

Supplement of

The effect of $(NH_4)_2SO_4$ on the freezing properties of non-mineral dust ice-nucleating substances of atmospheric relevance

Soleil E. Worthy et al.

Correspondence to: Allan K. Bertram (bertram@chem.ubc.ca)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Information

Table 1. Comparison of studies on the effect of dilute (≤ 0.1 M) (NH₄)₂SO₄ on the freezing properties of non-mineral INS. In this table, ΔT_{50} is the change in median freezing temperature with addition of (NH₄)₂SO₄, ΔT_{90} is the change in the temperature at which 90% of the sample droplets were frozen with addition of (NH₄)₂SO₄, ΔT_{onset} is the change in the onset freezing temperature with addition of (NH₄)₂SO₄, ΔT_{onset} is the change in the onset freezing temperature with addition of (NH₄)₂SO₄, ΔT_{onset} is the change in the onset freezing temperature with addition of (NH₄)₂SO₄, ΔT_{onset} is the change in the onset freezing temperature with addition of (NH₄)₂SO₄, ΔT_{onset} is the change in the onset freezing temperature with addition of (NH₄)₂SO₄, ΔT_{onset} is the change in the onset freezing temperature with addition of (NH₄)₂SO₄, ΔT_{onset} is the change in the onset freezing temperature with addition of (NH₄)₂SO₄, and n_m is the number of ice nucleating active sites per gram of material.

Material	Study	Freezing	[(NH ₄) ₂ SO ₄]	Weight % of	Estimated	Observations
		temperature		material	mass of	
		range			material per	
					droplet	
Snomax	This study	-5 to 0 °C	0.05 M	0.05 wt %	1 x 10 ⁻⁶ g	$\Delta T_{50} \approx 0 \ ^{\circ}\mathrm{C}$
						No significant
						change in n_m
	Koop and	-15 to -5 °C	0 to 0.1 M	~ 0.4 wt%	~ 2 x 10 ⁻¹⁴ g ^a	$\Delta T_{onset} \approx 0 \ ^{\circ}\mathrm{C}$
	Zobrist,					
	(2009)					
Humic acid	This study	-25 to -15 °C	0.05 M	0.05 wt %	1 x 10 ⁻⁶ g	$\Delta T_{50} \approx 0 \ ^{\circ}\mathrm{C}$
						No significant
						change in n_m
	Whale et al.,	-25 to -10 °C	0.015 M	1 wt %	1 x 10 ⁻⁵ g	$\Delta T_{50} \approx 0 \ ^{\circ}\mathrm{C}$
	(2018)					
Leaf derived	Reischel and	-10 to -5 °C	0.01 to 1 M	0.05 wt%	1 x 10 ⁻⁵ g	$\Delta T_{90} \approx 0 \ ^{\circ}\mathrm{C}$
nuclei	Vali, (1975)					

^aCalculated using the reported median droplet diameter of 2.4 µm (Koop and Zobrist, 2009)

10

5

Table 2. Comparison of studies on the effect of dilute (≤ 0.1 M) (NH₄)₂SO₄ on the freezing properties of mineral dust INS. In 20 this table, ΔT_{50} is the change in median freezing temperature with addition of (NH₄)₂SO₄, ΔT_{onset} is the change in the onset freezing temperature with addition of (NH₄)₂SO₄, n_m is the number of ice nucleating active sites per gram of material, and n_s is the number of ice nucleating active sites per surface area of material.

Material	Study	Freezing	[(NH4)2SO4]	Weight %	Estimated	Observations
		temperature		of material	mass of	
		range			material per	
					droplet	
K-feldspar	This study	-15 to -5 °C	0.05 M	0.05 wt %	1 x 10 ⁻⁶ g	$\Delta T_{50} \approx +3 \ ^{\circ}\mathrm{C}$
						n _m increased
						by a factor of
						~10
	Whale et al.,	-20 to -5°C	1.5 x 10 ⁻⁴ to	0.1 wt %	1 x 10 ⁻⁶ g	$\Delta T_{50} \approx +1.5$ to
	(2018)		0.015 M			+3 °C
						n_s increased by
						a factor of ~5 to
						~15
	Kumar et	-35 to -20 °C	~9x10 ⁻⁶ to	2 wt %	$\sim 2 \ge 10^{-11} g^a$	$\Delta T_{onset} \approx \pm 1$ to
	al., (2018)		~0.1 M			+4.5 °C
ATD	This study	-20 to -10 °C	0.05 M	0.05 wt %	1 x 10 ⁻⁶ g	$\Delta T_{50} \approx +5.5 \ ^{\circ}\text{C}$
						n_m increased
						by a factor of
						~20
	Whale et al.,	-20 to -5 °C	0.015 M	0.1 wt %	1 x 10 ⁻⁶ g	$\Delta T_{50} \approx 0$ °C
	(2018)					No significant
						change in n_s
Kaolinite	This study	-25 to -10 °C	0.05 M	0.5 wt %	1 x 10 ⁻⁵ g	$\Delta T_{50} \approx +8 \ ^{\circ}\mathrm{C}$
						n_m increased
						by a factor of
						~30
	Kumar et	-35 to -25 °C	~8 x 10 ⁻⁴ to	5 wt %	~ 4.5 x 10 ⁻¹¹	$\Delta T_{onset} \approx +2$ to
	al., (2019b)		~0.08 M		g ^a	+3 °C
Montmorillonite	This study	-20 to -5 °C	0.05 M	0.5 wt %	1 x 10 ⁻⁵ g	$\Delta T_{50} \approx +5.5 \ ^{\circ}\mathrm{C}$
						n_m increased
						by a factor of
						~10

^aCalculated using an estimated droplet diameter of 12 μm (Kumar et al., 2018, 2019b)