

Supplement of

Ambient nitro-aromatic compounds – biomass burning versus secondary formation in rural China

Christian Mark Garcia Salvador et al.

Correspondence to: Mattias Hallquist (hallq@chem.gu.se) and Song Guo (songguo@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplement for

Ambient Nitro-Aromatic Compounds - Biomass Burning versus Secondary Formation in a Rural City in China

Christian Mark Salvador¹, RongZhi Tang², Michael Le Breton^{1, #,} Lin Jie Li¹, Michael Priestley¹, Epameinondas Tsiligiannis¹, Wenfei Zhu³, Limin Zeng¹, Hui Wang¹, Ying Yu¹, Min Hu¹, Song Guo^{2,*}, Mattias Hallquist^{1,*}

Figure S1. Typical desorption profile FIGAERO settings used in this study

NAC 1 C₆H₄N₂O₅ (183.004)

NAC 5 C₇H₅NO₄ (166.014)

NAC 2 C₆H₅NO₃ (138.019)

NAC 6 C₇H₆N₂O₅(197.020)

NAC 7 C₇H₆N₂O₆ (213.015)

NAC 4 C₆H₅NO₅ (170.009)

NAC 8 C₇H₇NO₃ (152.035)

Figure S2. High Resolution peak fitting of individual nitro-aromatic compounds (NACs) (part 1)

NAC 9 C₇H₇NO₄ (*168.030*)

NAC 13 C₈H₉NO₃ (166.050)

NAC 10 C7H7NO5 (184.024)

NAC 14 C₈H₉NO₅ (198.040)

NAC 11 C₈H₇NO₄ (180.030)

NAC 15 C₉H₉NO₄ (*194.045*)

NAC 16 C₁₀H₇NO₃ (188.035)

Figure S2. High Resolution peak fitting of individual nitro-aromatic compounds (NACs) (part 1)

Figure S3. Diurnal profile of nitro-aromatic compounds measured in gas and particle phase (part 1)

Figure S3. Diurnal profile of nitro-aromatic compounds measured in gas and particle phase (part 2)

NACa	Sensitivity	Close*	Exact	Campaign	Daytime	Night-time	Regime Concentration				En
NACS	Factor ^{\$}	Class*	[M-H]	Ave_Conc	Conc	Conc	1	2	3	4	гр
$C_6H_4N_2O_5$	0.009	DNP	183.004	151.99/17.00	241.29/20.45	99.90/15.05	108.47/28.39	135.70/12.26	184.45/20.16	203.86/11.46	13.03
C ₆ H ₅ NO ₃	0.019	NP	138.019	444.42/56.70	529.98/59.60	394.51/55.18	623.76/161.89	275.43/14.66	622.00/78.54	423.64/24.09	9.11
$C_6H_5NO_4$	0.272	NC	154.014	93.46/21.99	124.03/19.36	75.63/23.58	116.82/63.27	74.23/10.75	107.77/22.15	105.30/8.94	17.90
C ₆ H ₅ NO ₅	-	NC	170.009	23.62/10.24	28.41/7.03	20.83/12.13	27.96/25.98	19.75/10.35	27.32/4.23	23.66/1.46	28.09
C7H5NO4	-	NB	166.014	64.92/7.49	97.81/8.72	45.73/6.80	54.84/11.69	54.38/5.05	79.15/9.86	90.43/5.20	13.39
$C_7H_6N_2O_5$	-	DNP	197.020	40.98/4.64	64.31/4.85	27.33/4.54	31.09/10.64	32.44/2.67	56.36/5.24	51.38/2.59	14.25
$C_7H_6N_2O_6$	-	DNP	213.015	39.27/14.14	49.49/12.45	33.31/15.16	47.35/30.09	32.44/14.97	47.08/7.74	34.69/2.09	24.24
$C_7H_7NO_3$	-	NP	152.035	260.91/47.36	319.55/50.95	226.71/45.41	416.36/141.28	111.15/9.27	423.91/67.61	230.60/18.76	12.00
$C_7H_7NO_4$	-	NC	168.030	131.57/26.67	187.64/25.82	98.87/27.23	178.51/74.00	90.45/10.10	164.80/32.36	153.06/13.25	16.59
$C_7H_7NO_5$	-	NC	184.024	53.95/10.66	70.92/8.66	44.05/11.85	57.83/25.36	42.52/7.33	64.42/9.64	72.85/5.94	17.62
$C_8H_7NO_4$	-	NB	180.030	36.92/6.17	50.18/6.12	29.19/6.22	35.94/13.41	28.77/4.09	46.97/6.53	48.04/3.19	15.16
$C_8H_8N_2O_5$	-	DNP	211.035	45.11/8.77	64.33/9.62	33.90/8.30	47.45/20.17	36.42/6.93	55.20/7.23	52.60/3.28	17.03
C ₈ H ₉ NO ₃	-	NP	166.050	158.13/33.43	191.86/35.36	138.45/32.41	275.86/105.37	56.13/5.96	264.20/45.85	132.63/12.75	13.91
C ₈ H ₉ NO ₅	-	NC	198.040	52.05/12.01	63.14/9.23	45.58/13.65	80.44/37.39	29.94/5.54	69.00/11.10	62.29/5.01	17.60
C ₉ H ₉ NO ₄	-	NB	194.045	87.01/17.48	110.42/13.56	73.35/19.80	131.44/58.59	45.51/6.06	118.43/16.73	124.23/9.10	14.90
$C_{10}H_7NO_3$	-	NP	188.035	29.24/3.99	36.75/4.17	24.85/3.90	31.69/9.01	21.98/1.70	38.19/5.29	33.28/3.13	11.89

Table S1. Physical information of nitro-aromatic compounds (NACs) measured in this study

 $^{\$}$ A post-campaign calibration of nitrophenol, nitrocatechol, and dinitrophenol was utilized to characterize the sensitivity factor of NACs. The FIGAERO filter for the collection of particle phase was doped (20-30 µL) with freshly prepared standards in methanol solvent. The calibration was performed using the same thermal desorption profile to characterize ambient aerosols. The filters were then desorbed in the same way as for the field sampling. Sensitivities calculated for nitrophenol and dinitrophenol were enormously low, which will result in unusual high mixing ratios of NACs. Instead, the concentration of all the NACs were calculated based on the sensitivity factor of nitrocatechol.

*Classification: (NP) Nitrophenol; (NC) Nitrocatechol, (DNP) Dinitrophenol, (NB) Nitrobenzoic acid analog

** All concentrations presented here are in ng m^{-3.} The first and second values indicate concentration in gas and particle phase, respectively.

NAC	All	Regime			
		1	2	3	4
$C_6H_4N_2O_5$	0.351	0.321	0.417	0.643	0.589
$C_6H_5NO_3$	0.828	0.949	0.537	0.835	0.793
$C_6H_5NO_4$	0.355	0.233	0.448	0.199	0.001
C ₆ H ₅ NO ₅	0.147	0.071	0.261	-0.023	0.104
$C_7H_5NO_4$	0.285	0.543	0.115	0.51	0.476
$C_7H_6N_2O_5$	0.173	0.375	0.199	0.272	0.124
$C_7H_6N_2O_6$	0.38	0.534	0.606	0.516	0.549
$C_7H_7NO_3$	0.835	0.937	0.672	0.867	0.858
$C_7H_7NO_4$	0.505	0.511	0.502	0.524	0.593
C7H7NO5	0.156	0.118	0.243	0.044	0.357
$C_8H_7NO_4$	0.262	0.146	0.363	0.397	0.587
$C_8H_8N_2O_5$	0.296	0.256	0.363	0.52	0.758
$C_8H_9NO_3$	0.838	0.917	0.642	0.887	0.873
C ₈ H ₉ NO ₅	0.602	0.854	0.392	0.404	0.806
$C_9H_9NO_4$	0.474	0.756	0.51	0.352	0.799
$C_{10}H_7NO_3$	0.57	0.406	0.521	0.657	0.374

 Table S2. Correlation coefficient (r) of mixing ratios of NACs in gas and particle phase. Values in red highlight the nitrophenols with strong association between the gas and particle phase.

Figure S4. Correlation analysis of $C_9H_8NO_4$ and levoglucosan for the analysis of the contribution of biomass burning using EC tracer method. Red points are the data used to determine [NAC/lev]_{BB} (A.U. = arbitrary units)

Species	Mixing Ratio, ppbv		
СО	1213±683		
NO	21±25		
O_3	17±11		
NO_2	26±9		
Catechol	0.0061 ± 0.0025		
HONO	2.948 ± 2.17		
НСНО	4.832 ± 2.834		
HNO ₃	1.123 ± 0.98		
Propylene	$2.244{\pm}1.718$		
Isoprene	0.047 ± 0.129		
Ethane	11.37±8.557		
Ethylene	7.731±5.212		
m/p-Xylene	0.699 ± 0.852		
o-Xylene	0.242 ± 0.349		
Toluene	1.676 ± 2.122		
Styrene	0.152 ± 0.277		
Trimethylbenzene 1,3,5-	0.032 ± 0.117		
Trimethylbenzene1,2,4-	0.091±0.173		
Trimethylbenzene1,2,3-	0.033±0.121		
Propane	7.418 ± 7.137		
Acetylene	6.133±5.849		
Dichloromethane	4.993 ± 20.014		
Isobutane	1.687 ± 1.388		
n-Butane	3.742±3.727		
Acetaldehyde	3.203 ± 1.702		
Acetone	2.408 ± 1.153		

Table S3. Measured concentration of major gaseous atmospheric components in Dezhou, China constrained in the model (mean \pm standard deviation)

Figure S5. Sensitivity test physical loss rate (PLR) of nitrocatechol

Figure S6. (*Top*) *Diurnal profile of OH, NO₃, and HO₂ radicals calculated in Dezhou. Variabilities are given in standard deviation (Bottom)*. *Overall production of CATEC10 from the reaction with OH, NO₃ and NO. Minor contributors (<1%) are not included.*

Figure S7. Major production and loss pathways of NO₃ radicals

Contribution of Traffic Sources to the formation of NACs

Traffic emission was deemed as not a significant source of the measured NACs based on the weak association of nitro-aromatic compounds to automobile exhaust tracers. To further verify such claim, another set of model simulation was developed to account for the contribution of traffic emission by constraining benzene as the primary precursor. The time series of benzene during this study coincided with the influx of traffic in the rural city, thus making such anthropogenic VOC as a suitable representative of traffic emissions. In MCM, OH oxidation of benzene forms phenol and further reaction of phenol with OH radicals yield catechol. The calculated nitrocatechol concentration in the new model simulation only accounted for less than 1.5% of the observed nitrocatechol. This validates the negligible involvement of traffic emission in the secondary production of NACs in the rural city of China.

Figure S8. Comparison of time series profile of calculated nitrocatechol when benzene (traffic) as primary precursor. Note that the observed and calculated concentrations are given in two different axes.