
perature response. The spatial correlation coefficients be-
tween the effective total and 1LWclr-induced temperature
responses for the co2x2, ch4x3, sulx5, and bcx10 experi-
ments are 0.90, 0.81, 0,94, and 0.74, respectively. The differ-
ence between the greenhouse gas and aerosol experiments is
that for greenhouse gases the 1LWclr response includes the
combined effects of forcing, its rapid adjustments and lapse
rate, and water vapor feedbacks, while for aerosols the re-
sponse results only from the rapid adjustments and lapse rate
and water vapor feedbacks. For the co2x2 and ch4x3 exper-
iments, the total effective temperature response and 1LWclr
temperature response differ most in the equatorial Pacific
Ocean, where the 1LWclr response exceeds the total re-
sponse. The high1LWclr temperature response in this region
is compensated by contributions from1SWcld,1LWcld, and
atmospheric energy transport 1CONV (see Fig. 4).

For aerosols, most of the effective temperature response is
due to1SWclr. Besides the modest water vapor contributions
to 1SWclr, this response is directly related to excess scat-
tering and absorption of solar radiation (direct aerosol radia-
tive forcing) due to changes in aerosol concentrations, as was
shown in Merikanto et al. (2021). Most of the sulfate emis-
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Figure 4. The multimodel-mean effective temperature response (row 1) for four different climate forcers, i.e., carbon dioxide (column 1),
methane (column 2), sulfate (column 3), and black carbon (column 4), and its decomposition into different energy balance terms (long- and
shortwave clear-sky (1LWclr, 1SWclr), clouds, surface energy exchange (1SURF), and horizontal energy transport (1CONV)). Dotted
areas show regions where only 4 out of the 6 models agree on the sign of the response.

sions originate from Asia, Europe, and North America, while
most of the black carbon emissions originate from Asia, Eu-
rope, and North America as well as African, South Ameri-
can, and boreal wildfires (Myhre et al., 2013), This makes
the forcing in both cases stronger in the Northern Hemi-
sphere than in the Southern Hemisphere. The 1SWclr tem-
perature response to these emissions can be clearly seen both
for the bcx10 and sulx5 experiments (see Fig. 5). For the
bcx10 experiments, the local effective temperature response
due to 1SWclr exceeds the total effective temperature re-
sponse from the tropics to the northern midlatitudes (Fig. 5).
These local excess warming responses by 1SWclr in bcx10
experiments are counteracted by temperature responses to
changes in atmospheric energy transport and clouds. In the
case of aerosols, 1LWclr contributes to the effective tem-
perature response mainly in the Northern Hemisphere con-
tinents and Arctic sea-ice regions. In the bcx10 experiments,
1LWclr induces a clear negative contribution over ocean re-
gions related to changes in the vertical temperature distribu-
tion of the atmosphere (see Fig. S2). The top-heavy warming
in bcx10 experiment results from fast adjustments as shown
in Smith et al. (2018), where BC absorbs incoming SW ra-
diation, leading to warming of the upper atmosphere and in-

creasing low-level clouds. Furthermore, over oceans there is
more moisture available for low-level cloud formations, lead-
ing to cooling of the surface.

There is significant variation in the regional effective tem-
perature contributions due to clouds between regions and
forcing agents. In the greenhouse gas experiments (co2x2
and ch4x3), the regional effective temperature responses due
to 1LWcld and 1SWcld tend to cancel each other, except
over the Southern Ocean where the total cloud contribution
is dominated by a negative 1SWcld (see Fig. 5). This relates
to a strong increase in cloud cover in the same regions (see
Figs. S4 and S5).

With aerosols, the net effect of clouds is more compli-
cated. Both the sulx5 and bcx10 experiments show a similar
negative effective temperature response due to 1SWcld over
the Southern Ocean as the greenhouse gases. However, north-
ern hemispheric cloud responses are larger in magnitude for
aerosols than for greenhouse gases, particularly for the bcx10
experiment. Throughout all latitudes bcx10 causes a strong
net cloud cooling, except for the polar regions where the net
cloud responses are small. The sign of the regional 1SWcld
effective temperature response in the bcx10 experiments de-
pends strongly on the region. There is a negative tempera-
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Figure 5. Zonal-average multimodel-mean effective temperature response (thick blue lines) and its decomposition into different energetic
terms (thin colored lines) for different climate forcers. Panel (a) shows co2x2, panel (b) shows ch4x3, panel (c) shows sulx5, and panel (d)
shows bcx10.

ture response due to 1SWcld in Asia and Africa but positive
over the Amazon region. This is related to the cloud cover
change, as black carbon increases the cloud cover over Asia
and Africa but decreases it over the Amazon (see Fig. S5) due
to the semidirect aerosol effect of black carbon. Contrary to
bcx10, sulx5 shows a mild positive contribution from clouds
over northern hemispheric midlatitudes and a mild cooling
response in the Arctic regions. However, the strength of the
1SWcld responses in the sulx5 experiments depends on the
inclusion or lack of the aerosol–cloud indirect effect in the
models.

The effective temperature response to surface albedo
change originates from the change in sea-ice and snow cover
and is always positive. Changes in surface albedo have a
modest effect on the global effective temperature response
with all forcers (0.07, 0.06, 0.08, and 0.06 K W−1 m2 for the
co2x2, ch4x3, sulx5, and bcx10 experiments, respectively).
However, in some regions, the effective temperature response
to albedo change exceeds 1 K W−1 m2 for all forcers. Over
the Arctic, the regions of local maximum values are the
same where the overall effective temperature responses are
highest, highlighting the role of sea-ice changes causing lo-
cally high temperature responses. The local maximum val-
ues of the effective temperature response to albedo change
also match with the regions with a positive temperature re-
sponse to ocean heat exchange (1SURF). The change in
surface albedo also enhances the temperature response over
the Southern Ocean, but there the temperature response to

oceanic heat exchange is slightly negative. However, over the
Southern Ocean the temperature response signal to surface
albedo change is mainly visible in the co2x2 and ch4x3 ex-
periments and appears to be driven by the longwave clear-sky
forcing and feedbacks and ocean heat transport.

Over the oceans, 1SURF has a large impact on the effec-
tive temperature response, with the co2x2, ch4x3, and sulx5
experiments all showing negative effective temperature con-
tributions due to 1SURF south of Greenland and positive
contributions over the Barents Sea. With black carbon, a ro-
bust negative signal over the northern North Atlantic is miss-
ing, however, but similarly to other forcers, there is a robust
positive signal over the Barents Sea. As earlier found for in-
creased CO2 by Räisänen (2017), the effects of oceanic heat
transport and storage (1SURF) and atmospheric heat trans-
port (1CONV) strongly oppose each other over the oceans
in the co2x2, ch4x3, and sulx5 experiments. In the sulx5 and
bcx10 experiments, 1CONV also significantly compensates
for the surface temperature effects due to changes in1SWclr,
which reflects changes in the direct aerosol forcing.

3.3 Model-to-model spread in regional effective
temperature responses for different forcers

Similarly to the effective temperature response itself, also its
model-to-model spread (standard deviation) can be decom-
posed into components that sum up to the total spread in
the effective surface temperature response (Sect. 2.2). Fig-
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ure 6 shows the decomposed model-to-model standard devi-
ations of the total effective temperature responses (first row)
for each perturbation experiment and the decomposed contri-
butions of each component to the spread in total responses.
The latitudinal distributions of the different components are
shown in Fig. 7.

The globally averaged magnitude of the model-to-model
spread is similar between co2x2, ch4x3, and sulx5 experi-
ments (0.19, 0.18, and 0.18 K W−1 m2, respectively). Black
carbon induces a much larger variability between the mod-
els (0.32 K W−1 m2). The spatial structure of the model-to-
model spread resembles the spatial structure of the effec-
tive temperature response. Furthermore, the spread in the
temperature response amplifies towards polar regions, but
the polar amplification of the spread is even stronger than
the amplification of the responses. Indeed, the majority of
the model spread comes from the sea-ice regions in the
high latitudes, but the location of the maximum model-
to-model spread varies between forcers. With co2x2 and
ch4x3, the regions with highest model spread are in the
Arctic Ocean region north of Siberia (1.10 K W−1 m2 with
co2x2 and 1.30 K W−1 m2 with ch4x3) and in the Labrador
Sea (0.90 K W−1 m2 with co2x2 and 1.60 K W−1 m2 with
ch4x3). With sulfate, the spread is the largest in the ocean
region between Iceland and Svalbard (2.47 K W−1 m2) and
for black carbon east of Svalbard (2.23 K W−1 m2). In the
co2x2 and ch4x3 experiments, the strongest component in
model-to-model spread is 1LWclr (see Fig. 7), but the par-
tial contributions of other components are also significant.
The amplification of the spread in the effective tempera-
ture response towards high latitudes (Fig. 7) is strongly re-
lated to additional spread arising from differences in the sur-
face albedo response (1SWAlbedo), reflecting differences in
sea-ice and snow cover responses. The total contributions
of cloud responses to the model spread are significant over
southern and northern midlatitudes and to a lesser extent
over the equatorial region. In the Southern Ocean sea-ice re-
gions, the model spread originates from differences in the
1LWclr and 1SWAlbedo responses in the models, as well
as from differences in the oceanic heat exchange (1SURF)
compensated by differences in the atmospheric heat transport
(1CONV) (see Fig. 6). Between 30–45◦ S, the model spread
due to the combined effect of clouds (1SWcld+ d1LWcld)
is also evident. However, in the co2x2 and ch4x3 exper-
iments the 1SWcld and 1LWcld terms often oppose each
other, thus making the combined contribution of clouds to
the total model spreads small in these experiments.

In the aerosol experiments (sulx5 and bcx10) the build-
up of the model-to-model spread is more complicated than
for the greenhouse gas experiments, despite similarities in
the latitudinal distribution of the total spread of the effec-
tive temperature response. The contributions of 1SWclr (the
pathway of aerosol direct radiative forcing) and the com-
bined cloud response (1SWcld+1LWcld) to the total model
spread are much more significant in the aerosol experiments

than in the greenhouse gas experiments. In the aerosol exper-
iments, 1SWclr adds to the model spread over the South-
ern Ocean in both the sulx5 and bcx10 experiments, sup-
presses the model spread over midlatitude and equatorial
oceans in sulx5 and over Southern Hemisphere and equato-
rial continents in bcx10, and adds model spread over north-
ern hemispheric continents (bcx5) and over the Arctic Ocean
(both sulx5 and bcx10). Clouds have a large impact on the
regional model-to-model spread in the aerosol experiments
and dominate the zonal means of the model spread in the
sulx5 experiments outside of the polar regions. Much of the
model spread related to the combined cloud contributions
(1SWcld+1LWcld) results from differences in the aerosol
setups in the models. With aerosol experiments (sulx5 and
bcx10), most of the cloud-induced model-to-model spread is
related to emissions sources and is highly affected by which
aerosol–cloud effects are included in the models. Also for
aerosols, the contributions to model spread due to 1SWcld
and 1LWcld often oppose each other, but the stronger model
spread related to the 1SWcld response dominates the overall
cloud contribution in midlatitudes, while model spread due
to 1LWcld dominates the model spread over the equatorial
regions.

On the other hand, in the aerosol experiments (sulx5 and
bcx10) the atmospheric heat transport (1CONV) tends to
compensate the regional differences in model responses more
efficiently than in the greenhouse gas experiments. In addi-
tion, the total heat transport (1SURF+1CONV) reduces
the zonally averaged model spread (see Fig. 7), particularly
in the case of the bcx10 experiments. Similarly to the green-
house gas experiments, 1LWclr is still a major driver of
model-to-model spread also in the aerosol experiments and
particularly in the high-latitude regions (Fig. 6). Compared
to the greenhouse gas experiments, the aerosol experiments
exhibit much greater contributions from 1SWAlbedo to the
overall model-to-model spread in the Arctic region. In the
co2x2 and ch4x3 experiments, the maximum contributions to
the model spread in the Arctic due to1SWAlbedo are 0.23 and
0.29 K W−1 m2, respectively, while for sulx5 and bcx10 the
corresponding values are 0.32 and 0.41 K W−1 m2, respec-
tively. In the Southern Hemisphere high latitudes, aerosols
and greenhouse gases have a similar structure in model-to-
model variability; however, the aerosol experiments do not
show a clear signal from 1SWcld in the Southern Ocean.

Previously, the model-to-model spread in global climate
sensitivity (equilibrium response to doubled CO2 concen-
tration) has been largely attributed to differences in cloud
feedback strength (Colman, 2003; Zelinka et al., 2020; Zhao
et al., 2016). Our results point to somewhat divergent con-
clusions. Similarly to Hu et al. (2020), our results point to
the water vapor feedback as the main mechanism leading to
model spread. If the model spread is only attributed using
feedback analysis, model differences in the forcing and ad-
justments may counteract some of the differences. However,
it should be noted that our results are based on only six differ-
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Figure 6. The model-to-model standard deviation of the effective temperature response to different climate perturbations (row 1) and its
decomposed different energetic components (rows 2–8). Each column shows results for four different climate forcers, i.e., carbon dioxide
(column 1), methane (column 2), sulfate (column 3) and black carbon (column 4). The global mean values are shown at the bottom right
corner of each panel.

ent models and hence might be biased. For example, Zelinka
et al. (2020) show that the contribution of clouds to the equi-
librium climate sensitivity response exhibits notably large
variation from approximately−0.2 to 3 K for CMIP6 models
and −0.18 to 2.6 K for CMIP5. In our results, 1SWcld and
1LWcld largely cancel each other out in the co2x2 experi-
ments, leading to a smaller combined cloud contribution to
the model spread and contributes only 12 % (see Table S1) to
the global model spread. For comparison, for a sample of 16
CMIP5 models with a transient response to doubling of CO2,
Räisänen (2017) found the clear-sky LW response to be the
largest contributor to the model spread in 34 % of the global
area, whereas the combined cloud response had this position
in 29 % of the world.

4 Discussion and conclusions

In this work, we have conducted an energy balance decom-
position of the near-surface temperature response resulting
from doubling CO2, tripling CH4, 5-fold increasing sulfate
concentrations, and 10-fold increasing black carbon concen-
trations for six independent climate models. The regional

temperature response was then decomposed into contribu-
tions from different energy balance terms, namely, changes
in LW and SW clear-sky and cloud radiative fluxes (SW and
LW), the net surface energy flux (SURF), and horizontal en-
ergy transport (CONV). All forcers produce a similar global
response per unit ERF (0.63, 0.54, 0.57 and 0.61 K W−1 m2

for increasing CO2, CH4, sulfates, and black carbon, respec-
tively). The majority of the globally averaged temperature
change for doubling the CO2 and tripling the CH4 concen-
tration originates from changes in clear-sky planetary emis-
sivity (0.60 and 0.53 K W−1 m2, respectively), i.e., from the
combination of the longwave clear-sky radiative forcing with
the change in the thermal structure of the atmosphere and
water vapor concentrations. In the aerosol experiments (sul-
fate and black carbon), the key driver of surface tempera-
ture response is the change in the clear-sky shortwave ra-
diative flux (0.36 and 0.71 K W−1 m2, respectively) related
to excess scattering and absorption of solar radiation (di-
rect aerosol radiative forcing) due to changes in aerosol con-
centrations. We note that if only models including sulfate
aerosol–cloud interactions are included, the SW cloud terms
are in the same magnitude (1SWclr = 0.25 and 1SWcld =

0.12 K W−1 m2). See below for a more detailed discussion
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Figure 7. Zonal mean of the total standard deviation of the effective temperature response (thick blue line) and the contributions of the
different energy balance terms to it (thin lines; see the legend in a). Panel (a) shows co2x2, panel (b) shows ch4x3, panel (c) shows sulx5,
and panel (d) shows bcx10.

on different aerosol setups. The overall temperature response
to the forcers is largest in high latitudes, where the response
is driven by changes in LW clear-sky fluxes and changes in
surface albedo, except for black carbon for which the major-
ity of the total response comes from the clear-sky SW term
in the high latitudes.

The temperature decomposition method provides a tool
for understanding regional and global temperature changes.
However, the original method is somewhat simplistic in
its treatment of LW cloud processes (Räisänen, 2017). In
Merikanto et al. (2021), we implemented a radiative kernel
correction to make the LW treatment of clouds more realistic.
However, despite this correction, we still have a negative ef-
fective LW temperature response from clouds when the CO2
concentration is doubled, whereas literature suggests a pos-
itive LW cloud feedback (Tomassini et al., 2013; Vial et al.,
2013). This is due to neglecting the positive masking effect
of increasing CO2 on the LW cloud forcing, since the corre-
sponding effects can not be calculated for the other forcing
agents with existing kernels. The applied radiative kernels for
temperature and H2O have a relatively minor effect on global
averages of the LW cloud and clear-sky terms (see Fig. S6).
Similarly to previous studies (Smith et al., 2018), we found
that the relative importance of the kernel correction does not
depend on the radiative kernel used.

In our study, clouds play a minor role in the global mean
temperature response, as the LW cloud and SW cloud terms
tend to cancel each other out. However, regionally the tem-

perature response originating from the clouds is a significant
contributor. For all forcers, the temperature response in the
Antarctic sea-ice region and in the Southern Ocean is damp-
ened by clouds. With BC, clouds dampen the regional tem-
perature response in Asia, North America, Africa, and Eu-
rope and enhance the warming in the Amazon. In contrast
to clouds, with all forcing agents surface albedo changes en-
hance the temperature responses in high latitudes. For green-
house gases, the mild polar amplification in the south is as-
sociated with a negative contribution from the ocean heat ex-
change over the Southern Ocean, negative total cloud contri-
bution and a mild LW clear-sky component.

We also decompose the model-to-model spread into the
contributions of energy balance terms. The model-to-model
spread is the largest in the same regions as the average tem-
perature response, i.e., at high latitudes, where the spread
is driven by differences in the lapse-rate and water va-
por feedbacks (1LWclr) and differences in surface albedo
(1SWAlbedo) changes. For the aerosol-induced temperature
responses, also differences in the direct aerosol forcing
(1SWclr) generate a significant contribution to the model
spread, especially for black carbon. This partly arises from
different aerosol configuration between models.

The aerosol configuration is important in the generation
of the effective temperature response and its model-to-model
spread. In the aerosol experiments, part of the model-to-
model spread originates from the difference between aerosol
setups, with the emission-driven models generating a higher
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effective temperature response than the concentration-driven
models. For sulx5, the concentration-driven models’ mean
effective temperature response is 0.49 K W−1 m2, while for
the emission-driven models it is 0.66 K W−1 m2. The corre-
sponding numbers for the bcx10 experiments are 0.45 and
0.76 K W−1 m2. For the sulx5 experiments, the sign and the
regional distribution of 1SWcld is strongly related to the
aerosol setup; however, it should be noted that two out of the
three concentration-driven models do not include aerosol–
cloud interactions. In the bcx10 experiment, the aerosol setup
modifies the1SWclr and1LWclr temperature responses (see
Fig. S1, showing the decomposed temperature responses sep-
arately for the concentration and emission-driven models for
the sulx5 and bcx10 experiments). The aerosol configuration
also plays a crucial role in the SW albedo response. For both
the sulx5 and bcx10 aerosol experiments, only the emission-
driven models show a significant temperature contribution
from the 1SWAlbedo term (0.1 and 0.08 K W−1 m2, respec-
tively), whereas the corresponding mean values for the con-
centration driven models are only 0.06 and 0.03 K W−1 m2.

We have demonstrated that the mechanisms behind model
uncertainty vary between different regions and forcing
agents. Understanding the atmosphere’s dynamical response
to different forcers is key to understanding future climate
changes at the regional level. This is especially important in
the case of aerosols, which are predicted to decline in the
near future due to climate change and air pollution mitiga-
tion actions.
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ysis can be obtained by contacting the corresponding au-
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