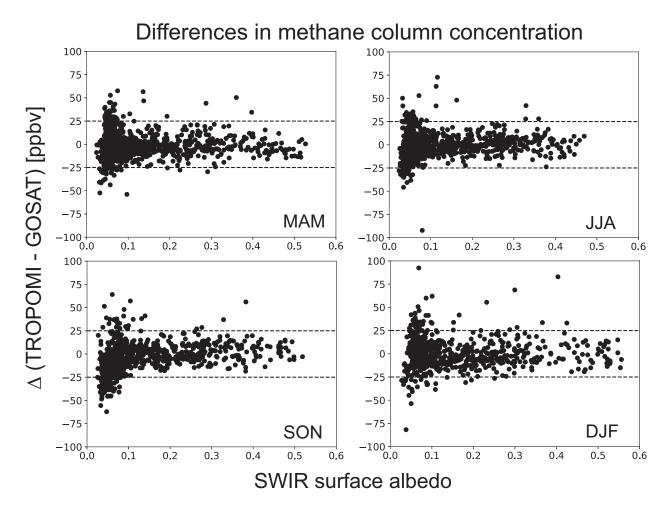
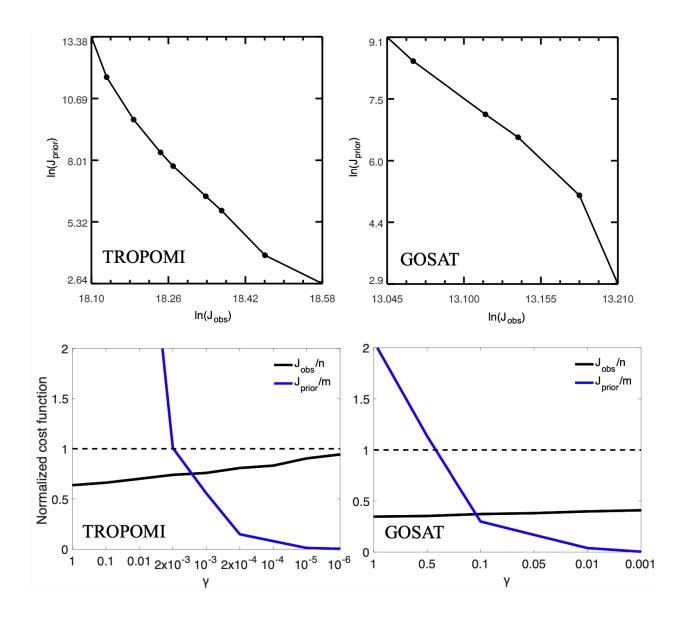
Supplement of Atmos. Chem. Phys., 21, 14159–14175, 2021 https://doi.org/10.5194/acp-21-14159-2021-supplement © Author(s) 2021. CC BY 4.0 License.


Supplement of

Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments


Zhen Qu et al.

Correspondence to: Zhen Qu (zhenqu@g.harvard.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. Seasonally averaged differences (Δ) of X_{CH4} between TROPOMI and GOSAT retrievals for May 2018 – April 2019 at different SWIR surface albedo.

Figure S2. Dependence of the inverse modeling solution on the regularization parameter γ for TROPOMI (left column) and GOSAT (right column). J_{obs} and J_{prior} stand for the prior term $(\mathbf{x} - \mathbf{x}_a)^T \mathbf{S_a}^{-1} (\mathbf{x} - \mathbf{x}_a)$ and the observation term $(\mathbf{y} - \mathbf{K}\mathbf{x})^T \mathbf{S_o}^{-1} (\mathbf{y} - \mathbf{K}\mathbf{x})$ in the cost function. m and n are number of parameters and observations. Selected γ values in the test are: 1, 0.1, 0.01, 0.002, 0.001, 0.0002, 0.0001, 10⁻⁵, 10⁻⁶ for the TROPOMI inversion and 1, 0.5, 0.1, 0.05, 0.01, and 0.001 for the GOSAT inversion. We chose $\gamma = 0.002$ (TROPOMI) and 0.5 (GOSAT) based on the corner of L-curve and the ratio between J_{prior} and n.

Averaging kernel sensitivities (Joint - GOSAT)

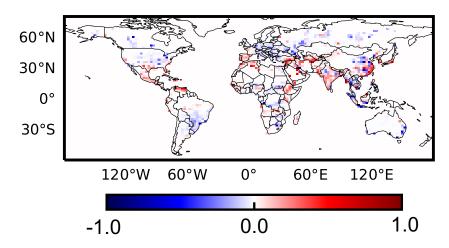
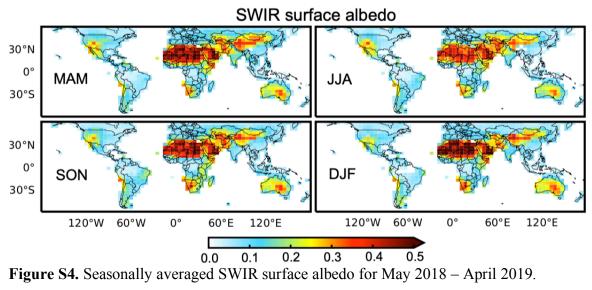



Figure S3. Differences between averaging kernel from the joint inversion and GOSAT inversion.

Table S1. Global methane budget in 2019 from the TROPOMI sensitivity inversions.

	Base	$\gamma = 0.02$	$\gamma = 0.5$	$\gamma = 0.002$, no	$\gamma = 0.002$,	$\gamma = 0.002$,
	inversion	$[Tg a^{-1}]$	$[Tg a^{-1}]$	weighting [Tg	weight $= 1$	weight =
	$[Tg a^{-1}]$			a^{-1}]	for wetland	2010 for OH
					$[Tg a^{-1}]$	$[Tg a^{-1}]$
Total sources	556	577	593	479	571	574
Non-wetland	361	357	391	348	389	375
Wetland	195	220	202	131	182	199
Total sinks	543	546	559	471	555	560
OH oxidation	468 a	471 ^b	484 ^c	396 ^d	479 ^e	485 ^f
Other losses	75	75	75	75	76	75
Imbalance	13	31	34	8	16	14

^a Posterior methane has a lifetime of 11.1 years against oxidation by tropospheric OH.

^b Posterior methane has a lifetime of 11.0 years against oxidation by tropospheric OH.

^c Posterior methane has a lifetime of 10.7 years against oxidation by tropospheric OH.

^d Posterior methane has a lifetime of 13.0 years against oxidation by tropospheric OH.

^e Posterior methane has a lifetime of 11.1 years against oxidation by tropospheric OH.

f Posterior methane has a lifetime of 10.7 years against oxidation by tropospheric OH.

Table S2. Global methane budget in 2019 from the GOSAT sensitivity inversions.

	Base	$\gamma = 0.002$	$\gamma = 0.02$	$\gamma = 0.5$, no	$\gamma = 0.5$,	$\gamma = 0.5$,
	inversion	$[Tg a^{-1}]$	$[Tg a^{-1}]$	weighting	weight $= 1$	weight =
				$[Tg a^{-1}]$	for	2010 for
					wetland	OH [Tg a ⁻¹]
					$[Tg a^{-1}]$	
Total sources	562	569	569	575	583	551
Non-wetland	399	403	398	391	404	395
Wetland	163	166	171	184	179	156
Total sinks	543	559	556	545	555	533
OH oxidation	468 a	484 ^b	481 °	470^{d}	480 ^e	458 ^f
Other losses	75	75	75	75	75	75
Imbalance	19	10	13	30	33	18

^a Posterior methane has a lifetime of 11.1 years against oxidation by tropospheric OH.

^b Posterior methane has a lifetime of 10.7 years against oxidation by tropospheric OH.

^c Posterior methane has a lifetime of 10.8 years against oxidation by tropospheric OH.

^d Posterior methane has a lifetime of 11.1 years against oxidation by tropospheric OH.

^e Posterior methane has a lifetime of 10.8 years against oxidation by tropospheric OH.

^f Posterior methane has a lifetime of 10.8 years against oxidation by tropospheric OH.