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Abstract. We develop a new inversion method which is suit-
able for linear and nonlinear emission source (ES) model-
ing, based on the three-dimensional decoupled direct (DDM-
3D) sensitivity analysis module in the Community Multi-
scale Air Quality (CMAQ) model and the three-dimensional
variational (3DVAR) data assimilation technique. We estab-
lished the explicit observation operator matrix between the
ES and receptor concentrations and the background error co-
variance (BEC) matrix of the ES, which can reflect the im-
pacts of uncertainties of the ES on assimilation. Then we
constructed the inversion model of the ES by combining the
sensitivity analysis with 3DVAR techniques. We performed
the simulation experiment using the inversion model for a
heavy haze case study in the Beijing–Tianjin–Hebei (BTH)
region during 27–30 December 2016. Results show that the
spatial distribution of sensitivities of SO2 and NOx ESs to
their concentrations, as well as the BEC matrix of ES, is rea-
sonable. Using an a posteriori inversed ES, underestimations
of SO2 and NO2 during the heavy haze period are remark-
ably improved, especially for NO2. Spatial distributions of
SO2 and NO2 concentrations simulated by the constrained
ES were more accurate compared with an a priori ES in the
BTH region. The temporal variations in regionally averaged
SO2, NO2, and O3 modeled concentrations using an a poste-
riori inversed ES are consistent with in situ observations at 45

stations over the BTH region, and simulation errors decrease
significantly. These results are of great significance for stud-
ies on the formation mechanism of heavy haze, the reduction
of uncertainties of the ES and its dynamic updating, and the
provision of accurate “virtual” emission inventories for air-
quality forecasts and decision-making services for optimiza-
tion control of air pollution.

1 Introduction

Since the implementation of the Air Pollution Prevention and
Control Action Plan in September 2013, urban air quality in
China has improved overall. However, heavy haze frequently
occurs over Beijing–Tianjin–Hebei (BTH) and the surround-
ing region in winter. In recent years, many researchers have
studied the formation mechanism of heavy haze in the BTH
region (Huang et al., 2014; Cheng et al., 2016; Liu et
al., 2016). These studies have shown that rapid conversion
from primary gas pollutants to particulates is an internal trig-
gering factor for the “explosive” and “persistent” heavy haze
(Wang et al., 2014), and secondary particulate concentra-
tions, such as sulfate and nitrate, account for a significant per-
centage of PM2.5. Thus, effectively controlling the emissions
of precursors of secondary aerosols (such as SO2 and NOx) is
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important for reducing environmental, economic, and human
health problems caused by PM2.5 concentrations (Huang et
al., 2014).

Emission inventories provide important fundamental data
are crucial input data for investigating the causes of air
pollution and for atmospheric chemical transport models
(ACTMs). Uncertainties in the emission source (ES) are a
major factor in determining the simulated and forecast ac-
curacy of ACTMs, and these uncertainties can greatly af-
fect the design of ES control strategies (Tang et al., 2006).
The methods for establishing an emission inventory include
the bottom-up approach based on human activities, energy
consumption statistics, and various emission factors, as well
as top-down inversion modeling of the ES based on mon-
itoring data of air pollutants using satellite remote sensing
and ground observations. Many studies have established var-
ious ES inventories in China using the bottom-up approach
(e.g., Bai and Zhou, 1996; Streets et al., 2003; Zhang et
al., 2009, 2012; Cao et al., 2011; Zhao et al., 2012, 2015;
Li et al., 2017). However, the ES estimated by this method
differ greatly due to large uncertainties in the statistical data,
emission factors, and spatiotemporal apportionment coeffi-
cients (Ma and Van Aardenne, 2004). Moreover, real-time
updates of emission inventories are difficult to achieve be-
cause of their rapid spatiotemporal variations due to high-
speed urbanization and a delay in the release of statistical
data of approximately 1–2 years. The top-down approach is a
useful supplement to bottom-up estimates, which are subject
to uncertainties in emissions factors and activities (Streets
et al., 2003). Inverse modeling, in which emissions are opti-
mized to reduce the differences between simulated and ob-
served data, is a powerful method that eliminates the prob-
lems of the bottom-up approach.

Over the past decade, many researchers have tried to find
an ideal inversion modeling tool that improves the spatiotem-
poral distribution of ES. With the development of data as-
similation technology and ACTMs, constraining the strength
of the ES using ACTMs has become one of the main top-
down inversion methods (Enting, 2002; Sportisse, 2007). Re-
searchers have primarily constrained the ES of weak ac-
tive chemical pollutants, such as NOx , CO, CO2, SO2, CH4,
and CHOCHO using the following methods: mass balance
(Martin et al., 2003; Wang et al., 2007; Yang et al., 2011),
back-trajectory inverse modeling (Manning et al., 2011),
adjoint modeling (Liu et al., 2005; Koohkan et al., 2013;
L. Zhang et al., 2016; Wang et al., 2018), Bayes estima-
tion theory (Kopacz et al., 2009; Lucas et al., 2017), en-
semble Kalman filtering (EnKF; Zhu and Wang, 2006; Zhu
et al., 2018; Barbu et al., 2009; Tang et al., 2011, 2016;
Miyazaki et al., 2012; Mijling and van der A, 2012; Wang
et al., 2016; Peng et al., 2017; Chen et al., 2019; Dai et
al., 2021), the four-dimension variational (4DVAR) tech-
nique (Elbern et al., 2000, 2007; Gilliland et al., 2006; Nape-
lenok et al., 2008; Henze et al., 2009; Stavrakou et al., 2009;
Corazza et al., 2011; Jiang et al., 2011), and an adaptive

nudging scheme in the Community Multiscale Air Quality
(CMAQ) model (Xu et al., 2008; Cheng et al., 2010). Results
show that using an inversion modeling approach to retrieve
the spatial distribution of ES can greatly improve air quality
simulations and forecasts by the ACTM. Many studies have
achieved a certain amount of improvement using the EnKF
and 4DVAR methods. The advantage of the EnKF method
is that the observation operator is implicit in the assimila-
tion process of ES, and it avoids developing the tangent lin-
ear and adjoint models. For example, the fully coupled on-
line Weather Research and Forecasting model coupled with
Chemistry (WRF-Chem) is used as the forward model to re-
late the SO2 emissions to the simulated concentration and ef-
ficiently update the emissions based on routine surface SO2
observations (Dai et al., 2021). However, this method has
stricter requirements for error perturbations in ES and the
construction of bias-correction models. In addition, the large
number of ensemble members in the EnKF method leads to a
huge computational cost. Some studies adopted the 4DVAR
method to inverse the ES of NOx and CO based on the God-
dard Earth Observing System (GEOS)-Chem adjoint model.
However, the GEOS-Chem model is often used to simulate
large-scale physical and chemical processes and is rarely uti-
lized in urban air quality forecasts because its spatial resolu-
tion is too coarse. This method also has high computational
costs due to the gradient calculation of the objective function.

The 3DVAR method is a generalization of optimal interpo-
lation methods. It has the advantages of conveniently adding
dynamical constraints and directly assimilating unconven-
tional observation data (Li et al., 2013). 3DVAR is widely
used in the assimilation of meteorological and atmospheric
chemical data due to its simplicity, ability to use complex ob-
servations operators, and low computational cost. However,
this method has two requirements: assimilated variables must
remain relatively stationary within the assimilation window,
and the method must be coordinated between the assimilated
initial field and the iterative integration of the model. To ap-
ply the 3DVAR method to inverse the ES, it is necessary to
construct an inversion model that can satisfy the aforemen-
tioned requirements. Firstly, although the ES have monthly,
seasonal, and annual variations, the variation of ES is con-
stant within a short period (e.g., for an assimilation win-
dow of 1 h). Secondly, the assimilation effect of the ES de-
pends on the quality of observation data and the consistency
between observed and simulated values. To ensure consis-
tency between observations and simulations, the sensitivity
of the receptor’s concentrations with respect to the ES should
be accurately calculated (Hu et al., 2009). Using the three-
dimensional decoupled direct (DDM-3D) sensitivity analysis
method within the CMAQ model, reasonable sensitivity co-
efficients between the ES and the receptor’s concentrations
can be calculated. This coefficient matrix is then used in the
3DVAR assimilation process, which ensures consistency be-
tween the ES and the modeled results. Thus, the top-down
3DVAR constraint methods for the ES based on the first-
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or high-order DDM-3D sensitivity analysis techniques can
maintain the coordination between the assimilated field of
the ES and the simulated concentration of air pollutants.

The primary methods used to calculate the S–R (source–
receptor) relationship include the brute force, the adjoint, and
the DDM-3D method. Many studies have shown that these
methods can improve ES inventories constructed by bottom-
up methods for NOx (Napelenok et al., 2008), CO (Berga-
maschi et al., 2000; Heald et al., 2004), NH3 (Gilliland et
al., 2003), and elemental carbon (EC; Hu et al., 2009). The
adjoint method is a backward-sensitivity calculation method,
while brute force and DDM-3D are forward-sensitivity cal-
culation methods. For the inverse modeling of pollution
sources with a single receptor, the backward-sensitivity
method is more suitable, with low computation costs for cer-
tain grid sizes in a given time period, but it is not suitable for
ES with multiple receptors, which result in high computa-
tional costs (Hu et al., 2009; Wang et al., 2013). The forward-
sensitivity calculation method is more suitable for inversing
the ES based on observed data from satellites or multiple
surface stations (Hu et al., 2009). Cohan et al. (2002) intro-
duced the DDM-3D method to the CMAQ model and cre-
ated the CMAQ-DDM-3D module for low-order sensitivity
calculations in early 2010. In 2014, they added a high-order
calculation module for particles (High-Order DDM-3D for
Particular Matter; HDDM3D/PM) in the newly released ver-
sion of the CMAQ model. Wang et al. (2013) claim that the
sensitivity calculation results using the DDM-3D method are
more reasonable than the brute force method. Some studies
have used the DDM-3D method (Napelenok et al., 2008; Hu
et al., 2009) or a combination of the DDM-3D and a discrete
Kalman filter method (Wang et al., 2013) in conjunction with
measurements from satellite and ground observations to in-
verse BC and NOx ES in the United States. Because inverse
modeling of ES based on discrete Kalman filtering is more
suitable for linear systems, we use the DDM-3D method to
calculate the S–R linear and nonlinear relationship.

The results of inverse modeling are very sensitive to un-
certainties in the ESs of NOx , NH4, and inorganic aerosols
(L. Zhang et al., 2016). The impact of uncertainties in the
ES on the assimilation effects needs to be considered in the
top-down inversion model. The top-down 3DVAR inversion
methods developed in this study can include the impacts of
ES uncertainties by the background error covariance (BEC)
matrix of the ES based on multiple sets of ESs. We developed
a new inverse modeling approach for the ES that combines
the DDM-3D sensitivity analysis method with the 3DVAR
assimilation technique and then applied it to a case study dur-
ing a typical heavy haze episode. This paper is organized as
follows: Sect. 2 describes the inversion model and presents
results of the sensitivity analysis and the BEC; Sect. 3 pro-
vides details of the WRF-CMAQ model and configurations
and experiments of the simulation; Sect. 4 presents the re-
sults of the control and experiment simulations with a priori

and a constrained posteriori ES, respectively; finally, the dis-
cussions and conclusions are provided in Sect. 5.

2 Model and data

We used an offline modeling system that includes two
components: the Weather Research and Forecasting (WRF)
model (Michalakes et al., 2004) and the CMAQ model (Den-
nis et al., 1996; hereafter referred to as WRF-CMAQ). This
study focuses on the BTH region with 5×5 km grid spacing,
32 vertical layers of varying thickness (between the surface
and 50 hPa), and an output interval of 1 h. The WRF-CMAQ
simulations are driven by the National Center for Environ-
mental Prediction Final (NCEP FNL) analysis data every 6 h
during 27–30 December 2016 and the Multi-resolution Emis-
sion Inventory for China (MEIC) data for 2012, with 1◦×1◦

and 0.25◦× 0.25◦ grid spacing, respectively. The CMAQ
model was configured to utilize all layers from the input
meteorology. Emissions datasets for CMAQ were generated
by the Sparse Matrix Operator Kernel Emissions (SMOKE)
model developed by the University of North Carolina (UNC,
2014). Meteorological outputs from the WRF simulations
were processed to create model-ready input to CMAQ us-
ing the Meteorology-Chemistry Interface Processor (MCIP;
Otte and Pleim, 2010). The boundary conditions for chemi-
cal trace gases consisted of idealized, northern hemispheric,
midlatitude profiles based upon output from the National
Oceanic Atmospheric Administration (NOAA) Agronomy
Lab Regional Oxidant model. The model simulation started
on 27 December 2016. To assess the improved effects of in-
verse modeling of ES during the heavy haze episode in De-
cember 2016, we ran two simulations: a control run with a
priori MEIC data for 2012 and an experiment run with con-
strained a posteriori ES.

Hourly measurements of SO2, NO2, and O3 concentra-
tions at 129 stations during 27–30 December 2016 were ob-
tained from the China National Environmental Monitoring
Centre. These data are used to validate simulations from the
control and experiment runs. The simulation domains and the
locations of the 129 stations are shown in Fig. 1.

3 Inverse modeling method

3.1 Constructing the BEC matrix

To construct the BEC matrix for the inversion model, we
combined the technique by the National Meteorological Cen-
ter (NMC) (Parrish and Derber, 1992) with the SMOKE
model based on uncertainty analysis of the ES inventories.
We created the BEC matrix by four steps, as follows:

1. Determine the total errors of ES from an a priori
bottom-up inventory. Uncertainty analyses of ESs re-
quire detailed information of activities and emission
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Figure 1. (a) Domain of the WRF-CMAQ model and (b) location of environmental monitoring stations in the innermost domain over the
BTH region.

factors from an a priori MEIC emission inventory.
The relevant data collected in the China Environmen-
tal Yearbook are limited and do not satisfy the require-
ments of uncertainty analysis. Therefore, we used the
available research results relating to SO2 and NOx ESs
and conducted uncertainty analysis for four types of ma-
jor sources (industry, power plants, residents, and trans-
portation) based on activities and emission factors from
the references (Hong et al., 2017; Zheng et al., 2018;
Peng et al., 2019) using the AuvTool software (Frey et
al., 2002) and determined the error ranges in total emis-
sion rates of SO2 and NOx (Table 1). Uncertainties in
SO2 industry and power plant ESs are slightly greater
than those for NOx , while the opposite is true for emis-
sions from the residential and traffic sectors.

2. Generate multiple sets of inventories using the random
perturbation technique. Based on the aforementioned
error ranges in total emission rates, we generated 30 sets
of inventories for SO2 and NOx with the same resolu-
tion as MEIC for each month using a random perturba-
tion method (Kerry et al., 2007). Firstly we obtain the
probability distribution of errors of ESs based on uncer-
tainty analysis for four sections, respectively. Then we
conduct random perturbation on uncertainties of four
sections of ES 30 times according to the probability dis-
tributions using the same perturbation coefficients for
every perturbation. Lastly we calculate 30 total emis-
sion rates using random uncertainties of four sections
for every set of inventories, respectively.

3. Process the 3D gridded ES as input to the CMAQ
model. We used the SMOKE model, national popula-
tion and road network distribution data in 2016, the
temporal apportionment coefficients in the BTH re-

Table 1. Uncertainty of NOx and SO2 values used in the SMOKE
model and calculation of the BEC matrix.

Categories NOx SO2

Industry (−32.4%, 33.0%) (−37.5%, 38.8%)
Power (−32.4%, 33.0%) (−37.5%, 38.8%)
Residential (−30.0%, 34.0%) (−15.0%, 16.0%)
Transportation (−55.4%, 70.3%) (−17.0%, 20.0%)

gion (Zhang et al., 2007; Wang et al., 2008), and the
CB05-ae06-aq chemical species data in the CMAQ
model, to process 30 sets of nationwide emission in-
ventories into 3D gridded ES with a grid spacing of
5× 5 km. Each grid has 124× 130 points, with 12 ver-
tical levels.

4. Calculate the BEC matrix of each 3D gridded ES. Fi-
nally, the NMC method was used to calculate the BEC
matrix of the 3D gridded ES for each month, including
horizontal and vertical correlation coefficients and stan-
dard deviations. The background error is defined as the
difference between 30 sets of 3D gridded ESs generated
by the random perturbation method and the 3D grid-
ded background ES directly processed from the origi-
nal MEIC emission inventory with the SMOKE model,
at every hour (24 h diurnal variation of ES for every
month).

According to the literature (Liu et al., 2011; Li et al., 2013;
Zang et al., 2016), the approximate calculation of the BEC
matrix is as follows:

B≈
1
2
〈(et − eb)(et − eb)

T
〉, (1)
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where et is the perturbation field, and eb is the background
field of an a priori ES. Equation (1) can be written as follows:

B= DCT, (2)

where D is the standard deviation (SD) matrix, and C is the
correlation coefficient matrix. With this factorization, D and
C can be calculated separately. D is a diagonal matrix, whose
elements are the SD of all state variables in the 3D grids. C is
used to improve the ability of the 3DVAR in representing the
impacts of local emissions at one grid on other grids; these
impacts vary in the vertical direction, and they are heteroge-
neous in the horizontal direction.

Figure 2 shows the spatial distribution of averaged emis-
sion rates for 30 sets of 3D gridded ESs and the SD of the
BEC matrix for SO2 and NOx ESs at 08:00 local time in De-
cember. SO2 and NOx ESs have different spatial distributions
in terms of average strength and standard deviation. The NOx
emissions are mainly concentrated in cities and surrounding
areas, and they are much greater in Beijing, Tianjin, and Shi-
jiazhuang than other cities. The SO2 emissions are mainly
concentrated in Shijiazhuang, Jinan, the north and east of
Shanxi Province, and their surrounding areas. Figure 3 shows
variations in the horizontal correlation coefficients by grid
distance and the vertical distributions of the SD in B for SO2
and NOx ESs in December 2012. The cross between the cor-
relation curve and the e−1/2 line (dashed line) represents the
horizontal length scale (Ls), and the Ls of the two species
falls between five and six grid distances. Namely, the hori-
zontal scale felt is approximately 25–30 km. The correlation
coefficient of SO2 is slightly larger than that of NO2. The dif-
ference in the correlation coefficients between SO2 and NOx
ESsincreases with grid distance, and this is related to the re-
gional pollution characteristics of SO2. The vertical distribu-
tions of the SDs in B for SO2 and NOx ESs vary with height:
the SDs of the SO2 ES are larger on the fourth and eighth
model levels than on other levels, while for the NOx ES, the
SD on the first level is the largest, that on the eighth level take
the second place, and the SDs on all other levels are smaller.

3.2 Sensitivity analysis

The sensitivity analysis module (DDM-3D) in CMAQ solves
a series of equations while simultaneously calculating pol-
lutant concentrations. The local sensitivity of pollutant con-
centrations with respect to several specified parameters, such
as the ES, initial and boundary conditions, and chemical re-
action rates, can be calculated by the DDM-3D method. The
sensitivity equations about the ES are solved using the gov-
erning equations of the model, as follows (Hu et al., 2009):

S= pj
∂C
∂pj
= pj

∂C
∂
(
εjpj

) = ∂C
∂εj

, (3)

where S is the sensitivity of the pollutant j to the parameter
pj , pj is an a priori ES of the pollutant j , C is the con-

centration of the pollutant j , and εj is the perturbation co-
efficient of the ES. Theoretically, the DDM-3D method truly
captures the sensitivities of pollutant concentrations to ES,
and results are more accurate than the brute force method,
for the BTH region (Wang et al., 2013). In addition, the re-
sults of the DDM-3D method are more accurate and efficient
for highly nonlinear pollutants (such as O3 and PM2.5) and
small perturbations.

We used the WRFv3.7.1 and CMAQv5.0.2-DDM-3D
models as well as 3D gridded a priori ES from MEIC in 2012
to calculate the sensitivity coefficients of SO2 and NO2 con-
centrations with respect to ESs during the heavy haze episode
of 27–30 December 2016. Figure 4 shows the spatial distri-
bution of 96 h averaged sensitivity coefficients for SO2 and
NO2 concentrations with respect to ESs during 27–30 De-
cember 2016. The sensitivity coefficients of SO2 and NO2
concentrations all exhibit inhomogeneous distribution. The
sensitivity coefficients are higher in Beijing, Shijiazhuang,
Baoding, and surrounding regions; i.e., SO2 and NO2 con-
centrations in those areas are greatly affected by the SO2 and
NOx ESs.

3.3 Observation operators

The relationship between pollutant source and the receptor’s
concentration is established according to Eq. (3). Next, we
create the observation operator matrix between the ES and
receptor concentrations as follows:

H=
∂C
∂E
=

∂C
∂
(
εjE0

) = S
E0
, (4)

where H is the observation operator matrix, E denotes an a
posteriori ES, which can be written as the product of the per-
turbation coefficient and an a priori ES during the assimila-
tion window time, and E0 denotes an a priori ES. For primary
pollutants such as SO2 and NO2, S is a first-order sensitivity
coefficient, and H is a linear observation operator between
the ES and the receptor concentration. For secondary pol-
lutants such as PM2.5 and O3, S is a high-order sensitivity
coefficient, and H is a nonlinear observation operator. In this
study, we use the first-order sensitivity coefficient to calcu-
late H for SO2 and NOx ESs.

3.4 Observational error covariance

We firstly performed quality control on the observed SO2 and
NO2 concentration data. This process involved three steps:

1. Redundant data were removed, and the density of ob-
servation data was matched to the model grid. For some
grids with more than one observation station, we used
the average of those stations.

2. Extrema were controlled; i.e., data exceeding 3 times
the SD of observation data were filtered out.
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Figure 2. Spatial distributions of (a) averaged emission rates of the SO2 ES, (b) standard deviation in the BEC of the SO2 ES, (c) averaged
emission rates of the NOx ES, and (d) standard deviation in the BEC of the NOx ES at 08:00 local time in December 2012. Unit: mole/s.

Figure 3. (a) Horizontal correlation coefficients with increasing grid distance and (b) vertical profiles of standard deviations in the BEC of
SO2 and NO2 ESs in December 2012. The dashed line is the baseline of the horizontal correlation scale.

3. Anomalies were removed; i.e., data that remained con-
stant for 24 consecutive hours, as well as any negative
data, were removed.

Data that passed quality control still contained observation
or instrument errors. These errors are related to many factors

such as instrument type, calibration design, and environmen-
tal conditions. In addition, in the variational assimilation pro-
cess, representation errors caused by the forward-calculation
and variational processes must be considered. Higher reso-
lution models produce smaller representation errors. Repre-
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Figure 4. Spatial distributions of 96 h averaged sensitivity coefficients (µgm−3) of (a) SO2 and (b) NOx concentrations with respect to SO2
and NOx ESs during 27–30 December 2016.

sentation error, εr, can be expressed as follows (Pagowski et
al., 2010):

εr = γ εo

√
1x

Ls
, (5)

where γ is the amplification factor, which is used to adjust
the instrument error, εo is related to the SO2 and NO2 con-
centrations, and 1x is grid distance of the model. Note that
Ls is usually smaller in urban areas and larger in suburban
areas. The amplification parameters of the observing stations
in cities, suburbs, and rural areas are 2.5, 5, and 10 km, re-
spectively (Zang et al., 2016). Finally, the total observation
error for the SO2 and NO2 concentrations, ε, is written as

ε =

√
ε2

o+ ε2
r . (6)

3.5 3DVAR inversion model

We introduce a cost function with respect to the ES in accor-
dance with 3DVAR:

J (e)=
1
2
(e− eb)

TB−1(e− eb)+
1
2
(He− c)TR−1 (He− c) , (7)

where c is the observation variable, R is the observation er-
ror matrix, and e is the inversing variable of an a posteriori
ES. The optimal inversion of the ES for SO2 and NOx is ob-
tained using Eq. (7). The 3DVAR solves for the minimum
value of J (e) to determine the inversing variable e. This pro-
cess typically employs a gradient propagation method, with
the increment of an ES defined as follows:

δe = e− eb. (8)

Accordingly, the innovation vector of pollutant concentration
is defined as

δc = c−Heb. (9)

Therefore, Eq. (7) can be written in gradient form:

J (δe)=
1
2
δeTB−1δe+

1
2
(Hδe− δc)TR−1 (Hδe− δc) . (10)

After conditionally processing the cost function, a finite-
memory quasi-Newton method was used to conduct iterative
minimization. The background field was set as the initial it-
eration values. The maximum number of steps at the end of
the iteration and the minimum gradient for convergence were
predetermined. The iteration was finished when one of these
conditions was met, and the optimal analysis increment, δe,
was obtained. Finally, the optimal assimilation analysis field
of the ES, e = δe+ eb, was obtained. The result was a three-
dimensional variational inversion model of the ES, using the
uncertainty analysis of the ES and sensitivity coefficients be-
tween the ES and the receptor’s concentrations; the overall
framework is shown in Fig. 5.

4 Results and discussion

A typical heavy haze event occurred in the BTH region at
the end of December 2016. We applied the 3DVAR inversion
model to constrain an hourly a posteriori ES of SO2 and NO2
using measurements from 45 and 129 stations, respectively,
on 27 December 2016. We validated simulations from the
control and experiment run using observational data during
28–30 December 2016.

Figure 6 shows time series of hourly, regional averaged
SO2 and NO2 simulations from the control run, observa-
tions, and sensitivity coefficients at 45 stations in the BTH
region during 27–30 December 2016. The trends in modeled
concentrations and sensitivity coefficients of SO2 and NO2
concentrations with respect to the ES are consistent; there-
fore the sensitivity coefficients can reasonably reflect the im-
pacts of the ES on concentrations. However, simulated SO2
and NO2 concentrations with an underestimated a priori ES
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Figure 5. Flowchart of the 3DVAR inversion model of the ES and simulation experiments.

Figure 6. Time series of hourly, regionally averaged (a) SO2 and
(b) NO2 simulations with an a priori ES, observations, and the first-
order sensitivity coefficients between the ES and the receptor’s con-
centration at 45 stations over the BTH region during 27–30 Decem-
ber 2016.

are all significantly lower than observations during the heavy
haze period. Thus, it is important to improve a priori ES us-
ing the inversion model.

Figures 7 and 8 show the spatial distributions of 24 h av-
eraged emission rates from an a priori and a posteriori ES of
SO2 and NO2 and their increments on 27 December 2016.

Emission rates of a posteriori ES of SO2 and NO2 in the ma-
jor cities and surrounding areas clearly increase. Compared
with a priori ES, the maximum strengths of SO2 and NO2
ESs increase by approximately 17 % and 500 %, respectively.
Therefore, the strengths of SO2 and NO2 in a priori ESs were
greatly underestimated, especially for NO2.

Using the WRF-CMAQ model and an a posteriori ES, we
simulated concentrations of SO2, NO2, and O3 in the BTH
region during 28–30 December 2016 and validated these
simulations with measurements from 45 stations. Figures 9
and 10 show the spatial distributions of 72 h averaged SO2
and NO2 concentrations simulated with a priori and a pos-
teriori ESs, increments, and their observations. In general,
SO2 and NO2 concentrations simulated using an a posteri-
ori ES are closer to observations than an a priori ES, and
regional differences in improvements for SO2 and NO2 ex-
ist. For SO2, the improvement is noticeable in the BTH re-
gion. However, the simulated concentrations in Beijing with
an a posteriori ES are overestimated. This may be related to
greater uncertainties in SO2 sources and the impacts of re-
gional transport from surrounding areas. For NO2, simulated
differences with a priori and a posteriori ESs are significant
in major cities such as Beijing, Tianjin, Shijiazhuang, Baod-
ing, Xingtai, Handan, and Jinan. The simulated concentra-
tions of NO2 using a posteriori ES are more consistent with
measurements, while those with a priori ES are significantly
underestimated.

We also investigated temporal variations in regionally av-
eraged SO2, NO2, and O3 concentrations simulated using
a priori and a posteriori ESs and observations from the 45
stations over the BTH region during 28–30 December 2016
(Fig. 11). In general, simulated SO2, NO2, and O3 concen-
trations using an a posteriori ES are closer to measurements,
while the SO2 and NO2 concentrations simulated by an a
priori ES are significantly lower than observations, and the
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Figure 7. Spatial distributions of 24 h averaged emission rates for SO2 (mole/s) from (a) a priori and (b) a posteriori ESs and (c) the increment
on 27 December 2016.

Figure 8. Same as Fig. 7 except for NO2.
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Figure 9. Spatial distribution of 72 h averaged SO2 concentration simulated with (a) a priori and (b) a posteriori ESs and (c) the increment
during 28–30 December 2016. Color solid dots denote the measurements.

Figure 10. Same as Fig. 9 except for NO2.
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Figure 11. Time serial of regional averaged (a) SO2, (b) NO2, and
(c) O3 concentrations respectively simulated with a priori and a pos-
teriori ESs, and measurements at 45 stations in the BTH region dur-
ing 28–30 December 2016.

modeled O3 concentrations are obviously higher than mea-
surements. In addition, the peak of SO2 simulations with an
a posteriori ES is close to measurements, but the peak of NO2
and valley of O3 simulations are lower and higher than ob-
servations, respectively. This may be related to the absence of
inverse modeling of a volatile organic compound (VOC) ES
and the uncertainties of sensitivity coefficients calculation.
In this study, we used only first-order sensitivity coefficients,
but the relationship between the ES of precursors of O3 such
as VOCs and NOx and their receptor’s concentrations is non-
linear, and O3 is generated from both the NOx and VOC ES.
Therefore, higher order sensitivity coefficients are necessary
for the inverse modeling of the ES of NOx and VOCs.

To further assess the simulated accuracy of SO2, NO2,
and O3 concentrations, we calculated the following statis-
tics (Willmott et al., 2012): correlation coefficient (R), root-
mean-squared error (RMSE), mean bias (MB), normalized

Table 2. Statistics for simulated SO2, NO2, and O3 from control
and experiment runs using a priori and a posteriori inversed ESs at
45 stations in the BTH region during 28–30 December 2016. Bold
type indicates better statistical results.

Parameters Control run Experiment run

SO2 NO2 O3 SO2 NO2 O3

R 0.80 0.82 0.89 0.82 0.52 0.87
RMSE 14.61 8.89 5.02 6.60 8.68 6.31
MB −40.98 −48.20 26.91 3.23 −2.23 4.70
NMB −0.61 −0.81 1.78 0.05 −0.04 0.31
IOA 0.42 0.27 0.45 0.89 0.68 0.84

mean bias (NMB), and index of agreement (IOA; see Ta-
ble 2). Except the result that R values of NO2 and O3 de-
crease and the RMSE of O3 increases using the constrained
ES, other statistics show improvements. In particular, MB
and NMB of three pollutants decline significantly, and IOA
is closer to 1.0, which means that modeled results of the three
pollutants are more consistent with observations. R between
SO2 simulation and observation shows a slight improvement
when using an a posteriori ES, whereas R decreases for NO2
and O3, and it may be related with the absence of constraint
of a VOC ES.

5 Summary and conclusions

We developed a new inverse approach of ES by combining
the sensitivity analysis technique between the ES and the
receptor’s concentration and the 3DVAR method. Our ap-
proach is suitable for solving the linear or nonlinear inversion
problems for ESs It computes quickly and obtains relatively
accurate real-time dynamic updates of ESs. First, we used
the sensitivity analysis tool in the CMAQ model to construct
the explicit observation operator matrix between the ES and
the receptor’s concentration. Next, we created the BEC ma-
trix for ES based on uncertainty analysis and the NMC sta-
tistical method. Finally, we established a three-dimensional
variational inverse method of ES based on the observation
operator and BEC matrix.

The 3DVAR inversion model was applied to a heavy haze
case study in the BTH region during 27–30 December 2016.
Results show that the observation operators between SO2 and
NO2 ESs and their concentrations, as well as spatial distri-
butions of the BEC matrix, are both reasonable. Using the
3DVAR inversion model, a priori SO2 and NO2 ESs im-
proved obviously during the heavy haze process, especially
for the NO2 ES. The spatial distributions of SO2 and NO2
concentrations simulated using an a posteriori ES are more
consistent with measurements than an a priori ES, especially
in major cities over the BTH region. Simulation errors of
SO2, NO2, and O3 concentrations with an a posteriori ES sig-
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nificantly decrease, whereas simulations of three pollutants
using an a priori ES are underestimated.

Large discrepancies of the simulation and sensitivity co-
efficient over December 29 may be related with absent cal-
culation of high-order sensitivity coefficient in this case. In
the future, we will adopt high-order sensitivity coefficient
to improve the constraint effect of SO2 and NOx emission
sources. In addition, future studies will include the applica-
bility and accuracy of this method for different seasons and
regions and different chemical species such as other primary
pollutants (e.g., CO) and precursors of secondary pollutants
(e.g., PM2.5, PM10, and O3). An emphasis may be placed on
constructing the nonlinear explicit observation operator for
precursors of secondary pollutants such as a VOC ES using
the high-order sensitivity analysis technique and assessing
improvement effects of an a posteriori ES with the 3DVAR
inversion method and the CMAQ model.
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