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Abstract. The buoyant rise and the resultant vertical distri-
bution of wildfire smoke in the atmosphere have a strong
influence on downwind pollutant concentrations at the sur-
face. The amount of smoke injected vs. height is a key input
into chemical transport models and smoke modelling frame-
works. Due to scarcity of model evaluation data as well as
the inherent complexity of wildfire plume dynamics, smoke
injection height predictions have large uncertainties. In this
work we use the coupled fire–atmosphere model WRF-
SFIRE configured in large-eddy simulation (LES) mode to
develop a synthetic plume dataset. Using this numerical data,
we demonstrate that crosswind integrated smoke injection
height for a fire of arbitrary shape and intensity can be mod-
elled with a simple energy balance. We introduce two forms
of updraft velocity scales that exhibit a linear dimension-
less relationship with the plume vertical penetration distance
through daytime convective boundary layers. Lastly, we use
LES and prescribed burn data to constrain and evaluate the
model. Our results suggest that the proposed simple param-
eterization of mean plume rise as a function of vertical ve-
locity scale offers reasonable accuracy (30 m errors) at little
computational cost.

1 Introduction

Predictions of surface concentrations of wildfire smoke by
regional and global chemical transport models depend on
the initial equilibrium height of the smoke plume. Plume
rise, which determines this equilibrium height, is widely rec-
ognized as an area of uncertainty (Goodrick et al., 2013;
Paugam et al., 2016). Traditionally, many operational smoke
modelling frameworks relied on plume rise equations origi-

nally developed by Briggs (1975) for industrial smokestacks
(Larkin et al., 2010; Pavlovic et al., 2016). Yet several studies
suggest that this approach may not be appropriate for wild-
fires (Pavlovic et al., 2016; Heilman et al., 2014; Freitas et al.,
2007).

In a recent review of existing plume rise parameteriza-
tions, Paugam et al. (2016) highlight three notable models
that stand out in the literature: those by Freitas et al. (2007),
Sofiev et al. (2012) and Rio et al. (2010). Both Freitas’ and
Rio’s approaches use first principles to characterize plume
temperature, vertical velocity and entrainment. While the ap-
proach by Freitas et al. (2007) provides prognostic 1-D equa-
tions that can be solved as a stand-alone “offline” model, the
approach by Rio et al. (2010) is implemented as a sub-grid
effect within a host chemistry transport model. Notably, both
consider an idealized heat source to represent the fire. To ini-
tialize the plume at the lower boundary, simplified fire geom-
etry (circular and rectangular for Freitas’ and Rio’s models,
respectively) with a uniform heat flux is assumed. Sofiev’s
semi-empirical approach relies on energy balance and di-
mensional analysis while using satellite data to both initial-
ize and constrain the parameterization. Unlike Briggs’ equa-
tions, all of the above models address wildfire plumes specif-
ically, yet much research is needed to reduce the large uncer-
tainties associated with the model predictions (Mallia et al.,
2018). Moreover, it is unclear whether unreliable predictions
should be attributed to the fire input parameters or the plume
rise model itself.

One of the central challenges in plume rise model devel-
opment has been the scarcity of comprehensive model eval-
uation data (Coen et al., 2012b; Ottmar et al., 2016). To
date, information on wildfire smoke emissions and disper-
sion has largely been derived from two distinct sources: re-
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motely sensed data and prescribed burn campaigns. While
increasing numbers of satellite observations contribute to a
more complete plume climatology (Val Martin et al., 2010),
the data are subject to biases and lack direct spatiotempo-
ral links to fire behaviour (Ichoku et al., 2012). In contrast,
field campaigns, such as Prescribed Fire Combustion and
Atmospheric Dynamics Research Experiment (RxCADRE)
(Ottmar et al., 2016) and the Fire and Smoke Model Eval-
uation Experiment (FASMEE) (Prichard et al., 2019), pro-
vide the necessary level of detail for model validation stud-
ies. However, such datasets typically capture a modest range
of fire and atmospheric conditions.

Our approach, therefore, is to develop a synthetic plume
dataset that addresses the limitations of the available ob-
servational data. As the vast majority of smoke plumes
remain in or just above the atmospheric boundary layer
(ABL) (Val Martin et al., 2010; Mallia et al., 2018), we
use large-eddy simulations (LESs) to focus on local-scale
and mesoscale plume dynamics. Using a coupled model, we
simulate a wide range of fire and atmospheric conditions
(Sect. 2). Based on this synthetic LES data (hereafter referred
to as “data”), we propose a simple energy balance model for
predicting plume rise of crosswind integrated (CWI) smoke
from a non-uniform fireline (Sect. 3). We use the synthetic
plume dataset to constrain and evaluate our plume rise pa-
rameterization. We then demonstrate, with both numerical
and prescribed burn data, that within the range of tested con-
ditions this parameterization offers high speed and accuracy
(Sect. 4). Moreover, it provides the means for classifying
penetrative vs. non-penetrative plumes, which is key for sub-
sequent dispersion modelling (Sofiev et al., 2012; Val Martin
et al., 2012).

The proposed approach is geared toward regional smoke
modelling frameworks (e.g. BlueSky and BlueSky Canada).
Government agencies, air quality managers and fire response
teams depend on these operational tools and their accuracy
to issue air quality warnings, evacuation orders and to help
mitigate human health impacts. Yet, model evaluation studies
suggest that plume rise estimation remains a weak link within
smoke modelling systems (Raffuse et al., 2012; Val Martin
et al., 2012; Chen et al., 2019). Moreover, existing methods
struggle to reliably identify which plumes remain in the ABL
and which penetrate it. Therefore, the broad goal of the work
is to address some of these challenges and improve the accu-
racy of plume rise predictions for regional air quality appli-
cations.

2 Development of a synthetic plume dataset

We devise a synthetic plume dataset using a coupled fire–
atmosphere model WRF-SFIRE, which combines the well-
established Weather Research and Forecasting (WRF) model
with a semi-empirical fire spread algorithm called SFIRE
(Mandel et al., 2014; Mallia et al., 2020; Coen et al., 2012a;

Kochanski et al., 2013; Clements et al., 2006; Kochanski
et al., 2019). The model allows one to explicitly resolve
plume dynamics while parameterizing fuel combustion. One
of the primary advantages of using WRF-SFIRE is that it
supports two-way coupling between the atmosphere and the
fire behaviour model, allowing it to capture some of the com-
plex dynamical feedbacks that exist between the fire and
the atmosphere (Prichard et al., 2019). Heat and moisture
fluxes from the simulated burn provide forcing to the atmo-
sphere, affecting local wind flow and thermodynamics. This
in turn influences the modelled fire behaviour. The follow-
ing sections detail the numerical setup of WRF-SFIRE and
the scope of the dataset, as well as our approach to defining
“ground truth” for model evaluation.

2.1 Numerical configuration

WRF-SFIRE was configured in idealized large-eddy resolv-
ing mode. Much of our numerical setup was adopted from a
case study of a real prescribed burn as detailed in Moisseeva
and Stull (2019), to ensure the simulations represent physical
conditions backed by model evaluation. Due to high com-
putational demands of LES runs, we focused on the local-
scale and mesoscale, considering only the initial buoyant
plume rise of smoke in typical daytime atmospheres. Key
parameters varied were ambient wind, fuel category, verti-
cal potential-temperature profile and fireline length, denoted
as conditions W , F , R and L, respectively (detailed further
in Sect. 2.2).

Each 10km× 20 km domain with 40 m horizontal grid
spacing was initialized with uniform ambient westerly wind
W and vertical temperature profile R. Depending on the
sounding R, the simulations were performed in either a
shallow (3000 m) or a deep (5000 m) domain, with 51
or 71 hyperbolically stretched vertical levels, respectively.
A constant, uniform lower-boundary surface thermal flux
(tke_heat_flux) in the ambient environment and lateral pe-
riodic boundary conditions were imposed to produce a tur-
bulent well-mixed layer. We used full surface initialization
(sfc_full_init =.true.), with the lower boundary characteris-
tics set to USGS (United States Geological Survey) values
for land use most closely matching the Anderson fuel cate-
gory F (Anderson, 1982). The corresponding surface rough-
ness lengths added various levels of wind shear to each do-
main to produce a more realistic non-uniform vertical wind
profile during spin-up of the environment before the fire was
initialized in the LES.

Initial convection in the ambient environment was trig-
gered using a perturbed surface temperature field. On av-
erage, a near-stationary turbulence spectrum was achieved
within the first 30 min of run start. The “restart” file gen-
erated at the end of 1 h of spin-up was used to initialize the
main burn simulation, ensuring the fire was ignited in a well-
mixed turbulent ABL.
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The fire was initialized over a 1 min interval using a
straight line of length L. The ignition line was placed 1 km
downwind of the western edge of the domain and centered
in the north–south direction (sample illustration of this setup
can be found in Appendix A). With a refinement ratio of 10
in each horizontal direction, the fire was simulated on a 4 m
sub-grid mesh.

The “smoke plume” was modelled with a passive tracer
emitted proportionally to the mass and type of fuel burned.
The rate of release was controlled by an assigned emis-
sion factor representing PM2.5 for each fuel category,
based on values provided by Prichard et al. (2017) (see
namelist.fire_emissions in the Supplement).

A summary of key configuration details can be found in
Table 1, as well as in sample namelist initialization files pro-
vided in the Supplement.

2.2 Test conditions

Table 2 summarizes the key parameters that were varied to
produce the synthetic dataset. The reason for considering the
given conditions is twofold: these parameters (i) have been
widely acknowledged as having a strong impact on plume
behaviour and (ii) can be obtained (and provided as input for
the parameterization) under real-world scenarios.

The range of ambient winds tested was bound largely by
numerical constraints. Due to cyclic boundary conditions,
wind speeds higher than 12 ms−1 would require a much
larger domain to prevent smoke recirculation. For the lower
bound on our wind condition W , we needed to ensure that
sufficient wind speed was maintained to propagate the fire.
The spread algorithm used within the LES applies a correc-
tion factor under low-wind-speed conditions to prevent the
fire from extinguishing itself. While necessary for numerical
reasons, this effect is not physical, so winds below 3 ms−1

were excluded from our dataset.
We used nine different atmospheric profiles (R condition)

to initialize the model. We varied the following features for
each initialization:

– initial ABL height (500–1600 m)

– potential-temperature lapse rate above inversion (0–
20 Kkm−1)

– initial ABL temperature (290–300 K).

Following spin-up (Sect. 2.1) under variable winds and
surface conditions, this produced nine sets of soundings,
shown in Fig. 1 with ABL depths of approximately 600–
2000 m.

We tested all fuel categories available within the model (F
condition), and we varied the length of the fireline (L con-
dition) between 1 and 4 km. Weakly buoyant non-penetrative
plumes whose smoke remained within the well-mixed ABL
were excluded from the dataset, as their behaviour is gov-

Figure 1. Pre-ignition potential-temperature profiles (stability con-
dition R). Colors correspond to initial soundings used for model
spin-up.

erned by different physics. A tabulated summary of all com-
binations included can be found in Appendix B.

Note that varying a single condition while holding the rest
constant does not result in a controlled experiment isolat-
ing its impact on plume rise. Because WRF-SFIRE incorpo-
rates fire–atmosphere coupling, the problem is not well con-
strained. For example, by varying fuel type F alone while
holding the rest of the test conditions constant, we obtain
a set of fires with diverse shapes, sizes, intensities, fireline
depths, rates of spread and heat release. This reflects the com-
plexity of non-linear interactions that exist between the fire
and the atmosphere. As a result, the parameter space cap-
tured within our LES dataset is much greater then the four
conditions described in Table 2.

2.3 Defining smoke injection height

Given non-stationary fire and atmospheric conditions, deter-
mining a consistent definition of an equilibrium smoke injec-
tion height is not a trivial task. It requires separating buoyant
rise from dispersion while excluding the effects of initial mo-
mentum overshoot and accounting for the advection due to
varying ambient and fire-generated winds.

A common way of examining vertical distributions of pol-
lutants in the context of air quality is to consider CWI con-
centrations. This allows one to reduce the problem to two
dimensions, with the plume centerline being defined simply
as the CWI concentration maximum at each location down-
wind of the source. Theoretically, under stationary conditions
there exists an equilibrium height around which the center-
line eventually oscillates. In reality, as well as in our LES
experiments, neither the ambient nor the fire conditions are
stationary. The changing location, shape, and intensity of the
fire and the ABL warming and growth, as well as the devel-
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Table 1. Key parameters of numerical domain setup.

Simulation parameter Value or description

Model version 24 May 2019 (git #ced5955, Mandel, 2020)
Horizontal grid spacing 40 m
Domain size 500 grids cells (east–west)×250 grids cells (north–south)
Time step 0.1 s
Model top 3000 m (shallow) or 5000 m (deep)
Spin-up timing 11:30:00–12:30:00 LT
Fire (restart) simulation timing 12:30:00–12:50:00 LT (shallow) or

12:30:00–13:00:00 LT (deep)
Sub-grid scale closure 1.5 TKE (TKE represents turbulence kinetic energy)
Lateral boundary conditions periodic
Surface physics Monin–Obukhov similarity (sf_sfclay_physics= 1)
Land surface model thermal diffusion (sf_surface_physics= 1)
Ambient surface heat flux 240 Wm−2 (tke_heat_flux= 0.2)
Fire mesh refinement 10
Ignition duration 13:00:10–13:01:10 LT
Heat of combustion of dry fuel 16.4× 106 Jkg−1

Table 2. Test conditions included in the synthetic plume dataset. The count indicates the number of unique values used within the specified
range.

Condition (tag) Range Count Description

Ambient wind (W ) 3–12 ms−1 10 Uniform horizontal wind magnitude used to initialize model spin-up
Stability profile (R) R0–R8 9 Atmospheric sounding with variable ABL height, temperature and inversion strength
Fuel (F ) 1–13 13 Anderson fuel category assigned at lower boundary
Fireline length (L) 1–4 km 3 Length of ignition line

Total number of experiments is 140

opment of fire-coupled winds and vorticity, continually mod-
ify the conditions.

As a result, our approach is based on defining a region
where the concentration distribution is quasi-stationary. We
consider the last frame of each simulation for this analy-
sis. Using CWI tracer values, we locate the plume center-
line (Fig. 2a). Due to random effects of ABL thermals, as
well as fluctuations in fire intensity and propagation speed,
both centerline height and concentration can vary near the
heat source. These oscillations are naturally suppressed in
the stable layers above the ABL, as the plume travels down-
wind and undergoes additional widening and mixing. To ob-
tain the quasi-stationary region for each individual plume, we
first calculate the change in tracer concentration along the
centerline. We then use a smoothing function to reduce the
effect of random turbulent oscillations in both the centerline
height and the tracer concentration gradient along the center-
line. The downwind region where both of these parameters
are not changing rapidly are then considered quasi-stationary.
Additional details of this filtering method are provided in Ap-
pendix C.

The vertical CWI distribution of tracers is then averaged in
the downwind direction over the identified quasi-stationary

regions (shaded in grey in Fig. 2c) to produce a represen-
tative downwind distribution for each plume (Fig. 2d). We
define the “true” injection height zCL as the mean height of
smoothed centerline over the averaging region. The resul-
tant dataset of zCL values is used to constrain and evaluate
the proposed smoke injection height parameterization intro-
duced in the following sections.

3 Smoke injection height model for penetrative wildfire
plumes

A common approach to predicting the final equilibrium cen-
terline height of wildfire smoke is to first estimate the initial
buoyant energy of the hot rising smoke (Briggs, 1975; Sofiev
et al., 2012; Anderson et al., 2011). After the smoke plume
entrains surrounding ABL environmental air and cools, the
remaining energy is spent doing work to push the cooled
smoke plume up into the statically stable capping inversion.

Atmos. Chem. Phys., 21, 1407–1425, 2021 https://doi.org/10.5194/acp-21-1407-2021
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Figure 2. Illustration of the approach to identifying a quasi-stationary downwind region in CWI smoke distribution using a sample LES
experiment. (a) CWI smoke concentrations. Also shown are plume centerline height (dashed), zi (dotted) and CWI fireline intensity (solid red,
secondary axis). (b) Plan view of fire heat flux showing the fireline. (c) Quasi-stationary region (grey shading). Also shown are raw (dotted
purple) and smoothed (solid green) centerline heights and the tracer concentration gradient (solid orange, secondary axis). (d) Representative
downwind smoke distribution. The profile (solid blue line) is obtained by horizontally averaging the CWI smoke concentrations in the
quasi-stationary region (dashed grey in c). Also shown are the IQR (interquartile range, light blue shading) and the derived smoke injection
centerline height zCL (dashed black).

The relationship between final and initial energies is often
rewritten to show that the potential energy per unit mass (PE)
of smoke penetration equals some fraction c1 of initial heat
released from the fire. In kinematic units, the initial heat input
has units similar to a kinetic energy per unit mass (KE). The
empirical parameter c1 is usually estimated based on con-
cepts of entrainment into the rising smoke plume (Cushman-
Roisin, 2014).

PE= c1KE (1)

The PE of smoke-plume penetration into the capping inver-
sion can be written as

PE= g′z′, (2)

where the penetration distance z′ of the final equilibrium
smoke centerline zCL above reference height zs (near the top
of the well-mixed portion of ABL) is

z′ = zCL− zs . (3)

The static-stability variable g′ for the plume-penetration re-
gion is

g′ = g
θCL− θs

θs
= g

θ ′

θs
, (4)

where θCL and θs are the potential temperatures of the ambi-
ent environment at zCL and zs , respectively, and θCL− θs =

θ ′.
The KE can be estimated using a velocity scale wf as

KE= 0.5w2
f . (5)

Traditionally, the bulk potential-temperature difference
across the smoke-plume penetration region θ ′ is expected to
be relevant for only the PE portion of Eq. (1). However, we
found from the LES runs for a wide range of fire and en-
vironment conditions that the KE also depends on the same
potential-temperature difference. This dependence can be ex-
pressed in the velocity scale:

wf =
I

ziθ ′
. (6)

This velocity scale is related to the fireline intensity parame-
ter I , which is the kinematic heat flux into the atmosphere in-
tegrated across the fireline depth (in units of Km2 s−1), and to
the mixed-layer depth zi . Note that I effectively corresponds
to the kinematic form of Byram’s fireline intensity (in units
of kWm−1).

We speculate that this interesting result is because smoke
from a fire does not rise through a passive environment, as is
often assumed for Briggs types of plume entrainment mod-
els. Instead, the fire and the environment interact in many
complex ways. Some of these include vertical-to-bent-over
vortices on the ends of the fireline that rapidly mix environ-
mental air into the buoyant smoke plume, modulation of fire
intensity and fire updrafts by translation of ambient thermals
across the fireline, plumes of enhanced convergence and up-
draft along the fireline, mass conservation as descending air
beneath the extended smoke plume lowers the local mixed-
layer depth, and other factors.

Thus, Eq. (1) becomes

g′z′ = c2

[
I

ziθ ′

]2

, (7)
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Figure 3. Comparison of true (as shown in Fig. 2) and modelled
(from Eq. 8) smoke injection heights. Scatter points represent the
140 individual plume experiments within the LES dataset, with col-
ors corresponding to fireline intensity I . The solid black line and
dashed grey line denote the linear regression fit and unity line, re-
spectively.

where c2 = 0.5c1.
The above equation can be rearranged into the following

form:

zCL− zs = C

[
g (θCL− θs)

θs (zCL− zs)

]− 1
2
{
gI (zCL− zs)

θszi

} 1
3
, (8)

where the dimensionless empirical parameter is C ≈ 1. The
factors in square and curly brackets with their corresponding
powers have units of time and velocity, respectively. This re-
lationship is plotted in Fig. 3. It provides quite an acceptable
fit to the data over a wide range of 140 combinations of fire
and atmospheric conditions simulated.

Equation (8) suggests that the relevant length and tem-
perature scales (z′,θ ′) depend not on the capping inver-
sion strength alone (or on the tropospheric lapse rate above
the capping inversion alone) but on the bulk potential-
temperature differences across the smoke-plume penetration
region, zCL− zs . Equation (8) is implicit in that the desired
plume centerline equilibrium height zCL appears in both the
left and right sides of the equation. The plume centerline
height also defines where θCL is retrieved from the atmo-
spheric sounding; namely, zCL is implicit in both Eqs. (7)
and (8). However, for any specific fire and environment con-
ditions, values of zCL are easily found by iteration (see Ap-
pendix E). Steps for estimating input parameters required for
the proposed injection model from the LES data are summa-
rized in Appendix D.

Alternatively, for a small sacrifice in accuracy, we can ob-
tain an explicit solution by considering an idealized version
of the atmospheric profile, consisting of an adiabatic mixed
layer, entrainment zone and a stable uniformly stratified free

Figure 4. Idealized potential-temperature profile θ vs. height with
constant stable-layer lapse rate γ .

atmosphere above (Fig. 4). In such a case γ is defined as
the overall potential-temperature gradient of the free atmo-
sphere and zs as the height corresponding to the intercept of
γ and the well-mixed portion of the ABL profile. Then, using
Eq. (8), zCL can be found explicitly as

zCL = C
3
2

[
θs

g

] 1
4
[
I

zi

] 1
2
[

1
γ

] 3
4
+ zs . (9)

4 Results

To assess the accuracy of the proposed smoke injection
height parameterization (Eq. 8), we performed two sets of
verification studies. The first approach is based on using the
synthetic plume dataset to perform model evaluation, bias
correction and sensitivity analysis with idealized data. The
second portion of this section applies our approach to a case
study of a real prescribed burn (RxCADRE 2012).

4.1 Numerical results

Shown in Fig. 3 are true and parameterized smoke injection
heights. The former is obtained directly from the LES, as
per Sect. 2.3. The latter is determined iteratively using the
proposed smoke injection height parameterization (see Ap-
pendix E for implementation details).

Individual prediction errors do not appear to be a func-
tion of fireline intensity, as indicated by scatter point color
in Fig. 3, or ambient winds (not shown). While, overall, the
model performance is encouraging, the small discrepancy be-
tween the unity and regression lines suggests a linear bias.
This can be remedied by applying bias correction using re-
gression parameters from the fit shown in Fig. 3. This op-
timized model produces errors on the order of 20–30 m, as
suggested by the interquartile range shown in Fig. 5d. Model
bias will be addressed in further detail in Sect. 5.
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Figure 5. Performance of the smoke injection height parameterization based on the iterative solution (Eq. 8). (a) Non-bias-corrected model
prediction error (true – modelled zCL) as a function of zCL. (b) Error statistics for the non-bias-corrected model. The box and whiskers span
the interquartile range (IQR) and 1.5× IQR, respectively. Median value is shown in orange. (c) Bias-corrected model prediction error as a
function of zCL. (d) Error statistics for bias-corrected model.

Figure 6. Performance of the smoke injection height parameterization based on the explicit solution (Eq. 9). (a) Non-bias-corrected model
prediction error (true – modelled zCL) as a function of zCL. (b) Error statistics for the non-bias-corrected model. The box and whiskers
span interquartile range (IQR) and 1.5× IQR, respectively. Median value is shown in orange. (c) Bias-corrected model prediction error as a
function of zCL. (d) Error statistics for bias-corrected model.
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Figure 7. Analysis of model sensitivity to the choice of bias cor-
rection parameters. (a) Error distributions for individual trials using
independent (test) data. (b) Error distribution for all trials using in-
dependent (test) data. (c) Sensitivity of R value (correlation coeffi-
cient) for all trials.

Given smooth averaged profiles from the synthetic dataset
and excluding condition R8 (adiabatic free atmosphere), the
explicit solution using Eq. (9) offers comparable accuracy to
the iterative version for both raw and bias-corrected datasets
(Fig. 6). We address the limitations of using the explicit ap-
proach in Sect. 5.5.

4.2 Model sensitivity

To assess how sensitive the smoke injection model perfor-
mance is to the particular choice of bias correction parame-
ters, we partition our original plume dataset into training and
testing groups through random sampling. We obtain the lin-
ear bias correction parameters using training data only (80 %
of runs). We then apply our bias-corrected iterative solution
to the test group (remaining 20 % of the runs) and assess
model accuracy. Figure 7 summarizes model performance
and sensitivity, based on 10 trials of sampling with replace-
ment. Consistently high Pearson correlation values shown in
the trial histogram in Fig. 7c are encouraging and suggest
that the particular choice of simulations used in bias correc-
tion does not have a strong impact on model accuracy.

4.3 Evaluation with observations

Next, we apply the proposed model to a real-life case study.
We use observational data from the RxCADRE L2G pre-
scribed burn (Ottmar et al., 2016) and its numerical simu-

Figure 8. Long-wave infra-red (LWIR) image of L2G lot dur-
ing ignition (12:32:02 CST) with dashed black lines denoting burn
perimeters.

lation (Moisseeva and Stull, 2019). This case study was se-
lected based on (i) the comprehensive nature of the observa-
tional dataset, (ii) the penetration of the plume above ABL
top and (iii) the availability of a completed model validation
study, confirming that WRF-SFIRE reasonably captures the
smoke plume produced during the burn.

Shown in Fig. 8 is the strip headfire pattern used to ignite
the grass plot. We estimate the burn’s input fireline intensity
parameter I in two different ways: from raw data collected
during the burn and from the numerical simulation.

The observation-based value Iobs is derived from the in-
tegral heat flux data obtained from the Highly Instrumented
Plots (HIPs) fire behaviour package (FBP) sensors (Jimenez
and Butler, 2016). We use the provided time-integrated val-
ues, averaging between all sensors with confirmed fire at the
sensor location (as indicated by video footage Butler et al.,
2016). We then obtain the mean value (in kinematic units) of
236 Kms−2 and multiply it by the average measured rate of
spread (ROS) of 0.38 ms−1 (Butler et al., 2016) for the same
sensors to convert to spatially integrated heat flux for a sin-
gle fireline. We assume that this value is representative of the
remaining three firelines; hence,

Iobs = 236 · 0.38 · 4= 359 (10)

(in units of Km2 s−1). Note that raw data for both heat fluxes
and ROS values have extremely large associated uncertain-
ties. Observed ROS values vary by nearly a factor of 2, de-
pending on the measurement technique used. While we have
included only locations with ignition confirmed by video
footage in our calculations, heat fluxes still vary up to a factor
of 4 between sensors.

Atmos. Chem. Phys., 21, 1407–1425, 2021 https://doi.org/10.5194/acp-21-1407-2021
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Figure 9. Model evaluation using a case study of a real prescribed
burn (RxCADRE 2012). CWI smoke concentration profile shown
in blue. True zCL obtained directly from LES shown in solid black.
Solid orange and dashed red lines correspond to zCL estimates ob-
tained using the iterative solution of the proposed smoke injection
height parameterization (Eq. 8), based on LES- and observation-
derived fireline intensities, respectively.

For comparison, we also obtain an LES-based integrated
fireline intensity value ILES. Due to wind shear, as measured
by the sounding launched prior to the burn (10:00:00 CST),
the CWI direction at the surface differs from the one used to
estimate CWI smoke. Hence, ILES was estimated by assum-
ing 125◦ rotation of LES fields, based on the lowest avail-
able wind direction measurement. We use the trapezoidal
rule to numerically integrate the mean crosswind heat flux
along the depth of the fireline (see Appendix D) and find
ILES = 1002 Km2 s−1.

We apply our iterative solution (Eq. 8) to find two zCL es-
timates based on Iobs and ILES, and we compare them to the
CWI smoke injection height obtained from the LES. The re-
sults are shown in Fig. 9. The parameterized injection heights
are underpredicted by 20 and 70 m for LES- and observation-
derived I values, respectively.

5 Discussion

5.1 Plume classification

In previous sections we apply an energy balance parameter-
ization to predict the mean smoke injection height zCL of
a given penetrative plume. For this purpose, only plumes
rising above ABL top zi were included in the synthetic
plume dataset used to constrain and evaluate the approach
(see Table B1). In this section, we step back and consider
all performed simulations, to determine whether the same

Figure 10. Similarity solution for dimensionless groups H and
z, corresponding to the right-hand side (RHS) and left-hand side
(LHS) of Eq. (13), respectively. Scatter points represent individual
LES runs, colored by fireline intensity parameter I .

Table 3. Identifying non-penetrative plumes using visual analysis
vs. automated classification. Plume name denotes wind condition
W , fuel type F and initial atmospheric profile R.

Plume Visual Automated
analysis classification

W5F9R1 X X
W5F1R3 X X
W5F8R3 X X
W5F9R3 X X
W5F1R7 X X
W5F8R7 X X
W5F9R7 X X
W5F1R0 X
W5F1R1 X
W5F8R1 X
W5F10R3 X
W5F11R3 X
W5F1R4 X
W5F11R4 X

equations can also be used to classify penetrative vs. non-
penetrative plumes.

The synthetic dataset described in Sect. 2.2 consisted of
140 runs and excluded seven simulations, where the plume
remained trapped in the ABL (see Tables B1 and 3). We de-
termined this by visual analysis of CWI centerline and smoke
fields. The excluded plumes typically exhibited oscillatory
or irregular centerline behaviour (within the ABL, such as
shown in the example in Fig. B1) with little or no smoke
injected above zi . For several combinations of fire and at-
mospheric conditions, however, making the distinction was
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1416 N. Moisseeva and R. Stull: Energy balance approach for predicting smoke-plume rise

challenging. For this reason, we included these “marginally
penetrative” plumes in the dataset.

In real-world applications, classification is a fundamental
first step in plume rise parameterization processes (Sofiev
et al., 2012). A viable automated method for categorizing
penetrative vs. non-penetrative plumes requires that the dis-
tinction be made based on available input parameters rather
than smoke observations (as they are typically not available
at the time of making a forecast).

Conveniently, we can use Eq. (8) to obtain a zCL esti-
mate for any combination of input parameters without prior
knowledge of plume type. Hence, it can be applied as a clas-
sifier by requiring that for a penetrative plume

zCL > zi+, (11)

where zi+ denotes the height of the upper edge of the numer-
ical grid box (or ambient atmospheric sounding) containing
zi . In other words, this definition ensures that zi and zCL are
not in the same vertical model level. If this condition is not
satisfied, the plume is assumed to be non-penetrative.

This approach correctly classifies all non-penetrative
plumes that had been identified by visual analysis (Table 3).
In addition, several plumes exhibiting marginal behaviour are
also classified by Eq. (11) to be non-penetrative.

For the purpose of subsequent dispersion modelling within
real-world applications, non-penetrative plumes (i.e. all
plumes listed in Table 3) would be assumed to become
uniformly mixed in the vertical within a few convective
turnovers distanced downwind of the fire. Turbulent eddies
within the ABL produce a well-mixed layer, resulting in a
relatively homogeneous vertical distribution of pollutants be-
tween the surface and zi . In contrast, for plumes that extend
above zi , spanning the ABL, the entrainment layer and/or the
free troposphere, subsequent dispersion is typically handled
by trajectory models.

5.2 Comparison with existing models

The above model evaluation indicates encouraging perfor-
mance for the proposed smoke injection parameterization
(Eq. 8) at little computational cost. An additional advantage
of our method is that it does not require making simplifying
assumptions regarding the shape and heat flux distribution of
the fire. This allows us to easily apply our model to complex
heat sources, such as one produced with the strip headfire
ignition pattern during the RxCADRE L2G prescribed burn
(Fig. 8).

Unlike most existing plume rise parameterizations
(Briggs, 1975; Rio et al., 2010; Freitas et al., 2007), we fo-
cus on a CWI centerline. Our model can be viewed as a “bulk
method”, having some common ground with the thermody-
namic approach used in the FireWork modelling framework
(Anderson et al., 2011; Chen et al., 2019) and the energy bal-
ance approach proposed by Sofiev et al. (2012). More specif-
ically, we make no attempt to predict the full evolution of

the rising plume centerline velocity or temperature before it
reaches its equilibrium height. Rather, we focus on the en-
ergy balance of the plume over a “penetration layer”.

Through analysis of the 140 LES experiments for plumes
under variable fire and atmospheric conditions, we found
that near-surface and boundary-layer plume dynamics are ex-
traordinarily complex. While some aspects of plume mixing
can be reasonably accounted for by making traditional en-
trainment assumptions, complicated features resulting from
fire–atmosphere coupling, such as formation of lateral vor-
tices and fireline wind convergence zone, are difficult to pa-
rameterize directly. Hence, we apply the energy balance ap-
proach to a layer well above the surface, starting from a ref-
erence height zs close to the top of the ABL.

As noted in Sect. 3, the implicit functional form of
our solution (Eq. 8) can be interpreted as a characteristic
timescale multiplied by the characteristic velocity scale wf .
By rearranging Eq. (7) and substituting Eq. (8) for z′, it can
be shown that the two expressions for wf are equivalent;
namely,

wf =

[
I

ziθ ′

]
=

[
gIz′

θszi

] 1
3

. (12)

The scaling relationship between vertical plume velocity and
cubic root of fire heat has been previously established with
both Rio’s and Freitas’ models (Rio et al., 2010; Freitas et al.,
2007), although our formulation includes different variables
inside the radical. While both of our forms for wf and both
model formulations (the simplified Eq. 7 and the expanded
Eq. 8) are mathematically equivalent, conversion from one
form to another requires raising terms to the sixth power.
This results in large prediction errors; hence, for practical
applications, the full Eq. (8) should be used.

5.3 Dimensionless relationship

As discussed in Sect. 3, we can obtain an explicit solution
for zCL by making additional assumptions about the vertical
profile of potential temperature above the ABL. This allows
us to reduce our Eq. (9) to a similarity relationship with two
dimensionless groups z and H , denoting the left-hand side
(LHS) and right-hand side (RHS) of Eq. (13), respectively.
Nondimensional z and H are linearly related, as shown in
Fig. 10. The simple relationship suggests that our modelling
results could fairly easily be scaled to a wider range of fire
and atmospheric conditions, which are beyond those cap-
tured by the synthetic dataset presented in the paper.

z′

zi︸︷︷︸
z

= C
3
2

[
θs

gγ 3

] 1
4
[
I

z3
i

] 1
2

︸ ︷︷ ︸
H

(13)
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5.4 Model bias

The raw, non-bias-corrected form of the model suffers from a
positive bias for tall plumes, as suggested by Figs. 5c and 6c.
In other words, zCL is overpredicted for plumes injected high
above the ABL. We speculate that this is due to the simplify-
ing assumption that most of the cooling, mixing and dilution
occurs below the reference level zs in the upper portion of
the ABL.

As the distance between zs and zCL increases for tall
plumes and as the smoke travels further into the free atmo-
sphere, this assumption becomes increasingly less accurate.
Therefore, additional radiative cooling and entrainment of
ambient air is unaccounted for, resulting in overprediction
for zCL.

This issue is largely resolved for our dataset with the ap-
plied bias correction. However, cases with strong shear turbu-
lence and active smoke mixing above the ABL are still likely
to be overestimated.

5.5 Limitations

The most significant limitation of the proposed smoke injec-
tion height parameterization is that it applies only to smoke
plumes with no water vapour condensation. Latent heat ef-
fects are not considered. Hence, smoke injection level for
extreme pyroconvective events (e.g. flammagenitus clouds;
WMO, 2017) will likely be grossly underpredicted with the
given formulation. Therefore, in its current form, our param-
eterization is unlikely to be suitable for large-scale applica-
tions (e.g. global chemical transport models). However, it
has the potential to improve regional air quality tools (e.g.
BlueSky), since wildfire emissions sources are largely dom-
inated by in- or near-ABL non-condensing smoke plumes
(Val Martin et al., 2010, 2018).

Given the energy balance formulation of our plume rise
parameterization, it may be possible to incorporate latent
heat effects by including an extra PE term in Eq. (1). Sim-
ilarly to the iterative process for finding a level of neutral
buoyancy with Eq. (8) using potential temperature, it may be
possible to predict plume condensation level using an ambi-
ent humidity profile. However, a big obstacle to this devel-
opment is that, to our knowledge, WRF-SFIRE has not been
validated for such conditions.

Unlike many existing methods, our parameterization relies
on fireline intensity parameter I , rather than average fire heat
flux values, as input. While this approach offers an advantage
for modelling plumes from complex ignition sources (such as
shown in Fig. 8), fireline intensity is difficult to observe in the
field.

Another limitation is the inherently implicit form of the
full model Eq. (8). While we have not encountered any issues
using an iterative solver to find zCL, atypical (or extremely
noisy) ambient atmospheric soundings could potentially af-
fect convergence. The explicit form (Eq. 9) derived using the
idealizing ambient sounding (Fig. 4) offers a possible solu-
tion for such cases. However, it fails for weakly stable and
adiabatic free atmosphere (e.g. condition R8 in Fig. 1), as θs
is extrapolated into lower levels of the ABL.

Lastly, the model has been developed and tested only for
typical daytime atmospheric conditions. We have not as-
sessed model performance for stable night-time atmospheric
profiles or in the presence of strong vertical wind shear.

6 Conclusions

Plume rise estimation remains one weak link in our ability
to forecast where and how smoke from wildfires travels in
the atmosphere. In this study we present a simple parameter-
ization (Eq. 8) for predicting CWI smoke-plume centerline
height from a wildfire of an arbitrary shape and intensity.
Our approach is based on energy balance of the plume over
a penetration region. We constrain and evaluate the proposed
method using a synthetic LES-derived plume dataset devel-
oped for a wide range of fire and atmospheric conditions.

Based on the results of cross-evaluation with LES data
as well as a real prescribed burn case study, the parame-
terization offers reasonable accuracy at little computational
cost. We demonstrate that the approach can also be applied
as a classifier to distinguish penetrative and non-penetrative
plumes. This information is key for subsequent dispersion
modelling, as plume behaviour is governed by different
physics above and below the ABL. The proposed method can
be used as a sand-alone deterministic model or embedded in
a host smoke modelling framework.

We hope that the parameterization presented in this study
will be of interest to air quality researchers to provide a low-
cost solution for regional wildfire emissions-modelling ap-
plications.
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Appendix A: Domain setup

Figure A1. Numerical domain setup.
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Appendix B: Parameter space of LES dataset

Tables B1 and B2 summarize the tested combinations of
fire and atmospheric parameters captured by the synthetic
plume dataset. Colored cells correspond to completed sim-
ulations. Tall boundary layers of the R5 and R6 domains re-
quired low winds (5 ms−1 and below) and high intensity fires
(fuel categories 4, 6, 7, 12 and 13) to reach ABL top within
the simulation runtime and/or to avoid smoke recirculation.
Hence, alternative combinations (white cells in R5 and R6
columns) would require considerably different domain setup
from other runs. For this reason these combinations were not
tested. Also, a single run was performed for the R8 condition
(adiabatic free atmosphere) as an extreme case scenario.

Figure B1. Fixed aspect ratio plot of CWI smoke from a sample non-penetrative plume (W5F8R3). Plume centerline and zi shown in dashed
and dotted grey, respectively.

Red cells in Table B2 highlight simulations that were com-
pleted but subsequently excluded from analysis presented in
Sect. 3. This was done based on visual inspection of LES
fields. There were two possible reasons for exclusion: (i) the
plume reached the top of the domain or (ii) the plume ap-
peared to be non-penetrative. In the former case, it is ques-
tionable whether the fields are physical, as the plume could
potentially be affected by the absorbing layer near domain
top, designed to prevent numerical instability. The latter ren-
dered the plume irrelevant for the purpose of analysis pre-
sented in Sect. 3. These non-penetrative runs, however, were
included for testing the plume classification method pre-
sented in Sect. 5.1.
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Table B1. Combinations of test conditions resulting in penetrative plumes, as captured by the LES datasets. Green cells highlight fireline
length condition (L) runs. The intensity of the blue color corresponds to the number of runs for fuel condition (F ) represented by the cell.
Row W5 is expanded in Table B2 below.

∗ Deep domain (5 km). † Extended runtime (30 min).

Table B2. Tested combinations of fuel and ABL conditions (all blue and pink colored cells).

∗ Deep domain (5 km). † Extended runtime (30 min).
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Appendix C: Identifying quasi-stationarity

We define the quasi-stationary downwind region for each
plume based on two factors: the height of the centerline and
tracer concentration gradient along the centerline. Our filter
attempts to extract only those portions of the downwind CWI
smoke distribution where both of these factors are changing
slowly.

First, we remove the effect of random turbulent oscilla-
tions by applying a smoothing function (Savitzky–Golay fil-
ter provided by SciPy library with polynomial order set to 3)
to both the concentration gradient along the centerline and
the centerline height. We vary the size of the smoothing win-
dow as a function of mean ambient wind condition W , such
that window_length=max(W · 10+ 1,51) grid points.

The filter then applies the following criteria to extract
quasi-stationary regions:

– A smoothed tracer concentration along the plume cen-
terline varies by less than 10 % of the maximum con-
centration gradient,

– The smoothed centerline height varies by less than a
100 m,

– The location is downwind of the maximum tracer con-
centration gradient,

– The location is at least 10 grid points away from the
maximum in smoothed and non-smoothed centerline
height,

– The location is at least 50 grid points away from the
downwind endpoint of the centerline.

The above thresholds were determined through an in-
formal sensitivity analysis (not shown), based on the fil-
ter’s ability to effectively identify regions of near-stationary
plume centerline height for all simulations in our dataset.
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Appendix D: Estimating model input parameters

Summarized in Table D1 are parameters associated with an
iterative solution for zCL using Eq. (8). Below is our ap-
proach to estimating these parameters from LES data.

As noted above, we consider the problem in crosswind di-
rection. Given a three-dimensional fire of an arbitrary shape
(e.g. Fig. 2b) and an ambient atmospheric sounding, we
first average the fire kinematic heat flux for all ignited cells
(where heat flux > 1 kWm−2) over the crosswind (y) direc-
tion at the surface (red line in Fig. 2a). Due to surface wind
shear, this direction may differ from the one used for cal-
culating CWI smoke concentrations (as shown in Sect. 4.3).
To obtain fireline intensity parameter I , we numerically in-
tegrate the crosswind averaged heat fluxes over the depth of
the fireline in the along-wind (x) direction.

We use pre-ignition potential-temperature profile (i.e. the
ambient environment upwind of the fire) averaged over the
entire LES domain as an environmental sounding. All model
fields are interpolated to have a 20 m vertical increment. zi
is defined as the height of the strongest environmental lapse
rate gradient, and zs = 3

4zi , based on an informal model sen-
sitivity analysis (not shown). The exact choice of zs has lit-
tle effect on model performance as long as it remains within
the upper portion of the uniform potential-temperature well-
mixed layer.

Table D1. Variable descriptions and units used in the smoke injec-
tion model.

Variable Unit Description

I Km2 s−1 fireline integrated heat flux
g ms−2 gravitational acceleration (9.81ms−2)
θCL K ambient potential temperature at zCL
θs K ambient potential temperature at zs
zCL m smoke injection height
zi m boundary-layer height
zs m reference height

The values of θs and θCL are then determined from the pre-
ignition sounding for each simulation using the definitions of
zs and zCL (as described in Sect. 2.3).
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Appendix E: Iterative solution for zCL

The numerical implementation of our iterative solution using
SciPy’s fsolve function (scipy.optimize.fsolve) is as follows.
We rewrite bias-corrected Eq. (8) into an input function to-
Solve as

toSolve= lambda z : z−B1

(
zs +C

[
g
(
T 0
[
int
(
z
dz

)]
− θs

)
θs(z− zs)

]− 1
2

[
gI (z− zs)

θszi

] 1
3
)
−B2, (E1)

where C = 1.005, B1 = 0.924 and B2 = 116.417 are bias
correction parameters; T 0 is the potential-temperature
sounding vector; dz is the vertical step; and int() is a stan-
dard Python function converting the bracketed value into an
integer.

A possible issue for some solvers is that we are, effec-
tively, iterating over the vertical index of the column vector
T 0 corresponding to zCL. As the numerical solver attempts
to converge on a solution, it may query a non-existent index
and fail. We are able to obtain a fast and consistent perfor-
mance by ensuring we set zi as the initial guess for zCL and
by minimizing the initial step bound option of the solver:

zCL = fsolve(toSolve,zi, factor= 0.1). (E2)
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