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S1. Chemical composition analysis 

Single-particle mass spectra of dry dispersed TXD particles in the size range between 200 
and 2500 nm (vacuum aerodynamic diameter) were measured in the lab using a laser ablation 
aerosol particle time-of-flight mass spectrometer (LAAPTOF; AeroMegt GmbH) (Shen et al., 2018; 
2019). The powder particles were generated by powder dispersion using a rotating brush generator 5 
(PALAS GmbH, RBG1000), where a small volume of dry samples was dispersed by dry synthetic 
air.  

The averaged mass spectra of TXD01 and TXD05 are shown in Fig. S1. In general, the 
mass spectra of the dry dispersed particles showed high signals of organic markers at mass-to-
charge ratio, m/z, of +44 (COO/C2H6N+), -26 (CN/C2H2

-), -42 (CNO/C2H2O-), -45 (COOH-), -59 10 
(CH2COOH-), -71 (CCH2COOH-), +30 (NO/CH3NH/CH2O+), +58 (C2H5-NH-CH2

+), and +59 
((CH3)3N+). These are typical markers for organic acids and amine-containing particles. For 
example, peaks at m/z of +44 can be attributed to COO/CH2NO+ derived from organic 
compounds/nitrogen-containing organic compounds (Schneider et al., 2011). It should be noted 
that m/z 44 can also be contributed by SiO+, which is a silicon marker (Silva and Prather, 2000). 15 
Further, -45 (COOH-), -59 (CH2COOH-), and -71 (CCH2COOH-) are the markers for carboxylic 
acids. The peak at m/z of +30 can be attributed to NO+ arising from nitrate, ammonium (Murphy et 
al., 2006; Shen et al., 2018), and CH3NH+ from amines (Silva and Prather, 2000; Schmidt et al., 
2017). The other amine markers at +58 (C2H5NHCH2

+) and +59 ((CH3)3N+) were identified by 
previous studies (e.g., Angelino et al., 2001; Pratt et al., 2009; Schmidt et al., 2017). 20 

For the inorganic markers, the characteristic ions were found on the peaks at m/z +23 
(Na+), +24 (Mg+), +27 (Al+), +28 (Si+), +39 (K+), +40 (Ca+), +44 (SiO+), +56 (CaO/Fe+), +64/66 (Zn+), 
-97 (HSO4

-),+30 (NO+), -63 (PO2
-), -79 (PO3

-), and -95 (PO4
-). Calcium and sodium are used as 

additives in the diet fed to the cattle, and they also exist in the unpaved road dust (National 
Research Council, 2000; Ocsay et al., 2006). Manure is a source of ammonium and phosphate. 25 
Minor fractions of other salts and mineral dust constituents found in this work were also identified 
in the field samples (Hiranuma et al., 2011 and references therein). As mentioned above, +30 NO+ 
can arise from ammonium (Murphy et al., 2006; Shen et al., 2018). In addition, -63 (PO2

-), -79 
(PO3

-), and -95 (PO4
-) are phosphate markers (Schmidt et al., 2017; Zawadowicz et al., 2017). 

However, our inorganic quantification is inconclusive, and the result may deviate from other 30 
quantitative composition analyses.  

Comparing TXD01 to TXD05, we found that TXD01 had more intensive phosphate (-63, -
79) and potassium (+39) compared to TXD05 (Fig. S1). In particular, phosphate intensity was a 
few times higher than TDX05. On the other hand, TXD05 had higher signals of sodium- and 
nitrogen-containing compounds as well as stronger amine markers, i.e., m/z +30 (NO/CH3NH+) and 35 
+58 (C2H5-NH-CH2

+), than TXD01.  
A more detailed analysis of the individual mass spectra revealed several distinct particle 

types. Using a combination of the fuzzy c-means clustering (Shen et al., 2019) and the marker peak 
search method based on the above-mentioned and other characteristic ions, we found several 
distinct composition classes, such as "Potassium-rich,” “Potassium and phosphate-rich,” 40 
“Potassium, sodium, and ammonium rich,” “Amine rich,” and “Mineral and Metal-rich.” We note that 
the “rich” used here only indicates intensive characteristic peaks in the mass spectra rather than a 
large mass fraction. Figure S2 shows the fuzzy classification results. As can be seen, there was 
no notable size-dependent composition for both sample types. A significant amount of carboxylic 
acid groups (i.e., m/z -45 and -71) was found in each particle. These prevalent organic markers 45 
suggest that, regardless of the classification, TXD are predominantly organic in nature. This organic 
predominance as well as the substantial inclusion of salts (e.g., potassium) are consistent with our 
previous study of TXD particles’ composition (Hiranuma et al., 2011). We also note that our 
LAAPTOF aerosol particle chemical composition analysis was not intended to find ice nucleation 
(IN) active composition. Ice-nucleating particles (INPs) generally represent a small subset of 50 
aerosol particles (roughly one per million, even at low temperatures). Thus, examining aerosol 
particle chemical composition cannot be directly linked to the role of chemistry in IN. In other words, 
aerosol particle composition does not necessarily represent INP composition. However, aerosol 
particle composition data are important for understanding the general chemical compositions of our 
samples. 55 
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 60 
Figure S1. Laboratory reference mass spectra of dry dispersed TXD01 and TXD05 particles with 
LAAPTOF.  (a) The stacked averaged spectra of cations (top) and anions (bottom) found in TXD01 
and TXD05. (b) The absolute signal difference. These mass spectra represent a compilation of > 
450 of the particles for each type (TXD01: 972 and TXD05: 472). Note that each ion peak intensity 
is normalized to the sum of ion signals in each spectrum before further compilation.  65 

a. 

b. 
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 70 
Figure S2. Particle population fraction and size distribution based on clustered types, for TXD01 

(a) and TXD05 (b). Note that the class named “others” (in grey color) is the small fraction of particles 

with unknown patterns. This class differs across TXD particle samples. 
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S2. Taxonomic diversity of two Texas dust samples.  

Table S1 summarizes our results of metagenomics analysis. Here we describe the 75 
methodology employed for our metagenomics analysis of sample microbiomes. 

 As the first step of the microbiome analysis, all reads with ambiguous bases ("N") were 
removed. Chimeric reads were identified and removed based on the de-novo algorithm of UCHIME 
(Edgar et al., 2011) as implemented in the VSEARCH package (Rognes et al., 2016). The 
remaining set of high-quality reads was processed using minimum entropy decomposition (MED; 80 
Eren et al., 2013 and 2015). MED provides a computationally efficient means to partition marker 
gene datasets into operational taxonomic units (OTUs). Each OTU represents a distinct cluster with 
a significant sequence divergent from any other cluster. By employing Shannon entropy, MED uses 
only the information-rich nucleotide positions across reads and iteratively partitions large datasets 
while omitting stochastic variation. The MED procedure outperforms classical identity-based 85 
clustering algorithms. Sequences can be partitioned based on relevant single nucleotide 
differences without being susceptible to random sequencing errors. This allows a decomposition of 
sequence datasets with a single nucleotide resolution. Furthermore, the MED procedure identifies 
and filters random "noise" in the dataset, i.e., sequences with very low abundance (less than 0.02% 
of the average sample size). 90 

To assign taxonomic information to each OTU, DC-MEGABLAST alignments of cluster-
representative sequences to the sequence database were performed. The most specific taxonomic 
assignment for each OTU was then transferred from the set of best-matching reference sequences 
(lowest common taxonomic unit of all the best matches). A sequence identity of 70% across at least 
80% of the representative sequence was the minimal requirement for considering reference 95 
sequences. Further processing of OTUs and taxonomic assignments were performed using the 
QIIME software package (version 1.9.1, http://qiime.org/). Abundances of bacterial taxonomic units 
were normalized using lineage-specific copy numbers of the relevant marker genes to improve 
estimates. Taxonomic assignments were performed using the NCBI_nt reference database 
(Release 2019-01-05).  100 
 
Table S1. An abundance of major orders of Archaea (a) Bacteria (b) and Eukaryotes (c) in dust 
samples TXD01 and TXD05. Numbers indicate the percentage of the OTUs for each order in the 
total archaeal, bacterial and eukaryotic microbiome. The analysis of the aerosolized TXD01 sample 
did not generate any useful archaeal data. 105 

a. Archaea Taxonomy TXD01 TXD05 

Unclassified  - 0.00% 

Euryarchaeota; Methanobacteria; Methanobacteriales -  93.80% 

Euryarchaeota; Methanomicrobia; Methanomicrobiales -  0.10% 

Euryarchaeota; Methanomicrobia; Methanosarcinales -  0.00% 

Euryarchaeota; Thermoplasmata; Methanomassiliicoccales  - 0.00% 

Thaumarchaeota; Nitrososphaeria; Nitrososphaerales  - 6.10% 

b. Bacteria Taxonomy  TXD01 TXD05 

Unclassified 4.00% 2.60% 

Actinobacteria; Acidimicrobiales 0.80% 0.20% 

Actinobacteria; unclassified 3.00% 2.10% 

Actinobacteria; Actinomycetales 0.20% 0.00% 

Actinobacteria; Bifidobacteriales 0.00% 0.00% 

Actinobacteria; Corynebacteriales 16.40% 13.70% 

Actinobacteria; Frankiales 0.20% 0.00% 

Actinobacteria; Geodermatophilales 0.30% 0.00% 

Actinobacteria; Glycomycetales 0.20% 0.40% 

Actinobacteria; Jiangellales 0.00% 0.00% 

Actinobacteria; Kineosporiales 0.00% 0.00% 

Actinobacteria; Micrococcales 12.30% 2.10% 

Actinobacteria; Micromonosporales 0.10% 0.00% 

Actinobacteria; Propionibacteriales 5.00% 0.20% 

Actinobacteria; Pseudonocardiales 7.70% 39.20% 

http://qiime.org/
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Actinobacteria; Streptomycetales 11.30% 28.60% 

Actinobacteria; Streptosporangiales 2.30% 6.50% 

Actinobacteria; Coriobacteriales 0.00% 0.00% 

Actinobacteria; Solirubrobacterales 0.20% 0.00% 

Bacteroidetes; unclassified 0.10% 0.00% 

Bacteroidetes; Chitinophagales 0.30% 0.00% 

Bacteroidetes; Cytophagales 0.70% 0.00% 

Bacteroidetes; Flavobacteriales 4.20% 0.00% 

Bacteroidetes; Saprospirales 0.10% 0.00% 

Bacteroidetes; Sphingobacteriales 1.10% 0.00% 

Chloroflexi; Sphaerobacterales 4.00% 1.10% 

Cyanobacteria; Chroococcales 0.00% 0.00% 

Fibrobacteres; Fibrobacterales 0.00% 0.00% 

Firmicutes; unclassified 0.10% 0.00% 

Firmicutes; Bacilli; unclassified 0.10% 0.00% 

Firmicutes;  Bacillales 6.10% 2.40% 

Firmicutes; Lactobacillales 0.60% 0.00% 

Firmicutes; Clostridiales 5.90% 0.30% 

Firmicutes; Erysipelotrichales 1.00% 0.10% 

Firmicutes; Acidaminococcales 0.00% 0.00% 

Firmicutes; Tissierellia; unclassified 0.00% 0.00% 

Firmicutes; Tissierellales 0.00% 0.00% 

Gemmatimonadetes; Gemmatimonadales 0.40% 0.00% 

Gemmatimonadetes; Longimicrobiales 0.00% 0.00% 

Nitrospinae; Nitrospinales 0.00% 0.00% 

Planctomycetes; Candidatus Brocadiales 0.00% 0.00% 

Proteobacteria; unclassified 0.10% 0.00% 

Proteobacteria; Alphaproteobacteria; unclassified 0.30% 0.00% 

Proteobacteria; Alphaproteobacteria; Caulobacterales 0.50% 0.00% 

Proteobacteria; Alphaproteobacteria; Rhizobiales 2.90% 0.00% 

Proteobacteria; Alphaproteobacteria; Rhodobacterales 0.50% 0.00% 

Proteobacteria; Alphaproteobacteria; Rhodospirillales 0.00% 0.00% 

Proteobacteria; Alphaproteobacteria; Sphingomonadales 1.60% 0.00% 

Proteobacteria; Betaproteobacteria; Burkholderiales 1.30% 0.00% 

Proteobacteria; Deltaproteobacteria; Desulfuromonadales 0.00% 0.00% 

Proteobacteria; Deltaproteobacteria; Myxococcales 0.00% 0.00% 

Proteobacteria; Gammaproteobacteria; unclassified 0.00% 0.00% 

Proteobacteria; Gammaproteobacteria; Aeromonadales 0.00% 0.00% 

Proteobacteria; Gammaproteobacteria; Cardiobacteriales 0.00% 0.00% 

Proteobacteria; Gammaproteobacteria; Cellvibrionales 0.40% 0.00% 

Proteobacteria; Gammaproteobacteria; Chromatiales 0.00% 0.00% 

Proteobacteria; Gammaproteobacteria; Enterobacterales 1.60% 0.50% 

Proteobacteria; Gammaproteobacteria; Nevskiales 0.00% 0.00% 

Proteobacteria; Gammaproteobacteria; Oceanospirillales 0.00% 0.00% 

Proteobacteria; Gammaproteobacteria; Pseudomonadales 0.60% 0.00% 

Proteobacteria; Gammaproteobacteria; Xanthomonadales 1.00% 0.00% 

Proteobacteria; Bdellovibrionales 0.50% 0.00% 

Rhodothermaeota; Rhodothermales 0.00% 0.00% 

Spirochaetes; Spirochaetales 0.00% 0.00% 

c. Eukaryotes Taxonomy  TXD01 TXD05 

Unclassified 0.30% 1.60% 

Trichiida 0.00% 0.00% 

Oligohymenophorea; Philasterida 0.00% 0.00% 

Oligohymenophorea; Sessilida 0.00% 0.00% 

Phyllopharyngea; Chlamydodontida 0.00% 0.00% 

Spirotrichea; Sporadotrichida 0.00% 0.00% 

Ascomycota; unclassified 1.10% 0.90% 

Ascomycota; Capnodiales 0.00% 0.00% 

Ascomycota; Pleosporales 0.00% 0.00% 

Ascomycota; Eurotiales 1.30% 2.80% 

Ascomycota; Onygenales 1.70% 5.20% 
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Ascomycota; Pertusariales 0.00% 0.00% 

Ascomycota; Leotiomycetes; unclassified 0.10% 0.00% 

Ascomycota; Rhytismatales 0.00% 0.00% 

Ascomycota; Thelebolales 0.00% 0.00% 

Ascomycota; Pezizales 68.00% 20.40% 

Ascomycota; Saccharomycetales 0.10% 0.10% 

Ascomycota; Glomerellales 0.00% 0.00% 

Ascomycota; Hypocreales 16.90% 59.50% 

Ascomycota; Melanosporales 0.10% 0.10% 

Ascomycota; Microascales 0.60% 3.10% 

Ascomycota; Sordariales 5.30% 2.80% 

Basidiomycota; unclassified 0.00% 0.00% 

Basidiomycota; Sporidiobolales 0.00% 0.00% 

Basidiomycota; Tremellomycetes; unclassified 0.00% 0.00% 

Basidiomycota; Trichosporonales 4.40% 3.30% 

Basidiomycota; Wallemiales 0.00% 0.00% 

Chytridiomycota; Rhizophlyctidales 0.00% 0.00% 

Chytridiomycota; Spizellomycetales 0.00% 0.00% 

Chytridiomycota; Neocallimastigales 0.00% 0.00% 

Mucoromycota; Mortierellales 0.00% 0.00% 

Mucoromycota; Mucorales 0.10% 0.20% 
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S3. Comparison of two immersion freezing techniques  
The West Texas cryogenic refrigerator applied to freezing test system (WT-CRAFT) system and 110 
the ice nucleation spectrometer of the Karlsruhe Institute of Technology (INSEKT) were compared 
using an identical sample collected at an open-lot livestock facility (OLLF). This complementary 
analysis was performed to indirectly validate WT-CRAFT against INSEKT measurements. The data 
from both techniques were analyzed and compared in terms of ambient INP concentration, nINP. 
We used the field aerosol particle samples collected using polycarbonate filter samplers at OLLF-115 
3 on July 24th 2019 for this comparison test (Table 2). A 50% split of the filter was used for each 
assay to measure nINP as a function of temperature, nINP(T), by the methods described in Sects. 
2.1.3 (INSEKT) and 2.2.3 (WT-CRAFT). Using this sample for the comparison is reasonable since 
its nINP spectra fall between the measured maximum and minimum nINP(T) in 2017-2019 even when 
considering 95% binomial confidence intervals (CI95%). Thus, it is representative of the field OLLF 120 
nINP(T) data presented in this study. Figure S3 shows the nINP(T) spectra of the same sample 
measured by WT-CRAFT and INSEKT in the temperature range between -8 °C and -22.5 °C. As 
can be seen, both techniques successfully generated nINP(T) data virtually overlapping within error 
bars. At temperature < -22°C, WT-CRAFT measures lower values. The two methods correlate well 
with each other, with the Pearson correlation coefficient (r) of 0.90 (nINP,INSEKT = (2.12 × nINP,WT-CRAFT) 125 
– 11.23).  

 

 
Figure S3. The nINP(T) spectra of aerosol particles collected at OLLF-3 in summer 2019, measured 
with WT-CRAFT (blue) and INSEKT (red).The uncertainties in temperature and nINP are ± 0.5 °C 130 
and ± CI95%, respectively. Error bars are shown at selected temperatures for the WT-CRAFT data 
to make all data points visible. The shaded area represents max – min nINP(T) for all our OLLF 

samples collected in 2017 – 2019. 
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S4. Heat treatment analysis  135 

INSEKT was also used to assess immersion freezing ability and efficiency of heated filter samples. 
As explained in Sect. 2.1.3, a series of diluted samples were examined in INSEKT. We made sure 
to assess overlapping T intervals in a series of measurements to see if immersion freezing spectra 
from multiple measurements agree within CI95%. 

As for heat treatment, the suspension sample tube was immersed in boiling water (~100 140 
°C) for 20 minutes. This temperature was chosen to denature proteinaceous INPs. The choice of 
100 °C for heat treatment seems valid because proteinaceous structures will be destroyed below 
~ 100 °C (Steinke et al., 2016). For example, Szyrmer and Zawadzki (1997) found some known 
cell-free IN-active microbes (e.g., Fusarium nuclei) are stable only up to 60 °C. Other than this 
study, IN activity by bacteria (Morris et al., 2004; Christner et al., 2008), fungi (Humphreys et al., 145 
2001), and lichens (Henderson‐Begg, et al., 2009) has been shown to be heat-sensitive irreversibly 
at 100 oC or below. Other soil organic components can be decomposed at temperatures between 
100 °C and 300 °C (Tobo et al., 2014). Thus, subtracting heated nINP or INP concentration per unit 
geometric particle surface area (ns,geo) from non-heated values allows us to assess their 
contribution to immersion freezing. The rest of the heating procedure is adapted from Schiebel 150 
(2017). Briefly, the aerosol particle suspension (3 mL) from a non-treated stock was first transferred 
to a sterile falcon tube. The screw-cap was closed, such that no water was lost. Then the tube was 
placed together with a precisely fitting styrofoam ring in a water-filled glass beaker. The styrofoam 
ring ensured that the tube was floating, and all of the aerosol suspension was submerged below 
the water surface for best heat transfer. The beaker was placed on a stirring hot plate to boil the 155 
water. 
 The effect of heat treatment on our laboratory and field samples for immersion freezing, 
summarized in Fig. S4, revealed inclusion of heat-labile INPs in our laboratory samples but not in 
the field sample. While the effect of heat treatment is not as obvious as what was previously 
observed in other soil dust samples: e.g., a wheat harvest soil dust in Suski et al. (2018), the TXD01 160 
sample showed a reduction in ns,geo at temperatures above -22 °C after heat treatment. At -19 °C, 
the heat eliminated INPs for our detection limit in this study (i.e., ns,geo ≈ 5 x 105 m-2). Similarly, 
TXD05 also exhibited a sensitivity to heat above -20 °C. Heating reduced the freezing efficiency of 
the TXD05 sample below our detection limit at -19 °C. From our metagenomics analysis, presented 
in Sect. 3.1.4, no known IN-active microbiomes are present in our laboratory samples, which limits 165 
the heat-labile composition to be heat sensitive organics.  

In contrast, heat treatment on the field sample, collected in OLLF-3 on July 24th, 2019, did 
not show substantial sensitivity to heat compared to our laboratory samples. The INP 
concentrations are reduced in the temperature range between -10 °C and -12.5 °C, presumably 
due to the loss of heat-labile INPs. However, the overall heat-stable feature of this field sample 170 
suggests the presence of immersion freezing mode active heat-stable components, including non-
heat-labile organics and mineral compounds. This heat-resistant feature of OLLF samples may 
also be due to their pre-exposure to soil temperature on average higher than ambient temperature 
even at a depth of 150 mm during summer (Cole et al., 2009).  

Previously, Suski et al. (2018) found that heat-treatment (95 °C for 20 min) can suppress 175 
the nINP of wheat harvest soil dust samples from Kansas, USA by more than two orders of 
magnitude at -12 °C. The authors concluded that the decomposition of IN-active heat-labile 
organics and bacteria is responsible for the observed nINP suppression. This result is consistent 
with the impact of heat treatment on the IN efficiency of soil dust samples from different regions, 
such as the one from a lodgepole pine forest in Wyoming, USA (Hill et al., 2016; 105 °C for 20 min) 180 
and another from Central Yakutia (Conen et al., 2011; 100 °C for 10 min). Similarly, Tobo et al. 
(2014) found that 300 °C combustion can reduce the IN fraction of Wyoming soil dust at -24 °C by 
the same orders of magnitude observed by Suski et al. (2018). In contrast, Steinke et al (2016) 
found no notable effect of heat treatment (~ 110 °C) on the Argentinian soil dust IN efficiency at ~ 
-24 °C. This heat-stable nature of Argentinian soil dust may have coincided with its lack of IN-active 185 
proteins and/or heat-sensitive microbes, which aligns with the absence of known IN-active 
microbes in our OLLF samples. In total, our findings and the observations by Steinke et al. (2016) 
eliminate proteinaceous and biological ice-nucleating components as the primary source of IN 
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abundance in air. Thus, the investigation of heat-stable organic INPs is key to further understand 
the properties of soil dust INPs. Future research should focus on understanding how organic 190 
composition influences atmospheric immersion freezing. Our current knowledge regarding IN-
active organics is still limited.  
 

 
 195 
 

Figure S4. Comparisons of immersion 
freezing spectra of laboratory samples, 
TXD01 (a) and TXD05 (b), as well as a 
field sample (c) measured by INSEKT 
(blue); after heating to 100 °C for 20 min 
(red). The field sample was from OLLF-
3 in summer 2019. Removal of heat-
labile INPs can be estimated by the 
reduction in freeing efficiency or INP 
concentrations after heating. Each sub-
panel shows the correlation between 
non-treated and heat-treated results 
along with an r value.  
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S5. Estimated INPs released from an OLLF 

Tapered-element oscillating microbalances (TEOMs; Thermo Scientific Inc., Model 
1400ab; Patashnick and Rupprecht, 1991) were deployed at OLLF-1 to continuously monitor mass 
concentrations of particulate matter less than 10 µm diameter (PM10). Two identical TEOMs were 200 
deployed at OLLF-1: one at the upwind edge and another at the downwind location of OLLF-1 (Fig. 
2). With an operating flow rate of 16.7 LPM, our TEOM measured < 1 g m-3 of PM with a 5-min time 
resolution. Both TEOMs ran continuously during the entire 2016 – 2019 study period except for 
routine maintenance activities.  The inlets of DustTrak and TEOMs were maintained at ~ 1.5 m 
above the ground to be consistent with our polycarbonate filter samplers. It is noteworthy that our 205 
TEOM and DustTrak PM10 measurements agreed within ± 40% on average.  

To complement our observation, we estimated ambient INP concentration at OLLF-1 based 
on our field mass concentration data, using the OLLF-1 TEOM PM10 data. We chose to use the 
OLLF-1 data due to their reasonable spatiotemporal coverage (i.e., two identical model TEOMs 
deployed at the downwind and upwind sites for 2016 – 2019). A summary of TEOM mass 210 
concentration data in different seasons over 2016 – 2019 is available in Table S2. In general, PM10 
mass concentrations from OLLF-1 (average ± standard errors) were high in meteorological 
summers (3.9 × 10-7 ± 5.6 × 10-8 g L-1) and springs (4.5 × 10-7 ± 2.4 × 10-7 g L-1) as compared to fall 
(2.4 × 10-7 ± 4.4 × 10-8 g L-1) and winter (1.5 × 10-7 ± 5.3 × 10-8 g L-1). A similar trend was found for 
the upwind PM10 mass concentration: summer (3.4 × 10-8 ± 9.0 × 10-9 g L-1) ≥ spring (2.8 × 10-8 ± 215 
9.3 × 10-9 g L-1) > fall (1.8 × 10-8 ± 5.7 × 10-9 g L-1) ≥ winter (1.4 × 10-8 ± 7.1 × 10-10 g L-1). But, the 
measured values at the upwind location are consistently an order magnitude lower than that from 
the downwind location. 

Frequently, the observed PM10 concentration exceeded 10-7 g L-1, which is consistent with 
previous studies (Bush et al., 2014). On the other hand, the observed mass concentration at the 220 
upwind sites was lower except for known/recorded interruptions (e.g., a tractor-trailer passing by), 
resulting in a transient increase in mass concentration. As the upwind nINP can be considered non-
negligible (see Sect. 3.2.1), we subtracted mass concentrations measured at a nominal upwind 
edge from the downwind TEOM mass concentration values to compute PM10 from OLLF-1. The 
screened TEOM data were used as ambient particle concentration data to estimate nINP from an 225 
OLLF.  

Due to the atmospheric relevance and temperature coverage extending to -5 °C, we used 
a fit of Field_Median in Table S3 to compute representative ns,geo relevant to OLLF. To convert 
ns,geo to nINP, we have adapted Equations (1) –  (3) in Sect. 2.1.3. Briefly, the measured mass 
concentration, as well as field specific surface area (SSA), were used to convert from ns,geo to nINP: 230 

𝑛𝐼𝑁𝑃(𝑇)(𝐿−1) = 𝑛𝑠,𝑔𝑒𝑜(𝑇)(𝑚−2) × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑆𝐴 (
𝑚2

𝑔
) × Mass Conc. (

𝑔

𝐿
).                        [𝑆1] 

where the geometric SSA value for field data is ~ 0.4 m2 g-1 (Sect. 2.2.3). Our assumption of nINP 
to be linearly scaled to mass concentration is supported by the observed correlation between PM 
mass and nINP (Fig. 7a). 

Table S2 also summarizes the TEOM estimated annual and seasonal nINP from 2016 to 235 
2019. On average, the estimated mean nINP values at -15, -20, and -25 °C in 2016 – 2019 were 
estimated as 46.8 (±25.3 seasonal standard deviation; same hereafter), 288.1 (± 156.1), and 
5,250.9 (± 2,845.6) L-1, respectively. In addition, the median nINP at -15, -20, and -25 °C in 2016 – 
2019 were estimated as 14.7 (± 9.2), 90.9 (± 56.4), and 1,656.3 (± 1,028.1) L-1, respectively. As 
our nINP is linearly scaled to mass concentration (Eqn. S1), estimated nINP showed a similar 240 
seasonal variability as seen in mass concentration. For instance, at -20 °C, the cumulative  nINP 
averages for each meteorological season over three years from 2016 to 2019 were estimated as 
follows: spring (315.4 ± 164.9 L-1) ≥ summer (270.4 ± 39.0 L-1) > fall (165.1 ± 30.8 L-1) ≥ winter 
(106.9 ± 36.8 L-1). The observed high nINP values were expected for such high PM10 mass 
concentrations emitted from the cattle feedlot, which represent an important point source of 245 
agricultural aerosol particle emission. However, we reemphasize that the IN efficiency of OLLF 
aerosol particles is similar to other agricultural aerosol particles found in previous studies as shown 
in Fig. 4.  
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Figure S5 displays the TEOM mass concentration time series over 2016 – 2019 as well 
as cumulative nINP estimated at temperatures of -15 °C, -20 °C, and -25 °C. The background mass 250 
concentration measured at the upwind location (1.7 × 10-8 to 2.6 × 10-8 g L-1) is shown with a red 
dashed line in Fig. S5a and subtracted from the downwind data. The resulting OLLF mass 

concentration was on average 4.12 × 10-7 ± 2.96 × 10-9 g L-1 (or 411.57 ± 2.96 g m-3). Annual 
averages of OLLF mass concentrations are indicated with a blue dashed line in Fig. S5a. On 
average, the downwind concentration exhibited higher mass concentration by more than an order 255 
of magnitude. This result implies a constant high particle load from the OLLF, which was also seen 
by a previous study at the same OLLF (Hiranuma et al., 2011). Seasonal variation is also seen in 
Fig. S5a, as the annual peak of mass concentration (> 10-5 g L-1) coincided with summer in each 
case.  

Figure S5b shows associated nINP estimations. The average estimated INPs at three 260 
different temperatures, -15 °C, -20 °C, and -25 °C, are shown as a gray dashed line, black dashed 
line, and black solid line, respectively. Our results show that the aerosol particles downwind of a 
feedlot contain several thousand INPs L-1 (median  = 1,656 L-1; average = 5,251 L-1) at standard 
temperature and pressure (STP) at -25 °C, which is three orders of magnitude higher than typical 
ambient nINP from continental sources as reported in DeMott et al. (2010). More discussion of OLLF 265 
nINP in comparison with previous studies is provided in Sect. 3.2.3. We note that our estimation of 
nINP is limited at the source location. Further understanding of OLLF-derived INPs in the 
atmosphere will require future research in the dust generation mechanisms in association with local 
dynamics and thermodynamics, vertical distribution of OLLF dust, and their fate in the atmosphere. 

 270 
Figure S5. OLLF INP concentrations. Time-series plot of TEOM mass concentration measured at 
the downwind side of OLLF-1 (a) and cumulative nINP estimated at temperatures of -15 °C, -20 °C, 
and -25 °C (b). In Panel a, inter-annual average mass concentrations of aerosol particles from 
OLLF (blue dashed line) and upwind (red dashed line) are shown (numbers adapted from Table 
S2). In Panel b, likewise, inter-annual average nINP estimated at -15, -20, and -25 °C (reported in 275 
Table S2) are also shown. Meteorological summer in Texas is used for the beginning and ending 
timestamps of each year.  
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Table S2. Inter-annual and seasonal PM10 mass concentrations from OLLF-1 as well as estimated 
nINP. 

    PM10 Mass Concentration (g L-1)  Estimated nINP(T) (L-1) 

    *OLLF Upwind  T = -15 
°C 

T = -20 °C T = -25 °C 

2016 – 2017   1.8E-07 2.6E-08  20.7 127.5 2323.4 
Summer   3.7E-07 5.2E-08  42.3 260.5 4747.7 

Fall   1.6E-07 2.8E-08  18.1 111.7 2036.3 
Winter   6.3E-08 1.5E-08  7.2 44.2 806.2 
Spring   1.6E-07 2.1E-08  17.7 108.9 1985.5 

2017 – 2018   4.8E-07 2.6E-08  54.6 336.4 6133.0 
Summer   3.0E-07 2.3E-08  33.8 208.5 3801.1 

Fall   3.1E-07 1.9E-08  35.4 218.2 3978.3 
Winter   2.5E-07 1.3E-08  27.9 171.7 3129.6 
Spring   9.2E-07 4.6E-08  104.1 641.3 11690.9 

2018 – 2019   3.7E-07 1.7E-08  42.3 260.7 4752.5 
Summer   4.9E-07 2.6E-08  55.6 342.3 6240.6 

Fall   2.4E-07 7.9E-09  26.8 165.3 3013.0 
Winter   1.5E-07 1.3E-08  17.0 104.8 1910.2 
Spring   2.8E-07 1.6E-08  31.8 195.8 3570.0 

*Upwind concentration is subtracted.         

 280 
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Table S3. OLLF-INP parameterization: List of exponential fit parameters to the ns,geo for temperature-binned ensemble datasets of lab study as well as field study. 
The datasets are fitted in the log space. The r value for each fit is also shown. All ns,geo values are in m-2. temperature is in °C. Note the fifth-order polynomial fit 
function is sensitive for all decimals shown here. To reproduce the fitted curves, we needed to include all decimals. 285 

Fitted dataset: 
Sample ID (INSEKT 

sample type) 
Fitted T range 

 Fit Parameters 

ns,geo(T) = exp(a + b·T + c·T2 + d·T3 + e·T4 + f·T5] 

 a (m-2) b (m-2 °C-1) c (m-2 °C-2) d (m-2 °C-3) e (m-2 °C-4) f (m-2 °C-5) r 
Δlog 

(ns,geo)/ΔT 

TXD01 (filter) -29˚C < T < -13.5˚C  -649.60926 
6142404 

-166.17848 
0154537 

-16.33142 
45417013 

-0.78540 
3143752226 

-0.01845 
63650678816 

-0.00017 
023048008878 0.99 0.41 

TXD05 (filter) -28.5˚C < T < -14˚C  -313.30582 
52180446 

-75.91269 
8717769 

-6.90433 
259329411 

-0.30470 
8262752833 

-0.00646 
068282529837 

-5.27553 
644987649e-05 

 
0.62 0.42 

Field_ 
Median 

-25˚C < T < -5˚C  
-29.64701 
0567958 

-16.31705 
83864393 

-2.30949 
598965458 

-0.16257 
04680712 

-0.00552 
393352312353 

-7.23939 
690197926e-05 0.94 0.52 
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S6. List of abbreviations 

 AIDA: aerosol interaction and dynamics in the atmosphere  

 APS: aerosol particle sizer 290 
 BET: Brunauer-Emmett-Teller 

 CI95%: 95% confidence intervals 

 CINP(T): nucleus concentration in ultrapure water suspension 

 CPC: condensation particle counter  

 DF: dilution factor 295 
 DFPC: dynamic filter processing chamber  

 Dve: volume equivalent diameter  

 funfrozen(T): ratio of the number of droplets unfrozen to the total number of droplets 

 ICR: ice crystal residual  

 IN: ice nucleation  300 
 INP: ice-nucleating particle  

 INSEKT: IN spectrometer of the Karlsruhe Institute of Technology 

 LAAPTOF: laser ablation aerosol particle time-of-flight mass spectrometer 

 MED: minimum entropy decomposition  

 Mve: mass of a spherical particle of volume equivalent diameter 305 
 nINP(T): INP concentration per unit standard air volume as a function of temperature 

 nm(T): INP concentration per unit particle mass as a function of temperature  

 ns,geo(T): INP concentration per unit geometric particle surface area as a function of 
temperature 

 O14: O’Sullivan et al. (2014) 310 
 OLLF: open-lot livestock facility 

 OTU: operational taxonomic unit 

 PFS: polycarbonate filter sampler 

 PM: particulate matter 

 PMx = particulate matter smaller than x m in diameter 315 
 r: correlation coefficient 

 RH: relative humidity 

 S16: Steinke et al. (2016) 

 S20: Steinke et al. (2020) 

 SI: Supplemental Information 320 
 SMPS: scanning mobility particle sizer 

 SSA: specific surface area 

 Stotal/Mtotal: geometric specific surface area 

 STP: standard temperature and pressure  

 Su18: Suski et al. (2018) 325 
 T14: Tobo et al. (2014)  

 TEOM: tapered-element oscillating microbalance 

 U17: Ullrich et al. (2017) 

 Vair: sampled air volume 

 Vd: volume of the sample in a well 330 
 Vl: suspension liquid volume 

 WT-CRAFT: West Texas cryogenic refrigerator applied to freezing test system 

 

 

 335 
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