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Abstract. We evaluate the global atmospheric methane col-
umn retrievals from the new TROPOMI satellite instrument
and apply them to a global inversion of methane sources
for 2019 at 2◦× 2.5◦ horizontal resolution. We compare
the results to an inversion using the sparser but more ma-
ture GOSAT satellite retrievals and to a joint inversion us-
ing both TROPOMI and GOSAT. Validation of TROPOMI
and GOSAT with TCCON ground-based measurements of
methane columns, after correcting for retrieval differences
in prior vertical profiles and averaging kernels using the
GEOS-Chem chemical transport model, shows global biases
of −2.7 ppbv for TROPOMI and −1.0 ppbv for GOSAT and
regional biases of 6.7 ppbv for TROPOMI and 2.9 ppbv for
GOSAT. Intercomparison of TROPOMI and GOSAT shows
larger regional discrepancies exceeding 20 ppbv, mostly over
regions with low surface albedo in the shortwave infrared
where the TROPOMI retrieval may be biased. Our inver-
sion uses an analytical solution to the Bayesian inference
of methane sources, thus providing an explicit characteri-
zation of error statistics and information content together
with the solution. TROPOMI has ∼ 100 times more obser-
vations than GOSAT, but error correlation on the 2◦× 2.5◦

scale of the inversion and large spatial inhomogeneity in

the number of observations make it less useful than GOSAT
for quantifying emissions at that scale. Finer-scale regional
inversions would take better advantage of the TROPOMI
data density. The TROPOMI and GOSAT inversions show
consistent downward adjustments of global oil–gas emis-
sions relative to a prior estimate based on national inven-
tory reports to the United Nations Framework Convention
on Climate Change but consistent increases in the south-
central US and in Venezuela. Global emissions from live-
stock (the largest anthropogenic source) are adjusted upward
by TROPOMI and GOSAT relative to the EDGAR v4.3.2
prior estimate. We find large artifacts in the TROPOMI inver-
sion over southeast China, where seasonal rice emissions are
particularly high but in phase with extensive cloudiness and
where coal emissions may be misallocated. Future advances
in the TROPOMI retrieval together with finer-scale inver-
sions and improved accounting of error correlations should
enable improved exploitation of TROPOMI observations to
quantify and attribute methane emissions on the global scale.
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1 Introduction

Methane (CH4) is the second most important anthropogenic
greenhouse gas in the atmosphere after CO2. It is emitted
to the atmosphere naturally, mainly from wetlands. Anthro-
pogenic sources include the oil–gas industry, coal mining,
livestock, rice agriculture, landfills, and wastewater treat-
ment. Methane loss in the atmosphere is mainly by oxidation
by the hydroxyl radical (OH). This oxidation leads to the pro-
duction of other greenhouse gases (ozone, stratospheric wa-
ter vapor, and CO2), which together with methane add up to
a radiative forcing of 0.97 Wm−2 since pre-industrial times
(Myhre et al., 2013). Climate change action on methane re-
quires quantification of its emissions, but current inventories
are highly uncertain (Saunois et al., 2020). Satellite observa-
tions of atmospheric methane columns can evaluate and im-
prove these inventories using inverse analyses (Jacob et al.,
2016), and this has been extensively done with the Green-
house Gases Observing Satellite (GOSAT) launched in 2009
(Monteil et al., 2013; Cressot et al., 2014; Alexe et al., 2015;
Pandey et al., 2016; Maasakkers et al., 2019; Lu et al., 2021;
Y. Zhang et al., 2021). The TROPOspheric Monitoring In-
strument (TROPOMI) launched in October 2017 now pro-
vides a much higher observation density than GOSAT (Hu
et al., 2018). Here we present a global inverse analysis of one
year (2019) of these early TROPOMI observations to evalu-
ate their capability for quantifying methane emissions, com-
paring to an inversion for that same year using the sparser but
more mature observations from GOSAT.

Both TROPOMI and GOSAT measure atmospheric
methane columns by backscatter of solar radiation in the
shortwave infrared (SWIR). TROPOMI observes light inten-
sity at the 2305–2385 nm wavelength and retrieves methane
columns with a full-physics algorithm (Connor et al., 2008;
Butz et al., 2011). GOSAT observes light intensity at 1630–
1700 nm wavelengths, which enables retrieval by the CO2
proxy method taking advantage of CO2 absorption in that
same band (Parker et al., 2020a). The full-physics approach
does not depend on prior information on the CO2 column, but
the retrieval is more vulnerable to scattering artifacts. There-
fore, TROPOMI has very strict filtering, and its retrieval suc-
cess rate is only 3 % (Hasekamp et al., 2021). GOSAT has a
much higher retrieval success rate of 24 % limited mainly
by cloud cover (Parker et al., 2020a). The reported preci-
sions of TROPOMI and GOSAT retrievals are comparable,
with a value of 0.7 % for GOSAT (Kuze et al., 2016; Parker
et al., 2020a) and 0.6 % for TROPOMI (Butz et al., 2012).
TROPOMI provides continuous daily global coverage with
a nadir pixel resolution of 7 km× 7 km (5.5 km× 7 km after
August 2019). GOSAT samples circular pixels of 10.5 km di-
ameter separated by 250 km with a 3 d return time in its stan-
dard viewing mode.

Inferring emissions from methane satellite observations
requires inversion with a chemical transport model (CTM)
that relates emissions to atmospheric concentrations. This is

generally done by Bayesian inference of a posterior emis-
sion estimate given the observations and a prior estimate (Ja-
cob et al., 2016). Most inverse analyses use four-dimensional
variational data assimilation (4D-Var) to solve the Bayesian
problem numerically, which enables inference of emissions
at any resolution but does not readily provide error statis-
tics (Meirink et al., 2008; Monteil et al., 2013; Wecht et al.,
2014; Stanevich et al., 2021). Analytical solution is possi-
ble if the CTM is linear, as is the case for methane, and has
the advantage of including posterior error statistics and hence
information content as part of the solution (Brasseur and Ja-
cob, 2017). It requires explicit construction of the Jacobian
matrix of the CTM, which is computationally expensive, but
this is readily done with massively parallel computing. Once
the Jacobian matrix has been constructed, it can be applied
to conduct ensembles of inversions at no added cost, explor-
ing the dependence of the solution on inversion parameters
or observational data selection. The analytical method can
be applied as a Kalman filter by updating methane emissions
sequentially (e.g., Chen and Prinn, 2006; Fraser et al., 2013;
Henne et al., 2016), but optimizing all emissions together
over the period of interest makes the best use of the informa-
tion content from the observations (Maasakkers et al., 2019;
Lu et al., 2021; Y. Zhang et al., 2021). Analytically based in-
versions of GOSAT satellite data have been used to pinpoint
areas where the inversion results are most informed by the
observations (Turner et al., 2015; Maasakkers et al., 2019),
to diagnose the ability of the inversion to separate contribu-
tions from different source sectors (Maasakkers et al., 2021;
Y. Zhang et al., 2021) and from sources and sinks (Y. Zhang
et al., 2018; Maasakkers et al., 2019), and to compare the in-
formation content from satellite and suborbital observations
(Lu et al., 2021; Baray et al., 2021).

Here we present global analytical inversions of TROPOMI
and GOSAT data for 2019 at 2◦× 2.5◦ resolution to infer
methane sources and sinks and to attribute emissions to dif-
ferent sectors. This involves evaluation and intercomparison
of the TROPOMI and GOSAT retrievals prior to the inver-
sion, as any biases in the observations will propagate to the
inversion results. We compare inversion results for the two
instruments separately and jointly. We diagnose the informa-
tion content of the inversion for each instrument and for the
joint system in different regions of the world. This enables
us to assess the consistency and complementarity of the two
data sets.

2 Methane observations

TROPOMI and GOSAT are in Sun-synchronous orbits with
local overpass solar times of 13:30 and 13:00, respectively
(Veefkind et al., 2012; Kuze et al., 2016). We use the ver-
sion 1.03 TROPOMI methane retrieval from the Netherlands
Institute for Space Research (Hu et al., 2016) (http://www.
tropomi.eu/data-products/methane, last accessed: 8 August
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Figure 1. Mean column-averaged dry methane mixing ratios (XCH4 ) measured by TROPOMI and GOSAT in 2019 and number of observa-
tions from each instrument in that year on the GEOS-Chem 2◦× 2.5◦ grid. The data have been filtered using “qa_value”≥ 0.5 for TROPOMI
and “xch4_quality_flag”= 0 for GOSAT and are shown on the GEOS-Chem 2◦× 2.5◦ grid. Note the difference in scale for the number of
observations by TROPOMI and GOSAT.

2020) and the GOSAT methane retrieval version 9.0 of
the University of Leicester obtained by the CO2 proxy
method (Parker and Boesch, 2020) (https://catalogue.ceda.
ac.uk/uuid/18ef8247f52a4cb6a14013f8235cc1eb, last ac-
cessed 29 December 2020). We use 1 year of data
(January–December 2019) to optimize methane emissions
for 2019. We only include high-quality retrievals with
“qa_value”≥ 0.5 for TROPOMI (S5P MPC, 2020) and
“xch4_quality_flag”= 0 for GOSAT. The TROPOMI and
GOSAT products are provided as column-averaged dry
methane mixing ratios (XCH4 ) along with the prior vertical
profiles used in the retrieval procedures and the averaging
kernel vectors describing the altitude-dependent sensitivity
of the retrievals.

The left panels of Fig. 1 show the annual mean XCH4 ob-
servations from TROPOMI and GOSAT in 2019. We ex-
cluded observations poleward of 60◦ where (1) persistent
snow cover leads to low albedo (Hasekamp et al., 2021),
(2) low Sun angles and extensive cloud cover make the re-
trieval more difficult, and (3) stratospheric CTM bias can af-
fect the inversion (Turner et al., 2015). The TROPOMI re-
trieval is successful for only 2 % of scenes at 60◦ S–60◦ N,
still producing 56 684 576 TROPOMI observations, which is
2 orders of magnitude higher than for GOSAT (544 911 ob-
servations after filtering with the quality flag). As shown in
the right panel of Fig. 1, TROPOMI observations are rel-
atively sparse over persistently cloudy regions such as the
wet tropics. GOSAT has relatively more success over these
regions because of the use of the CO2 proxy method. The
GOSAT CH4 product also includes observations over the
ocean for sunglint geometries, and these are not included in
the current TROPOMI product.

We conducted a common evaluation of the TROPOMI and
GOSAT observations with ground-based Total Carbon Col-
umn Observing Network (TCCON) measurements of XCH4

(TCCON Team, 2017), using the GEOS-Chem CTM to re-
solve differences in prior estimates and averaging kernels
between the TROPOMI, GOSAT, and TCCON retrievals
(L. Zhang et al., 2010). TCCON is a network of ground-
based, sun-viewing, near-infrared Fourier transform spec-
trometers to measure greenhouse gases (Wunch et al., 2011)
and evaluate satellite retrievals (Parker et al., 2011; Butz
et al., 2011; Houweling et al., 2014). Only nine TCCON sites
have continuous observations for the whole year of 2019, but
21 sites (Białystok, Bremen, Burgos, California Institute of
Technology, Darwin, Edwards, Garmisch, Izana, Jet Propul-
sion Laboratory, Sega, Karlsruhe, Lauder, Lamont, Orléans,
Park Falls, Paris, Rikubetsu, Sodankylä, Tsukuba, Wollon-
gong, and Zugspitze) have observations over the period of
May 2018–April 2019 when TROPOMI observations started
to be available. We therefore focus on the period from May
2018 to April 2019 for evaluation.

Following L. Zhang et al. (2010), we remove the discrep-
ancy from the use of different prior profiles in the TROPOMI,
GOSAT, and TCCON retrievals by substituting a common
fixed prior profile, which we take as the annual averaged
TROPOMI prior profile between 30◦ S and 30◦ N. This sub-
stitution is done only for the purpose of intercomparison; it
is not used subsequently in the inversion. We average the
individual retrievals over 2◦× 2.5◦ GEOS-Chem grid cells
and apply the averaging kernels of the individual retrievals
to the GEOS-Chem simulated vertical profiles to produce a
model simulation of the observations. We calculate the differ-
ences 1 between satellite and TCCON measurements with
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Figure 2. Biases of TROPOMI and GOSAT methane (XCH4 ) re-
trievals relative to TCCON. Values are averages for May 2018–
April 2019 at each of the 21 sites of the TCCON network and have
been corrected for differences in averaging kernels and prior verti-
cal profiles on the 2◦× 2.5◦ GEOS-Chem grid as described in the
text. The large correlated biases at Zugspitze and Izana can be ex-
plained by the high altitude of these TCCON sites. Statistics for the
other 19 sites are given in the inset including the mean bias (MB),
the regional bias (RB) calculated as the standard deviation of the
bias between satellite and individual TCCON stations, and the co-
efficient of determination (R2) between the TROPOMI and GOSAT
biases.

reference to the GEOS-Chem CTM using

1(TROPOMI-TCCON)=
(
X̂CH4,TROPOMI− X̂CH4,CTM_TROPOMI

)
−

(
X̂CH4,TCCON− X̂CH4,CTM_TCCON

)
,

(1)

and

1(GOSAT-TCCON)=
(
X̂CH4,GOSAT− X̂CH4,CTM_GOSAT

)
−

(
X̂CH4,TCCON− X̂CH4,CTM_TCCON

)
,

(2)

where X̂CH4,TROPOMI, X̂CH4,GOSAT, and X̂CH4,TCCON
are methane column mixing ratios from TROPOMI,
GOSAT, and TCCON after substitution with the same
prior profile. X̂CH4,CTM_TROPOMI, X̂CH4,CTM_GOSAT, and
X̂CH4,CTM_TCCON are simulated methane column mixing
ratios with the appropriate averaging kernels applied.

Figure 2 shows the mean differences of TROPOMI and
GOSAT with TCCON for the 21 TCCON sites. There are
large and correlated differences at the Izana and Zugspitze
mountaintop sites where we would not expect consis-
tency with the satellite data averaged over the 2◦× 2.5◦

grid. For the remaining 19 sites, the mean biases are
−2.7 ppbv for TROPOMI and −1.0 ppbv for GOSAT. Of

more interest for the inversion are systematic errors on re-
gional scales (regional bias), which can be estimated by
the standard deviations of 1 (TROPOMI−TCCON) and
1 (GOSAT−TCCON) across all TCCON sites (Buchwitz
et al., 2015). The regional bias diagnoses the reliability of the
observed methane gradients for inferring methane sources in
the inversion. We find regional biases of 2.9 ppbv for GOSAT
and 6.7 ppbv for TROPOMI. The regional bias for GOSAT
is below the “breakthrough requirement” of 5 ppbv set by
Buchwitz et al. (2015) as needing to be achieved for regional
or global inversions of satellite observations, and the regional
bias for TROPOMI is below their “threshold requirement” of
10 ppbv. This implies that GOSAT observations are of high
quality for quantifying methane sources while TROPOMI
observations are still useful. The regional bias of GOSAT
compared to TCCON is smaller than the value of 3.9 ppbv
reported by Parker et al. (2020a), which may reflect at least
in part our accounting for differences in averaging kernels
and prior vertical profiles. The larger regional biases in the
TROPOMI data may reflect error correlations of retrieved
XCH4 and SWIR surface albedo (Hu et al., 2018; Hasekamp
et al., 2021; Schneising et al., 2019).

We apply the same method for a more extensive analy-
sis of regional differences between TROPOMI and GOSAT.
Figure 3 shows the global distributions of the seasonal mean
differences 1 between the two instruments, again correct-
ing for differences in prior estimates and averaging kernels.
The seasonal global mean biases for TROPOMI relative to
GOSAT are consistent with the comparison to TCCON, but
the regional biases are larger (8.8–12.8 ppbv), and some re-
gions show differences of magnitude comparable to the re-
gional enhancements of Fig. 1. The regional biases tend to be
consistent across seasons, except for positive biases north of
40◦ N in DJF that could be associated with snow cover. These
biases may affect TROPOMI’s constraints on the seasonal
variations in methane sources. We find particularly large dif-
ferences between TROPOMI and GOSAT where the SWIR
surface albedo is smaller than 0.1 as in Brazil, central Africa,
and subarctic regions (see Fig. S1 in the Supplement). We
may therefore expect large differences between TROPOMI
and GOSAT inversions for these regions.

3 Inversion method

We assemble the 2019 TROPOMI and GOSAT observations
of XCH4 into an observation vector y, and we use the obser-
vations to optimize a state vector x consisting of methane
sources and sinks. We use the GEOS-Chem global CTM
version 12.5.0 (https://doi.org/10.5281/zenodo.3403111) at
2◦× 2.5◦ grid resolution with 47 vertical layers as the for-
ward model in the inversion. The model is essentially linear
except for a small nonlinearity from the optimization of OH
concentrations (Maasakkers et al., 2019). Prior estimates xa
for methane sources are compiled from bottom-up invento-
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Figure 3. Seasonally averaged differences (1) of XCH4 between TROPOMI and GOSAT retrievals for May 2018–April 2019 on a 4◦× 5◦

grid. The retrievals have been corrected for differences in averaging kernels and prior vertical profiles as described in the text. MB is the
global mean bias of TROPOMI relative to GOSAT, and RB is the regional bias as defined by the standard deviation of1 on the 4◦× 5◦ grid.

ries. We solve the Bayesian problem analytically to obtain
both the posterior solution x̂ and its error covariance matrix
Ŝ. We conduct inversions using TROPOMI and GOSAT ob-
servations separately and together (joint inversion), and we
also conduct additional inversions to examine the sensitivity
of results to different parameters.

3.1 GEOS-Chem simulations and prior estimates

GEOS-Chem is driven by Modern-Era Retrospective anal-
ysis for Research and Applications, Version 2 (MERRA-2)
meteorological fields from the NASA Global Modeling and
Assimilation Office (GMAO). The original methane simu-
lation is described by Wecht et al. (2014). Previous GEOS-
Chem-based inversions at 4◦× 5◦ horizontal resolution had
excessive stratospheric methane poleward of 60◦ in winter–
spring due to the inability to reproduce the polar vortex dy-
namical barrier, and this needed to be corrected in the inver-
sion (Turner et al., 2015; Y. Zhang et al., 2021). The polar
vortex dynamics are much better captured at 2◦× 2.5◦ res-
olution (Stanevich et al., 2021; Y. Zhang et al., 2021), and
we do not use satellite data poleward of 60◦ in our inversion
anyway. There is therefore no need for stratospheric bias cor-
rection.

Table 1 summarizes the prior estimates of the sources and
sinks of methane, and Fig. 4 shows the spatial distribution
of the sources. The emissions from oil, gas, and coal ex-
ploitation are from the 2016 Global Fuel Exploitation In-
ventory (GFEI) version 1.0 (Scarpelli et al., 2020), which
spatially allocates national emissions reported to the United
Nations Framework Convention on Climate Change (UN-
FCCC). Other anthropogenic sources (livestock, landfills,
wastewater, rice, etc.) are from the EDGAR v4.3.2 inventory
in 2012 as global default (Janssens-Maenhout et al., 2019)
and the gridded version of the US Environmental Protection

Agency (EPA) greenhouse gas inventory in 2012 for the con-
tinental US (Maasakkers et al., 2016). Seasonalities of rice
and manure emissions are based on B. Zhang et al. (2016)
and Maasakkers et al. (2016), respectively.

We use monthly wetland methane emissions in 2019 from
the 18-member ensemble mean of the WetCHARTs version
1.3.1 inventory (Bloom et al., 2017), which has good per-
formance in reproducing the observed wetland methane sea-
sonal cycle for most regions (Parker et al., 2020b). Other nat-
ural sources include open fire emissions in 2019 from the
Global Fire Emissions Database version 4 (GFED4) (van der
Werf et al., 2017), termite emissions from Fung et al. (1991),
and geological seepage from Etiope et al. (2019) scaled to
the global magnitude of 2 Tga−1 from Hmiel et al. (2020).
The total methane sources in the prior estimate add up to
542 Tga−1, which is smaller than the bottom-up inventory
estimate of 594–881 Tga−1 from the Global Methane Bud-
get 2020 (Saunois et al., 2020). The difference is mainly
caused by the higher estimates of emissions from freshwa-
ter (117–212 Tga−1), seeps (18–65 Tga−1), oil and gas (72–
97 Tga−1), and coal (29–61 Tga−1) in Saunois et al. (2020).
The freshwater source in our prior estimate is included in the
wetland sector as represented by WetCHARTs (Bloom et al.,
2017).

The main sink of methane is oxidation by the hydroxyl
radical (OH) in the troposphere (Ehhalt and Heidt, 1973),
with a corresponding lifetime of 11.2± 1.3 years as con-
strained by the methyl chloroform proxy (Prather et al.,
2012). Our prior estimate for the loss of methane from reac-
tion with tropospheric OH is calculated using archived 3-D
climatological monthly fields of OH concentrations from a
GEOS-Chem full-chemistry simulation (Wecht et al., 2014),
yielding a methane lifetime of 10.5 years due to oxidation by
tropospheric OH. Additional minor losses include oxidation
by tropospheric Cl atoms computed using archived Cl con-
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Table 1. Global methane budget for 2019.

Prior estimatea [Tga−1] Posterior estimates [Tga−1]

TROPOMI GOSAT Joint

Total sources 542 556 562 570

Anthropogenic 341 336 371 363
Livestock 116 126 143 139
Oil and gas 66 53 54 56
Rice 38 NRb 43 NRb

Wastewater 37 44 48 44
Coal 31 NRb 26 NRb

Landfills 30 27 30 31
Other anthropogenic 23 26 27 26

Natural 201 220 191 207
Wetlands 168 195 163 183
Termites 12 12 13 12
Open fires 19 11 13 10
Seeps 2 2 2 2

Total sinks 563 543 543 533

Tropospheric OH 489 468 468 458
Soil uptakec 34 34 34 34
Stratospheric lossc 35 35 35 35
Tropospheric Clc 6 6 6 6

Imbalance −21 13 19 37
Lifetime against tropospheric OH [a]d 10.5 11.1 11.1 11.3

a Prior anthropogenic source estimates are from EDGAR v4.3.2 (Janssens-Maenhout et al., 2019) in 2012, superseded by oil, gas,
and coal emissions from GFEI (Scarpelli et al., 2020) for 2016 and gridded EPA inventory data for the US (Maasakkers et al., 2016).
Prior wetland emissions in 2019 are from WetCHARTs (Bloom et al., 2017). Open fire emissions are from the Global Fire Emissions
Database version 4 (GFED4) in 2019 (van der Werf et al., 2017). Termite emissions are from Fung et al. (1991). Geological seepages
are from Etiope et al. (2019) scaled to the global magnitude from Hmiel et al. (2020). b Not reported because of the potential for bias
in the sectoral attribution of TROPOMI inversion results for China, which is a major global source of emissions from rice and coal.
See text for details. c These minor sinks are not optimized by the inversion. d Lifetime of total atmospheric methane against oxidation
by tropospheric OH.

Figure 4. Spatial distribution of prior methane emissions in 2019. The blue box over China in panel (a) indicates the region used for
seasonality analysis in Fig. 8. The blue boxes in panel (b) indicate the 14 subcontinental regions of Y. Zhang et al. (2021) for which monthly
wetland emissions are aggregated.

centration fields from Wang et al. (2019), stratospheric oxi-
dation computed with archived 2-D monthly loss frequencies
from the NASA Global Modeling Initiative model (Murray
et al., 2012), and soil uptake of methane specified following
Murguia-Flores et al. (2018).

3.2 Analytical inversion

We apply Bayesian inference to optimize a state vector con-
sisting of (1) annual mean non-wetland methane emissions
for land-containing 2◦× 2.5◦ grid cells (4020 state vector
elements), (2) monthly wetland methane emissions for the
14 subcontinental regions of Fig. 4 (168 elements), and
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(3) annual hemispheric tropospheric OH concentrations (2
elements). Trade-off is needed between spatial and tempo-
ral resolution in the state vector to avoid smoothing error
in the inversion (Wecht et al., 2014) and for computational
tractability. For non-wetland emissions we use high spatial
resolution but only optimize the annual mean values because
seasonality is relatively small and predictable. For wetland
emissions, we cannot assume that the prior seasonality is cor-
rect (Maasakkers et al., 2019) and instead optimize monthly
emissions at coarse spatial resolution. This setup is the same
as in Lu et al. (2021) and Y. Zhang et al. (2021) except for
the higher horizontal resolution applied to non-wetland emis-
sions. Together we have 4190 state vector elements, which
require a total of 4190 perturbed GEOS-Chem simulations
and a base simulation to construct the full Jacobian matrix.
This is readily done on a high-performance computing plat-
form as an embarrassingly parallel workload. Initial condi-
tions on 1 January 2019 are obtained from a standard GEOS-
Chem simulation using the prior emission estimates and a
10 year spin-up and are scaled by a globally uniform factor of
0.97 in order to match the global mean column mixing ratio
retrieved from TROPOMI between 1 and 10 January 2019.
This initialization efficiently reduces the normalized mean
square error (NMSE) between GEOS-Chem and TROPOMI
observations on 1 January 2019 from 0.37 to 0.02 and is used
for both TROPOMI and GOSAT inversions.

The posterior estimate as defined by Bayesian inference
assuming Gaussian error statistics is obtained by minimizing
the scalar cost function J (x):

J (x)= (x−xa)
TS−1

a (x−xa)+ γ (y−Kx)TS−1
o (y−Kx),

(3)

where K is the Jacobian matrix describing the sensitivity of
the observations to the state vector as simulated by GEOS-
Chem, Sa is the prior error covariance matrix, So is the ob-
servational error covariance matrix assumed to be diagonal,
and γ is a regularization parameter that accounts for the ef-
fect of unresolved correlation in the observational error.

Sa is constructed by assuming 50 % prior error standard
deviation for all non-wetland emissions on the 2◦× 2.5◦ grid
and 10 % prior error standard deviation for hemispheric an-
nual mean OH concentrations, with no error correlations.
Prior error variances and covariances for monthly wetland
emissions in the 14 subcontinental regions are calculated us-
ing the WetCHARTs model ensemble (Bloom et al., 2017)
following Y. Zhang et al. (2021).

Observational error variances (diagonal elements of So)
are calculated using the residual error method (Heald et al.,
2004) as the variance of the residual difference between
observations and the GEOS-Chem prior simulation on the
2◦× 2.5◦ grid after subtracting the mean difference. This
method sums up errors from instrument retrieval, represen-
tation, and GEOS-Chem transport. We find a global an-
nual mean error of 13 ppbv for TROPOMI and 14 ppbv for

GOSAT. For cases where the calculated error is smaller than
the instrument precision reported in the satellite retrieval, we
use the latter instead (annual means of 9 ppbv for GOSAT
and 2 ppbv for TROPOMI).

So is specified as diagonal but there is in fact some ob-
servational error covariance if only from the GEOS-Chem
transport. For TROPOMI in particular, there may be many
individual observations in a single GEOS-Chem grid cell for
a given day, and the corresponding GEOS-Chem transport
errors would be perfectly correlated. Although one could
average all TROPOMI observations within a 2◦× 2.5◦ grid
cell before ingesting them in the inversion, this would lose
the averaging kernel specificity for each observation. We
therefore use a regularization parameter γ (Hansen et al.,
1999; Y. Zhang et al., 2018, 2020; Maasakkers et al., 2019;
Lu et al., 2021) to account for the off-diagonal structure
missing in So. Based on the corner of the L-curve (Hansen
et al., 1999) and the expected chi-square distribution of the
cost function (Lu et al., 2021) (see Fig. S2 in the Supple-
ment), we choose γ = 0.002 for TROPOMI observations and
γ = 0.5 for GOSAT observations. The regularization param-
eter of 0.5 for GOSAT is larger than the values of 0.05–0.1 in
Maasakkers et al. (2019), Y. Zhang et al. (2021), and Lu et al.
(2021), because they used 4◦× 5◦ resolution and several
years of observations. The smaller value of γ for TROPOMI
is due to its large number of collocated observations on the
2◦× 2.5◦ model grid. Shen et al., (2021) conducted a re-
gional inversion of TROPOMI data using GEOS-Chem at
0.25◦× 0.3125◦ resolution and found that γ = 0.25 provided
the best fit to the L-curve, reflecting the much smaller num-
ber of collocated observations on the 0.25◦× 0.3125◦ grid.

We further balance the prior terms in the cost function by
weighing the wetland emission term by the number of ele-
ments in the state vector (4020/14). This step ensures that
changes in non-wetland and wetland emissions are equally
expensive from a cost-function perspective (Maasakkers
et al., 2019). Similarly scaling the hemispheric OH terms
in the cost function by the number of elements in the state
vector (4020/2) would lead to excessively small posterior ad-
justments. We therefore choose weighting factors of the OH
terms (400 for TROPOMI, 450 for GOSAT) that lead to a
standard deviation of 5 % in the posterior OH adjustments.

There is some arbitrariness in the selection of regulariza-
tion parameters γ and prior weighting factors in the inver-
sion. In addition to the base inversion as described above,
we examined the sensitivity to the choice of γ with sen-
sitivity inversions using (1) γ = 0.02 and (2) γ = 0.5 for
TROPOMI and (1) γ = 0.02 and (2) γ = 0.002 for GOSAT.
We further examined the sensitivity to the choice of weight-
ing factors with sensitivity inversions using (3) no weighting
factors, (4) a weighting factor of 1 for wetland terms, and
(5) a weighting factor of 2010 for the OH terms (i.e., the ratio
of the number of state vector elements for non-wetland and
OH terms). In this manner we performed six inversions using
TROPOMI observations only (base inversion plus five sensi-

https://doi.org/10.5194/acp-21-14159-2021 Atmos. Chem. Phys., 21, 14159–14175, 2021



14166 Z. Qu et al.: Global distribution of methane emissions

tivity inversions), six inversions using GOSAT observations
only, and 6× 6= 36 inversions using the joint TROPOMI
and GOSAT observations.

The best posterior estimate obtained by minimization of
the cost function J (x) is given by (Rodgers, 2000)

x̂ = xa +
(
γKTS−1

o K+S−1
a

)−1
γKTS−1

o (y−Kxa) (4)

with posterior error covariance matrix Ŝ:

Ŝ=
(
γKTS−1

o K+S−1
a

)−1
. (5)

The averaging kernel matrix A defines the sensitivity of
the solution to the true state:

A= I− ŜS−1
a , (6)

where I is the identity matrix. The trace of A represents the
number of independent pieces of information on the state
vector that is gained from the observations and is called the
degrees of freedom for signal (DOFS) (Rodgers, 2000). Note
that A here is different from the retrieval averaging kernel
vectors in Sect. 2, which described the sensitivity of methane
satellite retrievals to the vertical distribution of methane.

The posterior solution can also be presented in reduced
dimensionality. For instance, posterior emissions on the
2◦× 2.5◦ grid can be aggregated to national or global emis-
sions from individual source sectors. This aggregation can be
expressed with a summation matrix W to represent the lin-
ear transformation from the full state vector to the reduced
state vector. The posterior estimate of the reduced state vec-
tor (x̂red) is computed as

x̂red =Wx̂, (7)

and its posterior error covariance and averaging kernel ma-
trices are given by

Ŝred =WŜWT, (8)
Ared =WAW∗, (9)

where W∗ =WT(WWT)−1 is the Moore–Penrose inverse
(Calisesi et al., 2005).

4 Results and discussion

Our discussion focuses principally on results from the base
inversions of the TROPOMI-only, GOSAT-only, and joint
TROPOMI+GOSAT observations and uses ranges from the
inversion ensemble as a more conservative estimate of poste-
rior errors than the posterior error covariance matrix Ŝ. In this
analysis we exclude ensemble members with unreasonable
emission adjustments (e.g., negative emissions aggregated at
regional scales) and OH adjustments larger than 40 % (see
Tables S1 and S2 in the Supplement).

4.1 Information content from the inversions

Figure 5 shows the corrections to the prior estimates
of non-wetland emissions (posterior / prior ratios) on the
2◦× 2.5◦ grid for the TROPOMI, GOSAT, and joint
TROPOMI+GOSAT inversions. These corrections will be
discussed in Sect. 4.3. Also shown are the averaging kernel
sensitivities of the inversions, defined as the diagonal ele-
ments of the averaging kernel matrices and representing the
ability of the observations to determine the posterior solution
independently of the prior estimate (1= fully; 0= not at all).
The averaging kernel sensitivities are highest over major an-
thropogenic source regions where the methane emissions are
the largest.

The TROPOMI inversion has 155 DOFS, meaning that
it contains 155 independent pieces of information on the
distribution of methane emissions and OH concentrations.
The GOSAT inversion has 238 DOFS, more than TROPOMI
despite having much fewer observations. This reflects the
large error correlation between individual TROPOMI obser-
vations on the 2◦× 2.5◦ grid of the inversion, as expressed
by the difference between the regularization parameters for
GOSAT observations (γ = 0.5) and TROPOMI observations
(γ = 0.002). GOSAT with precise individual observations
spaced by 250 km is particularly well adapted to an inver-
sion on a 2◦× 2.5◦ grid. TROPOMI would be far more valu-
able in a regional inversion at higher spatial resolution (Shen
et al., 2021), although the regional biases discussed in Sect. 2
would still be a concern.

Y. Zhang et al. (2021) previously reported an inversion of
2010–2018 GOSAT data using GEOS-Chem at 4◦× 5◦ reso-
lution. That inversion achieved 179 DOFS, compared to 238
DOFS in our inversion for just 1 year of GOSAT data at
2◦× 2.5◦ resolution. The higher DOFS in our case reflects
the higher dimension of our emission state vector (2◦× 2.5◦

versus 4◦× 5◦ grid cells), combined with higher weight per
observation (γ = 0.5 versus 0.05) because of lower error cor-
relation on the 2◦× 2.5◦ scale. As pointed out above, the
GOSAT data are particularly well suited to a 2◦× 2.5◦ reso-
lution for the inversion. The finer 2◦× 2.5◦ resolution allows
for improved sectoral and national attribution of inversion re-
sults as will be done in Sect. 4.3.

In the joint inversion, TROPOMI observations add addi-
tional DOFS to the GOSAT posterior at 0◦ –30◦ N (mainly
over India and the Middle East, Figs. 5 and S3 in the Supple-
ment), where TROPOMI has more observations than in the
rest of the world (Fig. 1). TROPOMI has lower averaging
kernel sensitivities at 30–60◦ N and 0–60◦ S, and the infor-
mation content over these two regions mostly comes from
GOSAT. This could reflect the limitation of using a single
global regularization parameter γ for the TROPOMI obser-
vations, because the observations should have more weight
(larger γ ) when they are less dense. Improving this aspect of
the inversion is a target for future work.
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Figure 5. Corrections to prior estimates of 2019 non-wetland methane emissions on the 2◦× 2.5◦ grid (posterior / prior ratios) and cor-
responding averaging kernel sensitivities. Results are shown for the TROPOMI, GOSAT, and joint TROPOMI+GOSAT inversions. Less
than 3 % of grid cells have negative posterior / prior ratios, which is allowed by the statistics but is likely unphysical. The averaging kernel
sensitivities are the diagonal elements of the averaging kernel matrix for the inversion and measure the ability of the observations to con-
strain the emissions (1= fully; 0= not at all). The sum of averaging kernel sensitivities (trace of the averaging kernel matrix) defines the
degrees of freedom for signal (DOFS) for the inversion, shown in the inset. DOFS including contributions from wetland emissions and OH
concentrations are 155 for TROPOMI and 238 for GOSAT.

The 155 DOFS for TROPOMI are partitioned as 151 for
non-wetland emissions, 3 for wetlands, and 1 for OH. The
238 DOFS for GOSAT are partitioned as 232 for non-
wetland emissions, 5 for wetlands, and 1 for OH. The wet-
land emissions are largely unchanged in both inversions be-
cause of error weighting in the cost function that penalizes
departure from the prior estimate. Without this error weight-
ing, the TROPOMI inversion would yield unrealistic wetland
emissions and seasonalities (case 3 in Table S1). The prob-
lem may reflect systematic biases in the TROPOMI retrieval
due to the low SWIR surface albedo over wetland surfaces
(e.g., Brazil and central Africa (see Fig. S4 in the Supple-
ment) and boreal wetlands in Canada and Russia), combined
with seasonal imbalance in observations (cloudiness for trop-
ical wetlands, sun angle and snow for boreal wetlands)
and seasonal biases at high northern latitudes (Fig. 3). The
GOSAT-only inversion without error weighting for wetlands
shows no such problems, but we still apply error weight-
ing in that base inversion for comparison to TROPOMI. Im-
provement in TROPOMI retrievals over wetlands is clearly
needed. In the meantime, our further discussion of results in
Sect. 4.3 will focus on the non-wetland emissions.

The posterior / prior ratio of global OH concentrations is
0.96 for both the TROPOMI and GOSAT inversions and 0.91
for the joint inversion. Methane lifetimes against oxidation
by tropospheric OH range from 10.7 to 11.0 years in the en-

semble of TROPOMI inversions excluding case 3 (Table S1)
and from 10.7 to 11.1 years in the GOSAT inversions (Ta-
ble S2). These corrections improve agreement with the obser-
vationally constrained methane lifetime of 11.2± 1.3 years
(Prather et al., 2012). The north–south interhemispheric OH
ratio (NH/SH) is 1.03 in the prior estimate, 0.93 in the
TROPOMI inversion, 1.15 in the GOSAT inversion, and 1.03
in the joint inversion, suggesting that the observations do not
usefully constrain this ratio. Patra et al. (2014) estimated a
ratio of 0.97± 0.12 from methyl chloroform observations.

4.2 Cross-fit to TROPOMI and GOSAT observations

Figure 6 shows the ability of the inversions to improve the
fit between GEOS-Chem and the 2019 satellite observations
when using posterior versus prior emissions and OH con-
centrations. This includes cross-evaluation of the TROPOMI
inversion with independent GOSAT observations and vice
versa. The simulation using prior emissions started on 1 Jan-
uary 2019 in an unbiased state compared to TROPOMI and
a −1.7 ppbv global bias relative to GOSAT (Sect. 2). It un-
derestimates 2019 GOSAT observations everywhere by an
average of 14.6 ppbv (Fig. 6), implying the need to increase
methane sources and/or decrease OH concentrations. It also
underestimates TROPOMI over most of the world but over-
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Figure 6. Comparison of GEOS-ChemXCH4 to TROPOMI and GOSAT observations. Panels show annual mean differences for 2019 between
the GEOS-Chem simulation and observations, with mean bias± standard deviation given in the inset. The top panels show GEOS-Chem with
prior emission and OH estimates. The middle panels show GEOS-Chem with posterior estimates from the TROPOMI inversion. The bottom
panels show GEOS-Chem with posterior estimates from the GOSAT inversion.

estimates in some regions (notably the subarctic) that may
reflect TROPOMI retrieval biases as discussed in Sect. 2.

Both TROPOMI and GOSAT inversions reduce the nega-
tive differences between simulations and observations. The
improvement can be measured by the value of the cost
function J (x) in Eq. (3), which decreases by 35 % for the
TROPOMI inversion and 54 % for the GOSAT inversion.
GOSAT observations are still underestimated by an average
of 5.3 ppbv in the GOSAT inversion because the informa-
tion from the observations is not sufficient to fully correct
the bias in the prior estimate. Cross-evaluation of the poste-
rior simulation with the independent data set (TROPOMI or
GOSAT) also shows improvement. The fit to the GOSAT data
is improved everywhere even with the TROPOMI inversion.
TROPOMI shows problematic regions where the inversion
overcorrects the prior bias. This will be discussed further in
Sect. 4.3.

4.3 Implications for methane emissions

4.3.1 Global distribution

Our posterior / prior ratios for the 2019 GOSAT inversion in
Fig. 5 show large upward adjustments of non-wetland emis-
sions in the south-central US, Venezuela, and the Middle
East, consistent in magnitude with the previous inversion of
2010–2018 GOSAT data by Y. Zhang et al. (2021), who used
the same prior estimate. These two inversions also have con-
sistent magnitude of downward adjustments in the western
US, Europe, Russia, and North China Plain. We find larger

upward adjustments than Y. Zhang et al. (2021) in India,
East Africa, and Brazil, which they identified as regions with
rapidly increasing emissions over the 2010–2018 period.

Figure 5 shows agreement between GOSAT and
TROPOMI in the adjustments of methane emissions in
several major source regions including western Russia, the
North China Plain, the south-central US, East Africa, and
Venezuela. A few regions have adjustments of different
signs, notably Brazil and parts of central Africa where the
TROPOMI retrievals are likely biased (Figs. 3 and S4).

We conducted a global sectoral breakdown of the posterior
non-wetland emission fluxes on the 2◦× 2.5◦ grid by using
Eq. (7), where we assume the partitioning between sectors
in a given grid cell to be correct in the prior inventory and
the posterior / prior ratio to apply equally to all sectors in the
grid cell. This assumption is due to the lack of additional
information (e.g., isotopic fractionation; Ghosh et al., 2015;
G. Zhang et al., 2016; Zazzeri et al., 2017) to separate differ-
ent sources. Our restricted adjustment of wetland emissions
due to increased weight in the cost function means that errors
in wetland emissions could be projected to non-wetland sec-
tors. For example, for the TROPOMI-only inversion, global
posterior non-wetland emissions are 361 Tga−1 in the base
inversion and 389 Tga−1 in the sensitivity inversion with-
out increased weight for wetland emissions (Table S1). For
the GOSAT inversion the effect is much less, 399 versus
404 Tga−1 (Table S2).

Table 1 compiles our sectoral attributions of inversion re-
sults. Of particular interest is the oil–gas sector, for which the
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Figure 7. Annual anthropogenic methane emissions in 2019 for five
major source regions, accounting for 56 % of global anthropogenic
emissions in the inversion of GOSAT data. The vertical bars repre-
sent the range of posterior emissions from the ensemble of inver-
sions. Europe is defined as west of 37◦ E. The CONUS is the con-
tiguous United States. TROPOMI and joint inversion results are not
shown for China because of concern over biases resulting from sea-
sonal cloudiness and prior errors in the spatial distribution of coal
emissions (see text).

global prior estimate (66 Tga−1) is based on 2016 UNFCCC
national inventory reports. We find global decreases in the
joint TROPOMI+GOSAT inversion to 56 Tga−1, largely
driven by decreases in Russia. This is consistent with the
correction in Russian oil–gas emissions reported to the UN-
FCCC, from 27 Tg a−1 in the communication used by the
GFEI to 16 Tga−1 in the latest communication (UNFCCC,
2020). Livestock emissions (the single largest anthropogenic
methane source) are adjusted upward by the joint inversion
from 116 Tga−1 in the EDGAR v4.3.2 prior estimate to
139 Tga−1.

4.3.2 Major source regions

Figure 7 shows emissions in the top five anthropogenic
methane source regions including China, India, Brazil, Eu-
rope, and the contiguous US (CONUS). These regions ac-
count for 56 % of global posterior anthropogenic emissions
in the GOSAT inversion.

In China, both GOSAT and TROPOMI inversions ad-
just non-wetland methane emissions downward in the North
China Plain (Fig. 5). This has been a long-standing result of
inversions of satellite data using EDGAR v4.1 and v4.2 as the
prior estimate (Monteil et al., 2013; Thompson et al., 2015;
Alexe et al., 2015; Turner et al., 2015) and has been attributed
to an overestimate of emissions from the coal sector which
dominates total EDGAR emissions in the region. More re-
cent inversions using the UNFCCC-based GFEI as the prior
estimate have found the same result (Lu et al., 2021; Y. Zhang
et al., 2021), but GFEI takes its spatial allocation of coal
emissions from EDGAR v4.3.2. A more detailed bottom-up

Figure 8. Seasonality of methane emissions from rice cultivation
and satellite observation frequency over southeast China (20–37◦ N,
103–123◦ E, shown in Fig. 4) in 2019. The number of TROPOMI
observations increases after August 2019 due to change in pixel size
from 2 km× 2.5 km to 5.5 km× 7 km. Seasonality of rice emissions
is from B. Zhang et al. (2016). Note the difference in scale for the
number of observations by TROPOMI and GOSAT.

analysis by Sheng et al. (2019) finds most of the Chinese
coal emissions to be in south China, in contrast to EDGAR
which places them in the North China Plain. Our TROPOMI
inversion over southeast China shows spatially inconsistent
results with the GOSAT inversion (Fig. 5) and overcorrects
the fit to observations (Fig. 6), which may be due to alias-
ing between coal and rice emissions. Rice cultivation is the
dominant source of methane in southeast China in our prior
estimate, but the emissions have large seasonality and peak
in summer when cloudiness is pervasive and TROPOMI ob-
servations are few, as shown in Fig. 8. GOSAT is less af-
fected by cloudiness (Fig. 8), on account of its use of the CO2
proxy retrieval method. We therefore exclude posterior esti-
mates from TROPOMI and the joint inversions from Fig. 7.
Because China accounts for a large fraction of global rice
(Chen et al., 2013) and coal emissions (Cheng et al., 2011;
Miller et al., 2019), we also exclude these entries from Ta-
ble 1. At national scale, the GOSAT inversion adjusts anthro-
pogenic methane emissions downward from 67 to 56 Tga−1

in China, very close to the value of 55 Tga−1 in the latest
report by China to the UNFCCC in 2014.

All three inversions adjust methane emissions upwards
in India. The results from the base inversion are at the
higher end of the range from the inversion ensemble, but
the 41–57 Tga−1 range of national emissions spanned by
the ensemble is still much higher than previous inversions of
GOSAT and in situ data including 33 Tga−1 for 2010–2018
by Y. Zhang et al. (2021) and 22 Tga−1 for 2010–2015 by
Ganesan et al. (2017). This may reflect the rapid increase in
Indian emissions over the 2010–2018 period previously iden-
tified by Y. Zhang et al. (2021) and attributed principally to
livestock.
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In Brazil, the large upward adjustments from 19 Tga−1

(prior) to 35 Tga−1 (GOSAT) and 32 Tga−1 (joint) in
the posterior estimates are consistent with previous top-
down estimates (Maasakkers et al., 2019; Y. Zhang et al.,
2021). TROPOMI shows adjustments in the opposite direc-
tion, likely reflecting observational bias associated with low
SWIR surface albedo (Fig. 3) and limited number of ob-
servations. The joint inversion is dominated by results from
GOSAT on account of the much higher averaging kernel sen-
sitivities for the inversion (Fig. 5).

All inversions adjust emissions downwards in Europe
(prior: 37 Tga−1; TROPOMI: 26 Tga−1; GOSAT: 33 Tga−1;
joint: 29 Tga−1), consistent with the previous downward ad-
justments in the 2010–2018 mean in the GOSAT inversion
and the small negative trend in methane emissions (Y. Zhang
et al., 2021). The largest reductions of emissions in Europe
are from coal and oil–gas emissions.

In the CONUS, the large upward adjustment in the south-
central region reflects the well-known underestimate of oil–
gas emissions by the US EPA inventory in that region (Kort
et al., 2014; Smith et al., 2017; Peischl et al., 2018; Al-
varez et al., 2018; Maasakkers et al., 2021; Gorchov Negron
et al., 2020; Y. Zhang et al., 2021; Lyon et al., 2021). The
posterior estimates from both TROPOMI and GOSAT ad-
just national methane emissions slightly downwards from 30
to 26 Tga−1 (TROPOMI) and 29 Tga−1 (GOSAT) over the
CONUS, close to the posterior estimates of 31 Tga−1 from
the 0.5◦× 0.625◦ inversion over 2010–2015 (Maasakkers
et al., 2021). The joint inversion adjusts emissions upwards to
40 Tga−1 due to the larger averaging kernel sensitivity over
the south-central US, where emissions have large upward ad-
justments.

5 Conclusions

We used 1 year (2019) of atmospheric methane column ob-
servations from the new TROPOMI satellite instrument in a
global inverse analysis of methane sources at 2◦× 2.5◦ res-
olution, and we compared results to the same analysis using
the more mature but sparser GOSAT instrument as well as the
combination of the two instruments. By analytical solution
to the inverse problem, we were able to quantitatively com-
pare the information content from the two satellite data sets.
This includes averaging kernel sensitivities and degrees of
freedom for signal (DOFS) that quantify the number of inde-
pendent pieces of information on the distribution of methane
emissions.

We began by validating the global observations from
TROPOMI and GOSAT by common reference to the ground-
based TCCON methane column measurements, using the
GEOS-Chem CTM to correct for the effects of different prior
estimates and averaging kernels in the retrievals from each
instrument. Results show that TROPOMI and GOSAT are
globally biased by −2.7 and −1.0 ppbv, respectively. Their

regional biases relative to TCCON are 7 and 3 ppbv, re-
spectively, sufficiently small for inverse analyses of methane
emissions on regional to global scales. Intercomparison be-
tween TROPOMI and GOSAT shows larger regional dif-
ferences exceeding 20 ppbv, generally in places where the
SWIR surface albedo is low and TROPOMI retrievals would
be subject to biases (Lorente et al., 2021). GOSAT is less
sensitive to albedo-driven biases because of its CO2 proxy
retrieval method, compared to the full-physics retrieval in
TROPOMI.

We find that the GOSAT inversion has a global DOFS
of 232 for non-wetland methane emissions on the 2◦× 2.5◦

grid, larger than the TROPOMI inversion (DOFS of 151) de-
spite the TROPOMI data being much denser. This is because
individual TROPOMI observations have large error corre-
lations on the 2◦× 2.5◦ grid of the inversion, whereas the
GOSAT observations with their 250 km separation are ide-
ally suited for our 2◦× 2.5◦ inversion scale. Finer-scale in-
versions, as done for regional studies, would be far more
effective at exploiting the information from TROPOMI. A
better representation of error correlation, accounting for the
relative sparsity of TROPOMI data in cloudy regions, would
also increase the value of TROPOMI data in global inver-
sions. Combining the TROPOMI and GOSAT data in a joint
inversion increases the DOFS to 244, with most of the added
information from TROPOMI in the 0–30◦ N latitudinal band
including India and the Middle East.

The TROPOMI and GOSAT inversions for 2019 show
consistent upward adjustments of anthropogenic methane
emissions over Venezuela (oil–gas) and the south-central US
(oil–gas) and downward adjustments over Europe (oil–gas
and coal), Russia (oil–gas), and the North China Plain (coal).
These adjustments are relative to the official national inven-
tory reports to the UNFCCC in 2016 and used as prior es-
timates in our inversion. The TROPOMI and GOSAT in-
versions also show consistent upward adjustments over East
Africa where livestock emissions are large. Global livestock
emissions increase from 116 Tga−1 in the EDGAR v4.3.2
prior estimate to 139 Tga−1 in the joint GOSAT+TROPOMI
inversion. Some regions show large inconsistencies between
TROPOMI and GOSAT inversions, and we find that these
generally reflect TROPOMI regional biases in low-albedo re-
gions. The strict cloudiness filter used in TROPOMI obser-
vations is also problematic in methane source regions such as
wetlands and rice agriculture that have extensive and some-
times seasonal cloud cover.

Our results demonstrate the potential of applying
TROPOMI observations to constrain methane emissions on
a global scale through inverse analyses but also stress the
need for caution. The methane retrieval from TROPOMI is
still in an early stage, and the current operational product ap-
pears to have systematic biases in low-albedo regions. Future
generations of the retrieval may address these data quality
flaws (Lorente et al., 2021). Improved accounting of model
transport error correlations is also needed to fully exploit
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the inversion of TROPOMI observations on a global scale.
In the meantime, GOSAT provides a high-quality record
of methane observations going back to 2010, and we have
shown that 1 year of GOSAT observations can usefully in-
form emissions on a 2◦× 2.5◦ grid. GOSAT will be increas-
ingly useful in the future to attribute methane trends and to
validate future generations of the TROPOMI retrieval.
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ber 2020). The TCCON measurements are downloaded from
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