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Abstract. We derived two observation-based global monthly
mean dust aerosol optical depth (DAOD) climatological
datasets from 2007 to 2019 with a 2◦ (latitude)× 5◦ (lon-
gitude) spatial resolution, one based on Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) and the other on
Moderate Resolution Imaging Spectroradiometer (MODIS)
observations. In addition, the CALIOP climatological dataset
also includes dust vertical extinction profiles. Dust is distin-
guished from non-dust aerosols based on particle shape infor-
mation (e.g., lidar depolarization ratio) for CALIOP and on
dust size and absorption information (e.g., fine-mode frac-
tion, Ångström exponent, and single-scattering albedo) for
MODIS, respectively. The two datasets compare reasonably
well with the results reported in previous studies and the col-
located Aerosol Robotic Network (AERONET) coarse-mode
AOD. Based on these two datasets, we carried out a compre-
hensive comparative study of the spatial and temporal cli-
matology of dust. On a multi-year average basis, the global
(60◦ S–60◦ N) annual mean DAOD is 0.032 and 0.067 ac-
cording to CALIOP and MODIS retrievals, respectively. In
most dust-active regions, CALIOP DAOD generally corre-
lates well (correlation coefficient R > 0.6) with the MODIS
DAOD, although the CALIOP value is significantly smaller.
The CALIOP DAOD is 18 %, 34 %, 54 %, and 31 % smaller
than MODIS DAOD over the Sahara, the tropical Atlantic
Ocean, the Caribbean Sea, and the Arabian Sea, respectively.
Applying a regional specific lidar ratio (LR) of 58 sr instead

of the 44 sr used in the CALIOP operational retrieval reduces
the difference from 18 % to 8 % over the Sahara and from
34 % to 12 % over the tropical Atlantic Ocean. However, over
eastern Asia and the northwestern Pacific Ocean (NWP), the
two datasets show weak correlation. Despite these discrep-
ancies, CALIOP and MODIS show similar seasonal and in-
terannual variations in regional DAOD. For dust aerosol over
the NWP, both CALIOP and MODIS show a declining trend
of DAOD at a rate of about 2 % yr−1. This decreasing trend is
consistent with the observed declining trend of DAOD in the
southern Gobi Desert at a rate of 3 % yr−1 and 5 % yr−1 ac-
cording to CALIOP and MODIS, respectively. The decreas-
ing trend of DAOD in the southern Gobi Desert is in turn
found to be significantly correlated with increasing vegeta-
tion and decreasing surface wind speed in the area.

1 Introduction

Mineral dust, referred to as dust for short, is one of the most
abundant type of atmospheric aerosol in terms of dry mass
(Textor et al., 2006; Yu et al., 2012; Kok et al., 2017). Dust
aerosol directly interacts with both solar and thermal infrared
radiation, known as the direct radiative effect, and thereby in-
fluences the Earth’s radiative energy budget (Kok et al., 2017;
Song et al., 2018; Di Biagio et al., 2020). Dust also influences
the life cycle and properties of clouds by altering the thermal
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structure of the atmosphere (known as semi-direct effects)
(Hansen et al., 1997) and acting as cloud condensation nuclei
(CCN) and ice nuclei (IN) (known as indirect effects) (Al-
brecht, 1989; Rosenfeld and Lensky, 1998; Twomey, 1977).
Dust storms and plumes can degrade air quality, affecting
human health (Griffin, 2007; Querol et al., 2019). Dust de-
position provides essential nutrients to marine and terrestrial
ecosystems (Jickells et al., 2005; Yu et al., 2015b) but re-
duces the snow albedo increasing snowmelt (Painter et al.,
2007). All these impacts manifest the important role of min-
eral dust in the Earth systems (e.g., Evan et al., 2006; Lau
and Kim, 2007; Miller and Tegen, 1998; Shao et al., 2011).

Dust production is sporadic in nature. Dust aerosol can
be transported on intercontinental, hemispherical, and even
global scales (Grousset et al., 2003; Uno et al., 2009; Yu
et al., 2012, 2013). Thus, global and routine measurements
of dust spanning over years or even decades are vital for
studying dust transport and deposition, estimating the dust
radiative effects, and evaluating and constraining dust simu-
lations in numerical weather and climate models. Satellite
remote sensing is the only means to observe dust on re-
gional to global scales. Satellite remote sensing techniques
usually retrieve the optical depth or extinction profile for to-
tal aerosol in the atmosphere with additional retrievals of
particle size, shape, or absorption properties that are sen-
sor specific. Passive sensors have been used to detect dust
sources and track dust plumes at global scales. A few ex-
amples are the Total Ozone Mapping Spectrometer (TOMS)
(Prospero et al., 2002), Ozone Monitoring Instrument (OMI)
(Chimot et al., 2017), Multi-angle Imaging Spectroradiome-
ter (MISR) (Ge et al., 2014; Y. Yu et al., 2019), Moder-
ate Resolution Imaging Spectroradiometer (MODIS) (Gi-
noux et al., 2010; Remer et al., 2005; Yu et al., 2009),
multi-angular and polarimetric POLarization of Directional-
ity of the Earth’s Reflectances/Polarization and Anisotropy
of Reflectances for Atmospheric science coupled with Obser-
vations from a Lidar (POLDER/PARASOL) measurements
(Chen et al., 2018) and the Infrared Atmospheric Sounding
Interferometer (IASI) (Klüser et al., 2011; Clarisse et al.,
2019). On one hand, these passive sensors provide global
or quasi-global coverage of column integrated properties of
aerosol with satisfactory temporal resolution. On the other
hand, they do not provide the vertical structure of aerosol
that is critical for studying aerosol–cloud interactions and
aerosol influences on the thermal structure of the atmosphere.
Space-borne lidar systems, such as the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) aboard the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) spacecraft (Winker et al., 2010) and the Cloud-
Aerosol Transport System (CATS) aboard the International
Space Station (Yorks et al., 2015), are able to provide the
vertical structure of aerosol and clouds, albeit with limited
spatial coverage. All these passive and active remote sens-
ing observations have been used extensively in studies of the

spatial and temporal evolution of aerosol over the past decade
(e.g., Proestakis et al., 2018).

A significant hurdle of applying satellite remote sensing
measurements for dust studies is how to distinguish dust from
other aerosol types in a quantitative way. While many studies
have used total aerosol retrievals by focusing on the regions
and seasons where dust dominates, some studies have de-
veloped sensor-specific methods of partitioning total aerosol
into dust and non-dust components with varying assumptions
(Kaufman et al., 2005; Kalashnikova et al., 2005; Dubovik et
al., 2006; Ginoux et al., 2010; H. Yu et al., 2009, 2013, 2019;
Yu et al., 2015a, b). In general, the dust separation meth-
ods are based on dust physical and optical properties such
as their large size, their irregular or non-spherical shape, and
absorption characteristics. For example, CALIOP dust clas-
sification is mainly based on the fact that dust aerosols are
non-spherical in shape and their lidar depolarization ratio is
significantly larger than those spherical aerosols. In contrast,
the wide spectral coverage of MODIS measurements enables
the retrieval of aerosol particle size information, such as ef-
fective radius, fine-mode fraction (FMF), and aerosol extinc-
tion Ångström exponent, as well as spectral gradient of ab-
sorption (decreasing of absorption from UV to red) (Remer
et al., 2005). The combinations of these retrievals provide
the basis for dust separation and dust aerosol optical depth
(DAOD) retrievals from MODIS. Some recent studies have
also characterized dust distribution through integrating satel-
lite measurements with other data sources and model simu-
lations. For example, Voss and Evan (2020) (referred to as
VE20 hereafter) developed a dust optical depth record from
MODIS retrievals, similar to Kaufman et al. (2005) over the
ocean and Ginoux et al. (2012) over land. Unlike Kaufman
et al. (2005) and Yu et al. (2020), who derived character-
istic FMF values for combustion, dust, and marine aerosol
from MODIS retrievals, VE20 determined these characteris-
tic FMFs from Aerosol Robotic Network (AERONET) mea-
surements. VE20 also extended the MODIS-based method to
Advanced Very High Resolution Radiometer (AVHRR) over-
ocean retrievals with some assumptions and produced the
long-term (1981–2018) record of dust optical depth. Gkikas
et al. (2021) developed a global fine-resolution (0.1◦× 0.1◦)
DAOD dataset for the period 2006–2017 by scaling MODIS-
retrieved Collection 6.1 aerosol optical depth (AOD) with the
DAOD-to-AOD ratios provided by MERRA-2 (Modern-Era
Retrospective analysis for Research and Applications, ver-
sion 2) reanalysis (Gelaro et al., 2017). Given that MODIS
and other remote sensing measurements (e.g., MISR and
AERONET) have been assimilated in the MERRA-2 re-
analysis to constrain the aerosol optical depth, the DAOD-
to-AOD ratio reported by MERRA-2 is the same as that
from the underlying Goddard Chemistry Aerosol Radiation
and Transport (GOCART) aerosol transport model in the
MERRA-2 reanalysis system.

In this study, we focus on the DAOD derived from
CALIOP and MODIS with two major objectives. First, we
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produce a decadal (2007–2019) record of global DAOD and
dust vertical extinction coefficient profile climatology from
the CALIOP observations, which represents an extension
of the transatlantic dust transport and deposition studies by
Yu et al. (2015a, b) and H. Yu et al. (2019), both in terms
of spatial and temporal coverage. Second, we compare the
CALIOP DAOD climatology with the MODIS DAOD over
both land and ocean (Yu et al., 2020; Pu and Ginoux, 2018)
to identify and understand their differences in terms of global
dust distribution and interannual variabilities including trend
in key dust regions. Our analysis goes beyond broad dust-
laden regions by zooming into potential dust source areas,
which provides important insights into local dust activities.
A systematic comparison and better understanding of DAOD
from the two sensors based on distinct retrieval algorithms is
critical for applying satellite measurements to evaluate global
dust modeling (Kim et al., 2019). In comparison to some
more recent studies (Voss and Evan, 2020; Gkikas et al.,
2021), our dust climatology is derived using the satellite ob-
servations in a self-consistent way without blending in other
measurements (e.g., AERONET) or models (e.g., MERRA-
2). As discussed in Yu et al. (2009), the self-consistent use
of MODIS data could minimize the introduction of addi-
tional biases due to discrepancies in FMF between MODIS
and AERONET. Furthermore, we use the latest version (4.2)
CALIOP products and version 6.1 MODIS products to char-
acterize the spatial and temporal distributions of dust. The
rest of the paper is organized as follows. Section 2 pro-
vides a description of the methodology of deriving dust cli-
matology from CALIOP and MODIS. In Sect. 3, we com-
pare our DAOD datasets with previous studies and collocated
AERONET retrievals. In Sect. 4, we compare and study the
DAOD climatology from CALIOP and MODIS. Section 5
provides a summary of the study along with the main con-
clusions.

2 Dust detection and AOD partition schemes

2.1 CALIOP dust detection and AOD partition

CALIPSO is in a Sun-synchronous polar orbit with an
Equator crossing time of around 13:30 LT and 98◦ or-
bit inclination. CALIOP is a two-wavelength (532 and
1064 nm) polarization-sensitive lidar aboard CALIPSO. The
CALIPSO orbit track repeats every 16 d; the CALIOP sen-
sor never provides global coverage due to its small footprint.
At the Earth’s surface, the diameter of CALIOP footprint is
around 70 m, with spacing distance of 333 m between two ad-
jacent footprints along the orbit track. CALIOP utilizes three
receiver channels (one measuring the 1064 nm backscatter
intensity and two measuring orthogonally polarized com-
ponents of the 532 nm backscatter) to provide high vertical
resolution (30–60 m) of aerosol and cloud structure profiles
(Winker et al., 2009).

Aerosol subtype classification and a priori assumption of
lidar ratio (LR) (extinction-to-backscatter ratio) for specific
aerosol type are critical for CALIOP aerosol retrievals. The
CALIOP Level 2 product has been validated by comparing
with ground-based measurements. The comparison between
aerosol subtypes in CALIOP Level 2 V2.01 and NASA
AERONET aerosol types shows that 70 % of the CALIOP
and AERONET aerosol types are in agreement, and best
agreement is achieved for dust and polluted dust (Mielo-
nen et al., 2009). Schuster et al. (2012) compared CALIOP
AOD to the collocated AERONET AOD measurements and
found a CALIPSO bias of −13 %, corresponding to an ab-
solute bias of −0.029 relative to AERONET AOD on global
average. Further comparison between CALIPSO AOD mea-
surements and the collocated AERONET AOD measure-
ments for the columns that contain the dust subtype exclu-
sively showed a larger bias (i.e., −29 % and correspond-
ing absolute bias of −0.1), although they show a relatively
high correlation of R = 0.58; this indicates that the assumed
LR of 40 sr for the CALIPSO dust retrievals is too low.
Omar et al. (2013) showed that CALIOP AODs are lower
than AERONET AODs especially for low AOD. Further-
more, they found that the median of relative AOD differ-
ence between CALIOP and AERONET (500 nm) is 25 % of
AERONET AOD for AOD> 0.1.

CALIOP observations have been used widely in previous
studies of the spatial and temporal evolution of dust aerosols
over the past decade (Huang et al., 2007, 2008; Yang et al.,
2012; Xu et al., 2016; Kim et al., 2019). It is important to note
that these studies are regional in scope and they use the stan-
dard CALIPSO product and aerosol subtype classification al-
gorithm (Omar et al., 2009). In the standard CALIPSO prod-
uct, each detected aerosol layer is classified as one of the six
subtypes: dust, polluted dust, polluted continental, smoke,
clean marine, and clean continental. In the latest CALIOP
version, another subtype (marine dust) is introduced (Kim et
al., 2018). In these studies, the “dust” subtype or a combina-
tion of “dust” and “polluted dust” subtypes is categorized as
dust. While the former assumption leads to an underestimate
of dust due to neglecting dust component in the “polluted
dust” subtype, the latter assumption results in an overesti-
mate of dust because of accounting for non-dust component
in the “polluted dust” subtype. In order to better distinguish
dust component from each CALIOP-detected aerosol layer,
Yu et al. (2015a) developed an algorithm independent of
the standard aerosol subtype classification to distinguish dust
from non-dust aerosol by using their respective thresholds of
particulate depolarization ratio (Table 1). The depolarization-
based dust separation algorithm is based on the method de-
veloped by Shimizu et al. (2004), Hayasaka et al. (2007), and
Tesche et al. (2009). The algorithm has been implemented in
the framework of surface lidar networks such as the Euro-
pean Aerosol Research Lidar Network (EARLINET) (Ans-
mann et al., 2011) and also applied to CALIOP observations
(Yu et al., 2012; Amiridis et al., 2013; Yu et al., 2015a).
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They further used the derived three-dimensional distribution
of dust extinction to quantify the transatlantic dust transport
and deposition and its implications for the Amazon rainforest
(Yu et al., 2015b; H. Yu et al., 2019).

In this study, we use the methodology in Yu et al. (2015a)
to derive the monthly mean dust extinction profile under
clear-sky conditions from the latest (V4.20) CALIOP prod-
ucts on a global scale from 2007 to 2019. First, we se-
lect the cloud-free columns based on the CALIOP cloud
layer product. In order to increase the sampling, we de-
fine clear-sky cases in this study either as columns that
are completely cloud-free or with the presence of optically
thin (cloud optical depth < 0.2) and high-level (cloud base
> 7 km) clouds. This is justified, as the presence of high-level
optically thin clouds does not significantly affect the retrieval
of aerosol layers below the clouds (Yu et al., 2015a). Af-
ter clear-sky screening, we use the operational 5 km Level 2
CALIOP aerosol profile product that contains aerosol depo-
larization, backscatter, and extinction profiles over a global
scale (Young et al., 2018) to derive the dust extinction pro-
file. The depolarization ratio from CALIOP is a key variable
for detecting and distinguishing dust from non-dust aerosol.
Backscatter by spherical particle largely retains the polariza-
tion of the incident light, resulting in a depolarization ratio
of nearly zero. In contrast, dust particles are generally non-
spherical in shape and large in size, which gives them non-
zero depolarization ratio that is significantly larger than other
types of aerosol. The cloud–aerosol discrimination (CAD)
score in the products gauges the level of confidence for a
feature being classified as aerosol or cloud. In this study, in
order to screen out low-confidence aerosol and cloud dis-
crimination, we select layers with CAD scores between −90
and −100 (high level of confidence for aerosol feature) by
following H. Yu et al. (2019). The aerosol profile product
also provides an extinction quality control flag (Ext_QC) to
indicate problematic retrievals. This study only uses layers
with Ext_QC values of 0, 1, 18, and 16 (Winker et al., 2013).
Only nighttime data are used to avoid sunlight interference
in aerosol signals.

For each aerosol backscatter coefficient profile, we derive
the fraction of dust backscatter to total backscatter (fd) at
each altitude from the following equation:

fd =
(δ− δnd)(1+ δd)

(δd− δnd)(1+ δ)
, (1)

where δ is CALIOP observed particulate depolarization ra-
tio, δd and δnd are a priori knowledge of depolarization ra-
tios of dust and non-dust aerosols respectively. Clearly, the
calculations of fd in Eq. (1) rely on the a priori depolariza-
tion ratios of dust and non-dust aerosols (i.e., δd and δnd).
To account for various types of non-dust aerosols with dif-
ferent depolarization ratio, we follow Yu et al. (2015a) and
assume 0.02 and 0.07 as lower and upper bounds for δnd
(Burton et al., 2012; Fiebig et al., 2002; Sakai et al., 2010).
Dust aerosols have a significantly larger depolarization ra-

tio compared to non-dust aerosols. To account for the vari-
ability of dust shape and size, we use 0.2 and 0.3 as lower
and upper bounds for δd (Ansmann et al., 2012; Esselborn
et al., 2009; Sakai et al., 2010). Given an observed dust de-
polarization ratio δ, the fd based on Eq. (1) has the mini-
mum value when δd = 0.30 and δnd = 0.07 and the maxi-
mum value when δd = 0.20 and δnd = 0.02. To account for
this variability, the final fd is based on the mean of the
lowest (i.e., δd = 0.30 and δnd = 0.07) and the highest (i.e.,
δd = 0.20 and δnd = 0.02) dust scenario.

In each 2◦ (latitude)× 5◦ (longitude) grid, at each altitude,
dust backscatter coefficient for per clear-sky overpass is de-
rived by multiplying CALIOP total backscatter coefficient
with the calculated fd from Eq. (1). To derive dust extinc-
tion coefficient from dust backscatter coefficient, we assume
dust LR, i.e., extinction-to-backscatter ratio, of 44± 9 sr at
532 nm, consistent with CALIOP version 4.20 operational
retrieval (Kim et al., 2018). The monthly mean dust extinc-
tion coefficient is calculated at each altitude when overpass
samples within the month are larger than five. Then DAOD is
calculated by integrating the monthly mean extinction coef-
ficient profile for each grid. The use of globally uniform LR
and the selection of δd and δnd could induce uncertainty to
the derived DAOD. This is discussed in Sect. 3.

It is important to note that in this study we use only night-
time CALIOP observations for DAOD retrievals. This is be-
cause the daytime CALIOP observations are often contami-
nated by background solar noise (Getzewich et al., 2018). As
shown in Fig. S1 in the Supplement, when the above DAOD
retrieval method is applied to daytime CALIOP observation,
there is a widespread non-zero DAOD retrieval over remote
ocean regions where dust should be scarce. This is appar-
ently an artifact caused by solar contamination on CALIOP
daytime observations, which motivates and justifies our use
of nighttime CALIOP observations. On the other hand, this
leads to an inconsistency with the MODIS DAOD retrieval
which is based on daytime observations (see Sect. 2.2). Al-
though the diurnal cycle of dust has been investigated using
model simulations (e.g., Yue et al., 2009), it is extremely dif-
ficult to assess dust diurnal variation from polar-orbiting re-
mote sensing observations, especially using elastic lidar in
visible region like CALIOP, due to the inherent instrument
limitation. For example, a recent study by Y. Yu et al. (2021)
attempted to use the retrievals from the Cloud-Aerosol Trans-
port System (CATS) lidar to study the diurnal cycle of dust.
The 51.6◦ inclination orbit allows CATS to sample the tropi-
cal and midlatitude regions multiple times a day, which make
it more advantageous than CALIOP for diurnal variability
studies. Unfortunately, after a validation comparison with
AERONET observations (i.e., solar-based during daytime
and lunar-based during nighttime), they found a significant
day–night inconsistency in their retrieval quality. Because
of this inconsistency, they concluded that diurnal variability
in dust and dust mixture characteristics has to be examined
separately for daytime and nighttime periods. Nevertheless,
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Table 1. Summary of DAOD retrievals from MODIS and CALIOP.

Sensors Retrieve scope Relevant variables used to derive DAOD References

MODIS Ocean AOD, fine-mode AOD Yu et al. (2009, 2020)
MODIS Land AOD, SSA at 470 nm, Ångström exponent Pu and Ginoux et al. (2018)
CALIOP Globe Profiles of backscatter, extinction, depolarization ratio Yu et al. (2015a)

Y. Yu et al. (2021) plotted the daytime and nighttime DAOD
together for several dust-active regions (see their Figs. 3 and
10–13). The contrast between daytime and nighttime DAOD
based on these plots is roughly between 10 %–15 %, which
is smaller than other uncertainties in CALIOP retrievals as
analyzed in Sect. 3. Again, it has to be emphasized that this
contrast is partly due to the day–night inconsistency in CATS
data quality.

2.2 MODIS dust detection and AOD partition

As described above, the CALIOP-based DAOD derivation
mainly makes use of dust non-sphericity in shape to sepa-
rate dust aerosol from others. Another important difference
of dust aerosol from other types of aerosols is their relatively
large size. This difference provides the basis for the dust sep-
aration. The DAOD derivation scheme based on MODIS re-
trievals is introduced in this section.

MODIS sensors aboard the Aqua and Terra satellites mea-
sure radiances at 36 spectral bands ranging from 0.41 to
14 µm, with a 2330 km swath that provides near-global cov-
erage every day. MODIS aerosol retrievals employ two com-
plementary algorithms to achieve the global coverage. The
Dark Target (DT) algorithm is applicable for the retrieval of
aerosol loading and properties over dark surfaces, including
ocean water and vegetated land. The MODIS aerosol AOD
retrievals over the ocean are found within the retrieval er-
rors of 1τa = ±0.03 ± 0.05τa relative to AERONET AOD
measurements (Remer et al., 2005). An approach was de-
veloped in previous studies to separate DAOD from other
types of aerosol by using aerosol optical depth (τ ) and fine-
mode fraction (f ) retrieved from MODIS DT retrieval over
the ocean. Both τ and f refer to properties at 550nm here-
after, unless specified otherwise. In this approach, both τ and
fine-mode AOD (f τ ) are assumed to be composed of marine
aerosol, dust, and combustion aerosols, i.e.,

τ = τm+ τd+ τc, (2)
f τ = fmτm+ fdτd+ fcτc, (3)

where the subscripts m, d, and c represent marine aerosol,
dust, and combustion aerosol, respectively. Based on Eqs. (2)
and (3), τd can be calculated from MODIS-retrieved τ and
f , with appropriate parameterizations for fm, fd, fc, and τm.
More specifically, fm, fd, and fc were determined from re-
trieved f in selected regions and seasons for which a specific
aerosol type dominates, and τm was parameterized as a func-

tion of wind speed (details can be found in Kaufman et al.,
2005; Yu et al., 2009, 2020).

Over land, MODIS aerosol properties including AOD, the
Ångström exponent, and single-scattering albedo (SSA) are
retrieved from the Deep Blue (DB) algorithm (Hsu et al.,
2004, 2013). The MODIS aerosol AOD retrievals over land
are found within the retrieval errors of1τa = ±0.05±0.15τa
relative to AERONET AOD measurements (Remer et al.,
2005). DAOD over land is derived from the AOD using one
criterion based on size distribution (to distinguish fine and
coarse modes) and the other criterion based on absorption (to
distinguish between scattering sea salt and absorbing dust).
To apply the first criterion, we use the following formula es-
tablished by Anderson et al. (2005) using in situ data:

CODM = AOD× (0.98− 0.5089α+ 0.051α2), (4)

where α is the Ångström exponent (a measure of the wave-
length dependence of optical depth) which has been shown to
be highly sensitive to particle size (Eck et al., 1999), CODM
is the coarse-mode fraction (aerodynamic diameters larger
than 1 µm) of AOD retrieved from MODIS, with a contri-
bution from absorbing (DAOD) and scattering aerosols (sea
salt aerosol optical depth). The second criterion requires the
single-scattering albedo at 470 nm to be less than 0.99 for
the retrieval of DAOD (more details can be found in Pu and
Ginoux, 2018).

Overall, multi-wavelength observations from MODIS con-
tain aerosol size information such as fine-mode fraction and
Ångström exponent in the observed reflectance spectral pat-
tern, which was used to separate dust aerosol from others
in MODIS dust retrieval over the ocean and land (Table 1).
In this study, the latest retrieved aerosol properties from
MODIS Collection 6.1 are used. We use data from Aqua
MODIS only, because Terra MODIS retrievals may gener-
ate spurious dust trend (Yu et al., 2020). In order to mini-
mize cloud contamination and avoid the infrequent sampling
to bias DAOD in MODIS dust retrieval over the ocean, we
screen the data by requiring a minimum of 10 DAOD re-
trievals in a month.

The relevant variables and the quality assurance proce-
dures used in CALIOP- and MODIS-based DAOD retrievals
are summarized in Tables 1 and S1 in the Supplement, re-
spectively.
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3 Comparison with previous studies and uncertainty
analysis

Based on the dust detection and separation schemes of two
sensors described in Sect. 2, we derived the following three
datasets: the monthly mean CALIOP-based total aerosol op-
tical depth (TAOD) and DAOD, as well as the vertical extinc-
tion profile on a 2◦ (latitude)× 5◦ (longitude) spatial resolu-
tion grids for the period of 2007–2019. This relatively coarse
resolution is limited by CALIOP’s sampling.

We combine the monthly mean Aqua MODIS over-ocean
(Yu et al., 2020) and over-land (Pu and Ginoux, 2018) TAOD
and DAOD on a 1◦× 1◦ spatial resolution grids to get the
monthly mean MODIS-based TAOD and DAOD from 2003
to 2019. In order to compare with CALIOP-based dust cli-
matology data, we aggregate the 1◦× 1◦ MODIS-based data
to 2◦× 5◦ resolution grids.

For evaluation and comparison purpose (see Sect. 4.1), we
also produce a seasonal global distribution of conditionally
sampled DAOD from CALIOP (Marinou et al., 2017; Proes-
takis et al., 2018). While the standard climatological DAOD
includes all cloud-free cases in the average of dust extinction
and DAOD regardless of the presence of dust, the condition-
ally sampled DAOD calculation only averages those cases
where dust is detected (i.e., DAOD and dust extinction are
non-zero). Therefore, the conditionally sampled DAOD is
directly related to the intensity of the detected dust events,
whereas the climatological DAOD is determined by a num-
ber of factors including not only the intensity of the detected
dust events but also the frequency of the dust events as well
as the capability of the instrument to sample the dust events.

3.1 Comparison with previous studies

Before we compare and study the DAOD climatology from
MODIS and CALIOP in detail in the next section, we first
evaluate our retrievals through comparisons with the regional
and global DAOD values reported in the previous studies and
explore the potential reasons for the differences.

Table 2 summarizes a comprehensive comparison of our
DAOD datasets with previous studies. In Ridley et al. (2016),
DAOD is first estimated in 14 dust-laden regions from
the combination of AERONET measurements, MODIS, and
MISR retrievals. Then the observation-based regional DAOD
estimates are estimated to the global scale based on the
model-estimated regional-to-global DAOD ratio. Using this
method, they estimated that the global (90◦ S–90◦ N) DAOD
at 550 nm is 0.03± 0.005. Using the DAOD-to-AOD ratio
from MERRA-2, Gkikas et al. (2021) converted the MODIS
AOD retrievals to DAOD and found a similar global (90◦ S–
90◦ N) DAOD at 550 nm around 0.033. In contrast, as shown
in Table 2, our MODIS-based global (90◦ S–90◦ N) DAOD is
0.057. However, it is important to note that the global mean
DAOD values from these studies are not directly compara-
ble to our global mean results because of the methodology

differences. In particular, both of the aforementioned stud-
ies used model simulations to aid their global DAOD esti-
mate, while our estimates are completely based on obser-
vations (more precisely, DAODs of the scope 60◦ S–60◦ N
are completely based on observations, while outside of the
scope, DAOD is assumed to be zero). Nevertheless, to gain
a more insightful understanding of the differences, we select
the same 14 dust-laden regions as in Ridley et al. (2016) (see
Fig. S2) and derive the corresponding regional DAOD (see
Fig. S3 and Table S2). As mentioned previously, in Ridley et
al. (2016), the DAOD in these dust-laden regions is based on
AERONET measurements and satellite retrievals, and there-
fore it is more comparable with our results. As shown in
the Supplement (Fig. S3), our regional MODIS-based DAOD
values are in excellent agreement with those reported in Rid-
ley et al. (2016) (relative bias Br=−5.8 % in DJF,−0.2 % in
MAM, −2.5 % in JJA, and −10.4 % in SON). This regional
comparison suggests that the difference in global DAOD be-
tween our study and Ridley et al. (2016) is probably because
we used different methods to derive the DAOD in the regions
with less frequent dust activities (i.e., observation based vs.
model based).

Recently, VE20 used a method similar to our MODIS-
based DAOD estimate methodology to derive the global
DAOD. Because of the use of similar methodology and
data, VE20 is more comparable to our study than Ridley et
al. (2016) or Gkikas et al. (2021). They estimated the long-
term mean DAOD to be 0.1 over land between 50◦ S and
60◦ N, which is almost identical to our estimate of 0.103
(60◦ S–60◦ N), as shown in Table 2. However, when aver-
aged over the ocean, their DAOD estimate (0.03± 0.01) is
significantly smaller than our result (0.055). As explained in
the Supplement, this difference is probably because differ-
ent parameterizations of fm, fd, fc, and τm in Eq. (3) were
used in the two studies (see Table S4 and discussions in the
Supplement).

A recent study by Proestakis et al. (2018) used a method
similar to ours, as described in Sect. 2.1, to derive CALIOP-
based regional DAOD in five dust-laden regions in Asia. We
compared our CALIOP-based regional DAOD for the same
regions (Fig. S4) and compare the results with the values re-
ported in Proestakis et al. (2018). As shown in Fig. S5, the
two studies are in excellent agreement with relative differ-
ence Br= 5.5 % in DJF, −6.0 % in MAM, −6.9 % in JJA,
and 0.8 % in SON, respectively.

Overall, the above comparisons indicate that our DAOD
retrievals are in reasonable agreement with previous stud-
ies (where directly comparable). However, none of the afore-
mentioned previous studies performed a systematic compar-
ison between MODIS- and CALIOP-based DAOD, which is
one of the motivations for this study and will be addressed in
Sect. 4.
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Table 2. Compare global mean DAOD retrievals in this study with some relevant studies (note that the definition of global scope is different
for different studies).

Region DAOD at 550 nm Reference

90◦ S–90◦ N Global 0.03± 0.005 Ridley et al. (2016):
use multiple satellite platforms, in situ AOD observations, and four global
models

90◦ S–90◦ N Global 0.033 Gkikas et al. (2021):
use AOD from Aqua MODIS and DAOD-to-AOD ratio from MERRA-2

50◦ S–60◦ N Over ocean 0.03± 0.06 Voss and Evan (2020)
over ocean: use method in Kaufman et al. (2005)
over land: use method in Ginoux et al. (2012)

Over land 0.1

60◦ S–60◦ N Over ocean 0.055, 0.020 This study:
MODIS-based, CALIOP-based DAOD
(to calculate global mean DAOD for scope 90◦ S–90◦ N, we assume zero
DAOD outside of the region 60◦ S–60◦ N. We weight each grid-cell surface
area into ocean, land, and global DAOD averages)

Over land 0.103, 0.068

90◦ S–90◦ N Global 0.057, 0.028

3.2 Uncertainty analysis

In order to understand the differences between the MODIS-
and CALIOP-based DAOD, it is important to identify and
quantify the uncertainties in each retrieval. The uncertainty
of CALIOP DAOD retrieval comes from several sources: an
important source is the inherent uncertainty associated with
CALIOP observations and its retrieval algorithm, such as in-
strument calibration errors (Kar et al., 2018), errors in dis-
criminating cloud from aerosol, and failure to detect aerosol
layers (including tenuous aerosol layer and the lower part of
heavy dust layer. For example, Thorsen and Fu (2015) es-
timated that CALIOP may have underestimated 30 %–50 %
in the magnitude of aerosol direct radiative effect due to its
low sensitivity to tenuous layer), which is likely to translate
into low bias in DAOD. In heavy aerosol conditions (e.g.,
strong dust storms in source regions and outflow regions),
the CALIOP laser cannot penetrate to the bottom of aerosol
layer due to the laser attenuation (Rajapakshe et al., 2017),
which could also lead to a low bias in CALIOP DAOD.

CALIOP-based DAOD is also subject to the uncertainty
associated with the assumed dust LR. Different deserts pro-
duce dust with different mineralogy, size, and shape, and thus
different LRs. Voss et al. (2001) measures LR for African
dust as 41± 8 sr using a micropulse lidar system and Liu et
al. (2002) measures LR for Asian dust as 42–55 sr. Globally
observed LRs are summarized in Müller et al. (2007) and
Baars et al. (2016). In this study, we assume dust LR to be
44± 9 sr at 532 nm to be consistent with the value used in

the CALIOP V4 product (Kim et al., 2018). This LR range
is also comparable to previous studies and basically covers
the range of typical dust LRs from 35 to 55 sr (Müller et al.,
2007; Baars et al., 2016). The ±9 sr induces ±20 % DAOD
uncertainties. When separating dust from non-dust aerosol,
the choice of depolarization ratio (DPR) for dust aerosols and
non-dust aerosols also introduces uncertainty in DAOD. To
quantify the uncertainty caused by DPR selection, we also
calculated DAOD in the lowest (δd = 0.30 and δnd = 0.07)
and the highest (δd = 0.20 and δnd = 0.02) dust fraction sce-
narios. The uncertainty induced by DPR is region dependent
(Fig. S6). The uncertainty is much lower in dust-dominant
regions than other regions. The averaged uncertainty for re-
gions with DAOD> 0.05 is 20 %, while the averaged uncer-
tainty for other regions is 38 %.

MODIS dust detection is also subject to a number of un-
certainties. Over the ocean, the persistent presence of clouds,
especially broken clouds, poses a great challenge to the
MODIS aerosol retrievals (Martins et al., 2002). If a cloud
is mistaken as aerosol, it would lead to a high AOD and
low FMF bias, and thereby a high DAOD bias. In addition,
DAOD was calculated from the MODIS-retrieved AOD (τ )
and FMF (f ) with appropriate parameterizations of marine
aerosol AOD (τm), FMF of dust (fdust), combustion (fc),
and marine (fm) aerosols (see Table 2 in Yu et al., 2020, for
the parameterization values). All the parameterizations could
also introduce uncertainty in the derived DAOD, in particu-
lar on a regional basis (see details in Yu et al., 2020). Over
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land, the derived MODIS DAOD represents the coarse-mode
fraction (aerodynamic diameters larger than 1 µm) of dust
only. The exclusion of submicron dust aerosol could induce
around 3 % underestimation of the global atmospheric dust
mass load and around 15 % underestimation of the global
DAOD (see Fig. S1 in Kok et al., 2017).

One way to evaluate these uncertainties and validate the
two dust detection methods is to compare them with an
independent measurement of DAOD. AERONET measure-
ments have been considered as ground truth and often used
to evaluate satellite aerosol optical depth retrievals. How-
ever, so far, there is no valid method to derive DAOD
from AERONET AOD measurements to compare our re-
sults with. Therefore, we use coarse-mode AOD (COD) from
AERONET measurements as a proxy for DAOD (Pu and Gi-
noux, 2018) to compare with our DAOD datasets and fur-
ther estimate the absolute expected errors (EEs) associated
with our DAOD datasets. The fine-mode and coarse-mode
AODs in AERONET product are defined optically rather
than in terms of a microphysical cutoff of the associated par-
ticle size distribution at some specific radius (see details in
O’Neill et al., 2003). Over land, especially dust source re-
gions, dust aerosols are predominantly in coarse mode; there-
fore, AERONET COD could be considered as a good proxy
of DAOD over land. Over the ocean, the exclusion of fine-
mode DAOD could be partially canceled by the inclusion of
coarse sea salt AOD in AERONET COD retrievals. There-
fore, AERONET COD is considered as a proxy of DAOD
over the ocean as well.

We use AERONET monthly mean COD retrieved at
500 nm from the level 2 (cloud-screened and quality-assured)
spectral deconvolution algorithm (SDA) version 4.1 in this
study. The AERONET COD is converted to 550 and 532 nm
using the Ångström exponent to compare with MODIS and
CALIOP DAOD retrievals, respectively. In addition, we pro-
duce a finer-resolution (1◦× 1◦) CALIOP-based DAOD re-
trieval to compare with AERONET COD.

For overland dust retrievals, between 2007 and 2019,
there are 16 653 MODIS, CALIOP monthly mean DAOD re-
trievals collocated with 761 AERONET sites located within
a 1◦ MODIS and CALIOP grid cell (Fig. 1). MODIS DAOD
(DAODM) is overall biased high compared to AERONET
COD with absolute bias Ba = 0.01 and relative bias Br =

26.7 %, while CALIOP DAOD (DAODC) is generally biased
low with Ba =−0.02 and Br =−27.9 %. Using a method-
ology suggested in Sayer et al. (2013), the estimated EE
(take 68th percentiles referring to Sayer et al., 2013) for
all collocated MODIS DAOD over land is approximately
0.65×DAODM+ 0, and for CALIOP DAOD over land it is
approximately 0.52×DAODC+ 0.02 (Fig. 2).

For over-ocean dust retrievals, between 2007 and 2019,
there are 7755 MODIS, CALIOP monthly mean DAOD re-
trievals collocated with 311 AERONET sites located within
a 1◦ MODIS and CALIOP grid cell (Fig. 3). MODIS
DAOD is overall biased high compared with AERONET

COD with absolute bias Ba = 0.01 and relative bias Br =

18.1 %, while CALIOP DAOD is generally biased low
with Ba =−0.02 and Br =−35 %. The estimated EE for
all collocated MODIS DAOD over land is approximately
0.50×DAODM+ 0, and for CALIOP DAOD over land it is
approximately 0.54×DAODC+ 0.02 (Fig. 4).

We further analyze the statistical parameters and EE by
continent for MODIS and CALIOP DAOD (Table 3). The
lowest EE (Br) and highest correlation (R) are estimated
over Africa, followed by Asia, Europe, the Americas, and
Australia. This implies that our DAOD retrievals are sub-
ject to higher bias under high AOD in polluted regions.
Overall, MODIS-based monthly mean DAOD retrievals are
larger than AERONET COD measurements, while CALIOP-
based DAOD retrievals are smaller than AERONET COD,
which seems to suggest that the true DAODs fall between
the MODIS and CALIOP DAOD products.

4 Global dust climatology

In this section, we compare CALIOP global dust retrieval
against MODIS dust retrieval, more specifically MODIS
ocean dust retrieval from Yu et al. (2009, 2020) and land
dust retrieval from Pu and Ginoux (2018); we analyze the
similarities and differences between two dust climatological
datasets and furthermore study the seasonal cycle and trend
of dust aerosols based on these datasets.

4.1 Comparison between CALIOP and MODIS DAOD
climatology

The DAOD climatology datasets derived from the CALIOP
and MODIS observations, as described in Sect. 3, have two
major sources of uncertainty:

1. The first is the uncertainty associated with the TAOD
retrieval. The primary uncertainty sources in MODIS
TAOD retrieval include instrument calibration errors,
cloud-masking errors, inappropriate assumption of sur-
face reflectance, and aerosol model selection (Remer et
al., 2005; Levy et al., 2013, 2018). Uncertainty sources
in CALIOP aerosol retrieval include instrument calibra-
tion errors, errors in discriminating cloud from aerosol,
uncertainties associated with the a priori assumption
of LRs, underdetection of tenuous aerosol layers, and
overestimation of the elevation height of heavy aerosol
plume base (Winker et al., 2009; Yu et al., 2010; Schus-
ter et al., 2012; Thorsen and Fu, 2015; Rajapakshe et al.,
2017).

2. The second is the uncertainty associated with dust
detection and separation. As explained in Sect. 2,
CALIOP- and MODIS-based dust detection and sep-
aration methods are based on different characteristics
of dust aerosols in comparison with other types of
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Figure 1. Scatter density histogram comparing monthly (from 2007 to 2019) MODIS DAOD (a) and CALIOP DAOD (b) with monthly
coarse-mode CODSDA retrieved at 550 nm for MODIS comparison and at 532 nm for CALIOP comparison from the level 2 (cloud-
screened and quality-assured) spectral deconvolution algorithm (SDA) version 4.1 (O’Neill et al., 2003). The 1-to-1 line and linear re-
gression line are shown by dotted and solid lines, respectively. The number of sites (Sites), matchups (N ), correlation (R), slope (S),
constant (C), and root mean square error (RMSE) of the linear regression as well as absolute bias (Ba) and relative Bias (Br) are indi-
cated in the lower right of the panel. Ba, Br, and RMSE are defined as Ba = DAODC or M − CODSDA, Br = DAODC or M /CODSDA − 1,

RMSE=

√∑
i (DAODC or M,i −CODSDA,i )2

N
.

Figure 2. (a) The x axis is the MODIS derived DAOD; the y axis is the absolute MODIS DAOD–AERONET COD difference (without
scaling by an geometric air mass factor; AMF). Data are sorted by bins of 100 values (we have 16 653 matchups in total; therefore, the last
bin has 53 values). The means and standard deviations of the MODIS DAODM are the centers and half widths of the boxes in the horizontal.
The mean, medians, and lower-to-upper quartile interval of the MODIS–AERONET SDA differences are the red dots, the center, and top–
bottom intervals of the boxes. The dotted line is the error estimated from the least squares linear fit of the 68th percentiles for each box.
Panel (b) is the same except for CALIOP DAOD.

aerosols, as summarized in Table 1. The CALIOP-
based method makes use of the fact that the depolar-
ization ratio of dust aerosols is much higher than that
of other types of aerosols, primarily because of irregu-
lar non-spherical shape and also to a lesser extent be-
cause of coarse size of dust particles (Gasteiger et al.,
2011; Järvinen et al., 2016). MODIS-based method is
largely based on the characteristics of coarse particle
size. Over the ocean, DAOD is derived from MODIS-
retrieved TAOD and FMF with a priori characteristic
FMF for individual aerosol types. Over land, DAOD is
derived using spectral dependence of aerosol extinction
(i.e., Ångström exponent) and single-scattering albedo.
In other words, MODIS retrieves overland DAOD based
on dust size supplemented by absorption characteristics.

Given these retrieval uncertainties and methodological differ-
ences, some discrepancies between the two DAOD climato-
logical datasets are expected. In this section, we will compare
the two datasets to identify and understand their similarities
and differences. Since the mechanisms of dust generation,
dust transport, and dust removal processes all have a seasonal
cycle (Mbourou et al., 1997; Parrington et al., 1983), we first
present and discuss dust spatial distributions for each sea-
son in this section. Table 4 summarizes the seasonal and an-
nual mean DAOD and TAOD values averaged over the ocean,
land, and the globe (all limited to 60◦ S–60◦ N), respectively,
based on MODIS and CALIOP dust retrievals from 2007 to
2019. On a multi-year average basis, the global DAOD was
found to be 0.055 over the ocean and 0.103 over land based
on MODIS, and 0.020 over the ocean and 0.068 over land
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Figure 3. The same as Fig. 1 except for over the ocean.

Figure 4. The same as Fig. 2 except for over the ocean.

based on CALIOP. The global annual mean DAOD (TAOD)
is 0.032 (0.121) and 0.067 (0.171) according to CALIOP and
MODIS retrievals, respectively.

As a comparison of two DAOD retrievals in this study,
generally, the DAOD from two retrievals differs by a factor
of about 3 over the ocean and less than 2 over land, while
TAOD differs by a factor of less than 2 over both ocean and
land. The ratio of DAOD over land to that over the ocean
is about 2 and 3 for MODIS and CALIOP, respectively. For
TAOD, the land-to-ocean ratio is about 2 for both products.
Overall, the difference in TAOD between two retrievals is
less than their difference in DAOD. On a global average,
both MODIS and CALIOP-based DAOD peaks in boreal
summer (June–July–August). DAOD reaches a minimum in
boreal fall (September–October–November) for MODIS but
in boreal winter (December–January–February) for CALIOP.
The MODIS and CALIOP differences are region dependent,
which is discussed as follows.

Figure 5 shows the spatial distribution of seasonal mean
DAOD and the percentage of DAOD to the TAOD based
on 13-year (2007–2019) CALIOP and MODIS observations.
Note that this period is chosen because both datasets are
available. Generally, MODIS-based DAOD is larger than
CALIOP-based DAOD. As expected, high values are seen
from both CALIOP-based and MODIS-based DAOD over
the “dust belt” regions extending from the west coast of

north Africa to the Middle East, central Asia, and China,
where large-scale dust activities occur persistently through-
out the year. However, the CALIOP-based DAOD is rather
low in some other regions that are known to be dusty in cer-
tain seasons, such as the southwestern United States, South
America (Patagonian Desert), Australia, and South Africa
(i.e., Kalahari Desert). These regions do stand out in MODIS
DAOD maps (i.e., the second column in Fig. 5). Then we plot
DAOD-to-TAOD ratio based on DAOD and TAOD retrievals
from two sensors (the last two columns in Fig. 5). These re-
gions indeed show up in the DAOD-to-TAOD ratio plot based
on both sensors (i.e., the last two columns in Fig. 5). This
means that in those regions both sensor-specific methodolo-
gies are able to distinguish dust aerosol from sensor-detected
total aerosol to some extent so that the DAOD-to-TAOD ratio
stands out in those regions for both sensors.

A close examination of Fig. 5 revealed a land-to-ocean dis-
continuity in MODIS-based DAOD along the west African
coastlines, especially between 30◦ S and 0◦ N in the summer
and fall seasons. This discontinuity could have been caused
by several factors. First, we used the MODIS DB and DT
products to derive DAOD over land and ocean, respectively.
It is known the DB and DT algorithms are based on differ-
ent methods and implemented by different groups, which in-
evitably leads to significant differences between the two and
contributes to the discontinuity. This discontinuity has been
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Table 3. Statistical parameters and absolute error by continents using the method indicated in Fig. 1. Sites is the number of AERONET sites
involved; N is the number of MODIS, CALIOP and AERONET matchups. R is correlation coefficient; C is the intercept of the linear fit; K
is the slope of the linear fit; RMSE is root mean square error of the linear fit; Ba is the absolute bias; Br is the relative bias. For cells with
two rows of values, the upper row is for MODIS, the lower row is for CALIOP.

Region Sites N R C K RMSE Ba Br (%) Absolute error

Global 761 16 653 0.72 0.01 1.05 0.08 0.01 26.7 0.65×DAODM
0.70 −0.01 0.90 0.07 −0.02 −27.9 0.52×DAODC+ 0.02

Africa 44 706 0.79 0.04 0.72 0.10 0.01 4.5 0.37×DAODM+0.01
0.72 0.01 0.75 0.12 −0.02 −19.8 0.51×DAODC+0.02

Asia 143 2507 0.64 0.04 0.88 0.10 0.03 34.2 0.61×DAODM
0.57 0.00 0.84 0.11 −0.01 −11.0 0.66×DAODC+0.01

Europe 156 4359 0.27 0.03 0.55 0.05 0.01 18.2 0.70×DAODM
0.35 0.00 0.53 0.04 −0.02 −48.6 0.47×DAODC+0.02

Americas 319 6656 0.29 0.02 0.54 0.04 0.01 25.5 0.77×DAODM
0.33 0.00 0.31 0.03 −0.02 −55.8 0.26×DAODC+0.02

Australia 12 507 0.51 0.0 0.57 0.03 −0.02 −43.9 0.37×DAODM+0.02
0.28 0.0 0.32 0.04 −0.02 −59.3 0.34×DAODC+0.03

Table 4. Global (60◦ S–60◦ N) seasonal mean DAOD and TAOD based on MODIS and CALIOP (2007–2019) dust retrievals. Since Earth
is a sphere, grid-cell surface area decreases toward the poles. We weight each grid-cell surface area into ocean, land, and global DAOD
averages.

MAM JJA SON DJF Annual

DAOD TAOD DAOD TAOD DAOD TAOD DAOD TAOD DAOD TAOD

MODIS Ocean 0.057 0.151 0.062 0.153 0.047 0.143 0.052 0.144 0.055 0.148
Land 0.131 0.283 0.119 0.270 0.079 0.206 0.085 0.217 0.103 0.244
Global 0.075 0.183 0.077 0.183 0.055 0.159 0.059 0.160 0.067 0.171
Land/ocean 2.27 1.87 1.90 1.77 1.67 1.44 1.64 1.51 1.89 1.65

CALIOP Ocean 0.022 0.098 0.025 0.104 0.015 0.092 0.016 0.090 0.020 0.096
Land 0.086 0.196 0.086 0.228 0.051 0.186 0.047 0.157 0.068 0.192
Global 0.039 0.124 0.041 0.137 0.025 0.117 0.024 0.107 0.032 0.121
Land/ocean 3.90 1.99 3.45 2.20 3.40 2.03 2.87 1.74 3.45 2.00

pointed out in previous studies (e.g., H. Yu et al., 2021). Sec-
ond, MODIS AOD retrievals are susceptible to cloud con-
taminations. The southeast Atlantic region has one of largest
stratocumulus decks, whose cloud amount peaks in sum-
mer and fall seasons (Klein and Hartmann, 1993). Therefore,
cloud contamination in MODIS DT retrievals over the ocean
leads to overestimation of AOD and underestimation of FMF
and hence overestimation of DAOD (Yu et al., 2020). In ad-
dition, as explained in Sect. 3, we used different methods to
derive the DAOD from the TAOD over land and ocean, which
could also contribute to the problem. This land-to-ocean dis-
continuity is an important limitation of the current method.
To mitigate this problem, substantial efforts are needed to
improve the MODIS DT AOD and FMF retrievals and bet-
ter understand the difference between DT and DB algorithm,
which is beyond the scope of this study.

The climatological dust product shown in Fig. 5 is a mea-
sure of the average dust loading over a geographical domain
and time interval. It contains information of both the inten-
sity and frequency of dust activities. The seasonal condi-
tionally sampled DAOD shown in the first column of Fig. 6
eliminates the impacts from dust frequency by excluding
dust-free cases in the average. It is mainly related to the in-
tensity of observed dust events. Therefore, the comparison
between climatological and conditionally sampled DAOD
sheds a light on the frequency and intensity of dust events
detected by CALIOP. Therefore, we further compare the sea-
sonal climatological DAOD and conditional DAOD product.
The second column in Fig. 6 shows the seasonal climatolog-
ical DAOD. The third column in Fig. 6 shows the relative
difference between conditionally sampled DAOD and clima-
tological DAOD with respect to the climatological DAOD. In
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Figure 5. Spatial distribution of the seasonal mean CALIOP-based DAOD, MODIS-based DAOD, and the fraction of DAOD with respect to
the TAOD based on CALIOP and MODIS, respectively, for the globe at a 5◦ longitude× 2◦ latitude resolution based on 13-year (2007–2019)
CALIOP measurements. DJF: December of the previous year–January–February; MAM: March–April–May; JJA: June–July–August; SON:
September–October–November.

“dust belt” regions, especially in the Sahara and Middle East
where dust activities are persistent, climatological DAOD is
very close to conditional DAOD. In Australia, southwestern
United States, South America, and South Africa, however,
the conditional DAOD (column 1 in Fig. 6) and the difference
(column 3 in Fig. 6) are relatively high. This suggests that
dust activities in those regions are highly episodic and/or oc-
cur in relatively small scales. The difference also is very large
in open oceans, suggesting that dust aerosols are present at a
very low frequency.

Having analyzed the conditionally sampled DAOD from
CALIOP, we now return to climatological DAOD and com-
parison between CALIOP and MODIS. Hereafter, all AOD
values are climatological without otherwise explicit state-
ment. Figure 7 shows the difference in seasonal mean TAOD,
DAOD, and the percentage of DAOD in TAOD between
MODIS retrievals and CALIOP retrievals. We first focus on
the “dust belt” and its ocean out-flow regions extending from
the northeastern Atlantic, north Africa to the Middle East,
central Asia, China, and northwestern Pacific. We note that
in Fig. 7 CALIOP-based TAOD and DAOD are generally
smaller than MODIS-based ones over north Africa and the
Saharan dust outflow region over the tropical Atlantic Ocean.
One of the reasons for this large discrepancy is the selection
of LR in CALIOP aerosol retrieval in these regions. CALIOP
V4 products retrieve dust extinction coefficients with two
steps. First, apply a globally uniform LR of 44 sr for the

identified dust aerosol layers to retrieve backscatter coeffi-
cients. Second, use the same LR of 44 sr value to convert
backscatter coefficients to extinction coefficients. Amiridis
et al. (2013) showed that in the second step applying an LR
of 58 sr to CALIOP dust backscatter coefficients in north
Africa improves the resulting aerosol extinction in terms of
optical depth comparison with synchronous and collocated
AERONET and MODIS measurements. Similarly, over the
Sahara and the tropical Atlantic Ocean (see Fig. 8a and d),
we apply an LR of 58 sr to the derived backscatter coefficient
of the dust component to get extinction coefficient of dust
component. The resulting DAOD for an LR of 58 sr shows
an improvement in comparison with MODIS DAOD relative
to an LR of 44 sr (Fig. 9a and d). Therefore, the choose of
LR can largely explain the difference between MODIS and
CALIOP DAOD over north Africa and the tropical Atlantic
Ocean. For other regions, typical values of LR of desert dust
aerosols vary between 35 and 55 sr, which is basically cov-
ered by the range of 44± 9 sr used in this study. The DAOD
uncertainty induced by ±9 sr is estimated to be around 20 %
as shown in the shaded area in Fig. 9.

In the Middle East (the region indicated by Fig. 8b), the
second column in Fig. 7 shows that MODIS DAOD is gen-
erally larger than CALIOP DAOD in the Arabian Peninsula,
while it is opposite in India.

In the Arabian Sea (the region indicated by Fig. 8h), com-
paring column 2 and column 4 in Fig. 7, we could see that
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Figure 6. Conditional DAOD (the first column) and climatological DAOD (the second column) based on CALIOP dust retrieval from 2007
to 2019. The third column shows the relative difference between conditionally sampled DAOD and climatological DAOD with respect to the
climatological DAOD expressed in fraction.

Figure 7. The difference between MODIS and CALIOP for seasonal mean TAOD (the first column), DAOD (the second column), and the
fraction of DAOD in TAOD (the third column) on a basis of the 13-year (2007–2019) average. The fourth column is the seasonal mean cloud
fraction from MODIS L3 product.
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Figure 8. Major dust-laden regions including three dust source regions on land (a–c) and six outflow regions over the ocean (e–i). (a) Sahara
(14–30◦ N, 15◦W–30◦ E), (b) Middle East (10–35◦ N, 40–85◦ E), (c) eastern Asia (30–50◦ N, 75–130◦ E), (d) the tropical Atlantic Ocean –
TAT (0–30◦ N, 15–60◦W), (e) the Caribbean Sea – CRB (6–22◦ N, 60–90◦W), (f) the Mediterranean Sea – MED (30–46◦ N, 5◦W–35◦ E),
(g) the northwest Pacific Ocean – NWP (30–55◦ N, 120–160◦ E), (h) the Arabian Sea – ARB (0–26◦ N, 45–80◦ E), and (i) the tropical Indian
Ocean and the Bay of Bengal – IND (10◦ S–22◦ N, 75–100◦ E). Note that we only consider grids over land for the three dust source regions
and grids over the ocean for the six dust outflow regions.

Figure 9. Comparison of CALIOP DAOD against MODIS DAOD over dust-laden regions indicated in Fig. 8. Color represents the probability
density using Gaussian kernel density estimation. Gray points represent data points within the lowest 5 % of data density. Those gray points
are excluded in the linear regression analysis. The black line and blue shadow are the linear regression for LR= 44± 9 sr; the red line and
red shadow in panels (a) and (d) represent the linear regression for LR= 58± 8 sr. The red text in panels (a) and (d) is the linear fit based
on LR= 58 sr. The black text in each panel is the linear fit based on LR= 44 sr. R is Pearson’s linear correlation coefficient between MODIS
and CALIOP DAOD.

MODIS DAOD is significantly larger than CALIOP DAOD
during JJA, during which cloud fraction is very high in
the region. MODIS aerosol retrieval is more susceptible to
cloud contamination. Specifically, the cloud contamination
can lead to an overestimation of TAOD but underestimation
of FMF. Although the MODIS retrieval algorithm neither as-

sume coarse particles are exclusively from dust aerosols nor
assume dust particles are all coarse particles (Yu et al., 2020),
coarse-mode aerosols are primarily dust. Thus, the overesti-
mation of TAOD and underestimation of FMF will lead to an
overestimation in DAOD.
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Over eastern Asia and the Asian dust outflow region
(northwestern Pacific Ocean; NWP), CALIOP-based DAOD
is generally smaller than MODIS-based DAOD. There could
be several reasons for this. First, this region is a major out-
flow region of Asian pollution (Yu et al., 2020). It is pos-
sible that the internal mixing of dust aerosols with indus-
trial pollution in this region changes the dust morphology
making it less non-spherical (Li and Shao, 2009; Huang et
al., 2020) but larger in size, which leads to smaller depo-
larization ratio and smaller fine-mode fraction. As a result,
CALIOP shape-based DAOD derivation method could not
capture the dust particles contained in the mixture, while
those dust particles can be captured by MODIS size-based
method. Another potential reason could be associated with
that dust plumes in this region are vertically dispersed (Yu et
al., 2010; Su and Toon, 2011). These tenuous dust layers are
likely to go undetected by CALIOP because of its relatively
low sensitivity. However, MODIS retrieves aerosol from the
columnal integrated reflectance which is not dependent on
the vertical distribution of aerosol. The difference may also
be caused by uncertainties in MODIS aerosol retrievals. The
west Pacific Ocean is cloudy almost all year long (see the last
column in Fig. 7), which makes MODIS aerosol retrievals
bias high due to its more susceptibility to cloud contamina-
tion. An exception occurs during winter when cloud frac-
tion is large in NWP. The MODIS-based DAOD is smaller
than CALIOP-based DAOD, even though MODIS TAOD is
larger than CALIOP TAOD. Similarly, over the southeast-
ern Atlantic Ocean, CALIOP-based DAOD is also generally
smaller than MODIS-based DAOD. On one hand, cloud con-
tamination may have biased the MODIS dust retrieval high.
On the other hand, CALIOP clear-sky sampling is not large
enough to capture some dust events in this region.

We further compare DAOD (Fig. 9) and TAOD (Fig. S7 in
the Supplement) retrievals from CALIOP and MODIS over
major dust-laden regions (as shown in Fig. 8), including three
source regions on land (i.e., the Sahara, Middle East, and
eastern Asia) and six oceanic outflow regions (i.e., the Trop-
ical Atlantic Ocean – TAT, the Caribbean Basin – CRB, the
Mediterranean Sea – MED, the Northwest Pacific Ocean –
NWP, the Arabian Sea – ARB, as well as the tropical Indian
Ocean and the Bay of Bengal – IND). Each data point in the
scatter plot represents a monthly mean DAOD (or TAOD) in
a 2◦× 5◦ grid. The density of data is represented by differ-
ent color. To avoid our analysis being biased by some ex-
treme and rare cases, we exclude those data points within
the lowest 5 % of data density (gray points in Figs. 9 and
S7). Overall, the DAOD from the two instruments correlate
well (R > 0.75) and on average CALIOP-based DAOD is
18 %, 34 %, 54 % and 31 % lower than MODIS-based DAOD
over the Sahara (Fig. 9a), TAT (Fig. 9d), CRB (Fig. 9e), and
ARB (Fig. 9h) regions, respectively. Applying LR of 58 sr to
Saharan dust reduces the difference from 18 % to 8 % over
the Sahara and from 34 % to 12 % over TAT. Over the Sa-
hara, the good agreement in DAOD between the two sensors

(bias of 8 % and R = 0.78) suggests that over the Sahara,
dust particles can be adequately characterized by both irreg-
ular non-spherical shape and coarse size. As a result, both
CALIOP- and MODIS-based methods are able to detect and
separate the dust from other types of aerosols. In TAT and
ARB regions, two instruments correlate well (R > 0.8) in
both DAOD and TAOD. For TAOD, CALIOP is smaller than
MODIS by 2 % in TAT and larger than MODIS by 15 % in
ARB. Differences in DAOD are larger, with CALIOP DAOD
lower than the MODIS DAOD by 12 % and 31 % in TAT
and ARB, respectively. This suggests that the differences in
DAOD from the two instruments mainly resulted from dif-
ferences in the dust separation method. In East Asia and
NWP, on contrast, both TAOD and DAOD show poor cor-
relation between the two methods (Fig. 9c, g, S7c, and g).
As discussed earlier, the poor correlation between the two
methods has contributions from many factors. For example,
the total TAOD retrievals from MODIS are subject to larger
uncertainties due to cloud contamination, or the DAOD re-
trieval from CALIOP may miss spherical dust particles that
are coated by large combustion emissions from East Asia.

4.2 Comparison between CALIOP and MODIS DAOD
seasonality

Figure 10 compares annual cycle of MODIS and CALIOP
DAOD based on the 13-year (2007–2019) average over the
nine dust-laden regions. Each data point represents domain-
averaged 13-year mean DAOD for a month, while the error
bar indicates ±1σ (1 standard deviation of DAOD). The sea-
sonal cycles of dust activities and dust transport are con-
sistent with results in literature. For example, Prospero et
al. (2002) shows that dust activity peaks in May–July in
north Africa and the Middle East, while it peaks in spring
in China. These seasonal cycles are consistent with our re-
sults shown in the first row of Fig. 10. Yu et al. (2015a)
shows that DAOD peaks in June–July–August in La Par-
guera, which is consistent with the seasonal cycle in CRB in
this study. Generally, CALIOP and MODIS show very sim-
ilar seasonality over those dust-laden regions. DAOD peaks
in summer June–July–August (JJA) over the Sahara, Mid-
dle East, TAT, CRB, ARB, and IND, but in spring March–
April–May (MAM) over eastern Asia, MED, and NWP. Over
NWP, the seasonal cycle of MODIS DAOD is somewhat dif-
ferent from that of CALIOP DAOD. While CALIOP DAOD
peaks in spring, MODIS DAOD shows a peak in late spring
or even summer months for some years. This could have re-
sulted from cloud contamination in MODIS retrievals due to
the large cloud fraction in summer (Yu et al., 2020).

Compared to the MODIS dust retrieval, CALIOP has a
unique capability of detecting dust aerosol vertical distribu-
tion. Figure 11 shows seasonal mean dust extinction verti-
cal profile from CALIOP for the nine dust-laden regions.
The values on each plot represent the seasonal mean DAOD.
Both DAOD and dust vertical structure have a seasonal de-
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Figure 10. Monthly variation of DAOD from CALIOP (green) and MODIS (red) for major dust-laden regions indicated in Fig. 4. The vertical
line represents ±1σ (standard deviation) over the 13-year period.

pendence. In the Sahara (Fig. 11a), Middle East (Fig. 11b),
and their dust outflow regions the tropical Atlantic (Fig. 11d)
and the Arabian Sea (Fig. 11h), summertime dust aerosol has
the highest DAOD and reaches to the highest altitude extend-
ing from surface up to 6 km in altitude.

The analysis above has been performed over the broad
dust-laden regions. Here, we focus on MODIS and CALIOP
comparison in major potential source areas (PSAs) for dust
in north Africa, namely NAF-1 to NAF-6, as illustrated in
Fig. 12 (adapted from Fig. 1 in Formenti et al., 2011). Among
all dust source regions around the globe, the Sahara and its
margins in north Africa are the largest dust emitter. Within
this region, prominent dust sources are often associated with
topographical lows and foothills of mountains (Prospero et
al., 2002). Seasonal variations of DAOD in the six PSAs are
shown in Fig. 13. Two B values are shown in the upper left
of each panel in Fig. 13, where B is defined as the average
of CALIOP DAOD/MODIS DAOD ratios of all data pairs.
B = 1, > 1, and < 1 indicates no bias, high bias, and low
bias. They are calculated based on CALIOP DAOD using
dust LR of 44 and 58 sr respectively. The CALIOP DAOD
derived using larger LR (58 sr) achieve a better agreement
(B values are closer to 1) with MODIS DAOD. Striking
CALIOP and MODIS differences in DAOD exist in NAF-5,
where the mean bias (B) deviates far from 1. NAF-5 (14–
20◦ N, 15–20◦ E) is located in the Bodélé Depression, west-
ern Chad. This region is reported as the most intense dust
source in the world (Prospero et al., 2002), and dust activity

in the region occurs with a high frequency during all sea-
sons except fall (Mbourou et al., 1997). However, CALIOP
DAODs are much smaller than MODIS retrievals in this re-
gion. In terms of dust seasonality (Fig. 13), the MODIS
DAOD indicates intense dust aerosol loading all year long
with a lower DAOD in the fall, while CALIOP shows a more
distinct seasonality with the highest DAOD of about 0.3 in
May–July and the lowest DAOD of < 0.1 in winter. Over
other PSAs in north Africa, MODIS and CALIOP DAOD
show similar seasonality with B closing to 1 (Fig. 13).

In summary, MODIS and CALIOP DAOD show largest
differences under the following conditions: (1) highly cloudy
oceanic regions and (2) dust–pollution internal mixtures with
high relative humidity. Their differences can be explained as
follows.

Over cloudy ocean, effective cloud screening is critical to
the quality of aerosol retrievals. As an active sensor, CALIOP
is more reliable in discriminating clouds and aerosols than
passive imager MODIS. In addition, active sensor is able to
avoid impact from cloud-side scattering. Therefore, MODIS
is subject to more cloud contamination than CALIOP. Large
cloud contamination in MODIS results in overestimation in
TAOD and underestimation in FMF, introducing a high bias
in DAOD over cloudy ocean regions (e.g., NWP).

Pure dust particles are hydrophobic and will not absorb
water vapor. However, for dust aerosols coated by other types
of aerosols (such as the deliquescent dust–nitrate Ca(NO3)2)
and saline mineral dust particles emitted from saline topsoil
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Figure 11. Vertical profiles of seasonal mean dust extinction coef-
ficient (M m−1) in nine dust-laden regions indicated in Fig. 4. Dif-
ferent colors represent different seasons. The numbers on each plot
are the seasonal mean DAOD for the region.

in arid and semiarid areas (Tang et al., 2019), those types
of dust particles will take up water vapor and grow to be
larger in size and more spherical in shape (Wu et al., 2020c).
This phenomenon is most prominent for dust aerosols in pol-
luted region (e.g., EAS) as well as with relatively high rela-
tive humidity. While such coarse spherical dust particles will
not be accounted for as dust in the CALIOP shape-based
method, they are categorized as dust in the MODIS size-
based method.

4.3 DAOD interannual variation from CALIOP and
MODIS observations

In this section, we examine the interannual variation of
DAOD captured by two sensors over several major dust
source and outflow regions. Figure 14 shows a global map of
DAOD trend derived based on the 13-year (2007–2019) time
series of annual mean DAOD from CALIOP and MODIS.
DAOD trends are calculated for each 2◦× 5◦ grid. The red
color indicates positive trend and blue negative trend. Re-
gions where the trend is statistically significant (p < 0.05)
are marked with a “+” symbol. The similar trend map for
total aerosol optical depth is shown in Fig. S8. Overall,
the DAOD global pattern of interannual trend is similar to

TAOD in major dust-laden regions. For example, over the Sa-
hara and tropical Atlantic Ocean region, both CALIOP and
MODIS do not show a statistically significant trend in DAOD
and TAOD. In East Asia and the northwest Pacific Ocean,
both sensors show a negative trend in DAOD and TAOD.

Figure 15 displays interannual variability of annual-mean
DAOD for the major dust-laden regions as defined in Fig. 8.
Seasonal and annual DAOD trends in the nine regions are
listed in Table 5. Both MODIS and CALIOP show a clear
DAOD trend in certain seasons over the eastern Asia, ARB,
and NWP regions. In eastern Asia, MODIS and CALIOP
show a consistent DAOD decreasing trend at a rate of
−1.7 % yr−1 annually. The two sensors show a DAOD de-
creasing tend of −3.5 % yr−1 and −2.5 % yr−1, respectively,
in eastern Asia during spring and show a consistent trend of
DAOD in ARB during the fall, though with a factor of 2 dif-
ference in magnitude. In NWP, both MODIS- and CALIOP-
based DAOD shows a decreasing trend of −1.7 % yr−1

and −1.6 % yr−1, respectively. The annual DAOD decreas-
ing trend in NWP is mainly attributed to the DAOD de-
cline in spring at a rate of −2.3 % yr−1 and −3.0 % yr−1

for MODIS and CALIOP, respectively. For comparison,
Shimizu et al. (2017) detect the decreasing DAOD trends
of −4.3 % yr−1 in spring and −2.5 % yr−1 on annual mean
basis from the Asian Dust Network (AD-Net) lidar observa-
tions over Japan (2007–2016). These trends are greater than
our results based on MODIS and CALIOP data records.

Dust over NWP comes mainly from East Asian dust
sources. The broad East Asian region (ESA, defined in
Fig. 12) shows statistically significant DAOD decreasing
trends (Fig. 15c), which is consistent with the DAOD de-
creasing trend in NWP. It is also imperative to further exam-
ine which of six major PSAs in East Asia (ESA-1 to ESA-
6 in Fig. 12) contributes to the decreasing trend of DAOD.
As shown in Fig. 16, among the six PSAs, the satellite
data show a consistent interannual declining trend of DAOD
in EAS-5 (southern Gobi Desert) at a rate of −4.8 % yr−1

and −2.8 % yr−1 for MODIS and CALIOP, respectively. In
spring, DAOD in EAS-5 shows a significantly declining
trend at a rate of −5.6 % yr−1 and −3.3 % yr−1 for MODIS
and CALIOP (Fig. S9). Figure 17 assesses the correlation
between DAOD in EAS-5 and DAOD in NWP based on
MODIS and CALIOP, respectively. For annual mean DAOD
from 2007 to 2019, both sensors show a good correlation be-
tween EAS-5 and NWP with R ≈ 0.6 (p = 0.02). In spring,
the correlation of DAOD from two regions is good based
on CALIOP (R = 0.6, p = 0.03), while a weaker correla-
tion (R = 0.53, p = 0.07) was found based on MODIS. We
further examine potential factors contribute to the declining
trend of DAOD in ESA-5 (Qian et al., 2002; Kurosaki and
Mikami 2003; Lee and Sohn, 2011). The first row in Fig. 18
shows the springtime trend of MODIS Enhanced Vegetation
Index (EVI), MERRA-2 near-surface (at 10 m) wind speed
(Carvalho, 2019), and precipitation (Reichle et al., 2017) in
the EAS-5 region. EVI and precipitation show a statistically
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Figure 12. Six dust potential source subregions in Northern Africa (NAF) and Eastern Asia (EAS) based on Figs. 1 and 2 in Formenti et
al. (2011). PSA NAF-1 (30–36◦ N, 0–9◦ E), PSA NAF-2 (16–28◦ N, 10–15◦W), PSA NAF-3 (18–26◦ N, 5◦W–5◦ E), PSA NAF-4 (24–
30◦ N, 15–20◦ E), PSA NAF-5 (14–20◦ N, 15–20◦ E), PSA NAF-6 (14–24◦ N, 25–35◦ E); EAS-1 (34–40◦ N, 75–90◦ E); EAS-2 (44–46◦ N,
85–90◦ E); EAS-3 (40–42◦ N, 90–95◦ E and 42–44◦ N, 85–90◦ E); EAS-4 (42–46◦ N, 100–115◦ E); EAS-5 (38–42◦ N, 100–110◦ E); EAS-6
(42–46◦ N, 115–125◦ E and 48–50◦ N, 115–120◦ E).

Figure 13. Annual cycle of 13-year (2007–2019) monthly mean DAOD over the six PSAs of north African dust. The CALIOP DAOD annual
cycle shown in the figure is derived from backscatter coefficients using LR of 44 sr. The mean bias (B) is computed as the average of CALIOP
DAOD/MODIS DAOD ratios of all data pairs. B = 1, > 1, and < 1 indicate no bias, high bias, and low bias. The mean bias (B) associated
with CALIOP DAOD based on LR= 44 and 58 sr is shown in the upper left of each panel.

significant (p < 0.05) increasing trend with R = 0.82 and
R = 0.58, respectively. Surface wind speed shows a statisti-
cally significant (p < 0.05) decreasing trend with R = 0.66.
The second row in Fig. 18 shows the correlations of the three
factors with MODIS DAOD and CALIOP DAOD, respec-
tively. Clearly, EVI is anti-correlated with both MODIS and
CALIOP DAOD with |R|> 0.7 and p < 0.05. Surface wind
speed is correlated with MODIS DAOD and CALIOP DAOD
with |R|> 0.6 and p < 0.05, while the correlation with pre-
cipitation is not statistically significant (p > 0.05). Note that
EVI and surface wind speed are not independent variables
that affect dust emissions. An increase of EVI or vegeta-
tion cover could reduce the surface wind speed. However,
given the relatively coarse resolution of MERRA-2, the sur-
face wind speed trend may largely reflect the change in atmo-

spheric circulations other than a local wind decrease induced
by more vegetation. The precipitation shows no statistically
significant correlation with MODIS and CALIOP DAOD.

As discussed earlier, our results suggest that the decrease
of NWP DAOD is likely a result of the decreasing dust events
in Asian deserts (i.e., EAS-5 Gobi) in turn likely due to
change of vegetation. This is also reported in several recent
studies. Sternberg et al. (2015) found that Gobi Desert con-
tracted from 2000 to 2012 due to increased moisture avail-
ability. Song et al. (2016) used an integrated wind erosion
modeling system to simulate the spring dust emissions in
northern China over the period of 1982 to 2011. They found
a significant decrease of the magnitude of spring dust event
in China which is attributed to both climate change and local
mitigation strategies. Similarly, An et al. (2018) also noted
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Figure 14. Global map of DAOD trend based on CALIOP (a) and MODIS (b) dust climatology data over 2007–2019 period. Red and
blue represents increasing and decreasing trend, respectively. The “+” symbol denotes trends with p value< 0.05, which are considered as
statistically meaningful trends.

Figure 15. DAOD interannual variability over main dust source regions (a–c) and dust outflow regions (d–i) revealed by CALIOP (green
curve) and MODIS (red curve) observations.

a significant decrease of dust storm event in East Asia af-
ter analyzing observational data from ground stations, nu-
merical modeling, and vegetation indices obtained from both
satellite and reanalysis data. Over the last few decades, the
Chinese government has been taking actions to restore over-
grazed land in Inner Mongolia; the enlarged vegetation cov-
erage and the expected earlier vegetation green-up due to
global warming could have mitigated dust activity in this re-
gion (Fan et al., 2014). Together with the results from our
analysis, along with the aforementioned recent studies, sug-
gest that the decreasing springtime DAOD trend in the NWP
region is a result of the decline of dust activities in Inner
Mongolia (i.e., EAS-5), which is likely linked to vegetation

coverage changes in recent years as a result of China’s miti-
gation projects to hold back desertification.

Some caveats must be mentioned, however, when inter-
preting the trend analysis here. First of all, due to the lim-
itations of the satellite data record, we have only 13 years
worth of CALIOP data and 17 years worth of MODIS data
available. Other climate variabilities, such as the El Niño–
Southern Oscillation (ENSO), could confound the trend anal-
ysis. For example, Abish and Mohanakumar (2013) shows
that La Niña (El Niño) weakens (strengthens) the zonal cir-
culation over the Indian subcontinent, which results in low
(high) aerosol concentration over the Indian subcontinent
transported from the Arabian Desert over the period. Gong
et al. (2005) also show the impact of ENSO on the inter-
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Table 5. DAOD trend over major dust-laden regions based on MODIS and CALIOP observations. The changing rate of DAOD trend is
shown in a sequence of annual/spring/summer/fall/winter in each cell of the table. Those statistically meaningful trends with p < 0.05 are
shown in bold.

MODIS [% yr−1] CALIOP [% yr−1]

Annual MAM JJA SON DJF Annual MAM JJA SON DJF

Sahara (a) −0.04 −0.84 0.21 0.29 0.51 −0.09 −0.93 0.34 −0.52 0.55
Middle East (b) 0.32 −0.61 −0.02 1.80 1.37 −1.84 −2.36 −1.86 −2.46 −0.09
Eastern Asia (c) −1.74 −3.48 −0.28 −0.33 −0.56 −1.70 −2.46 −1.99 −0.45 −1.42
TAT (d) 0.34 −0.68 −0.03 1.68 1.32 −0.25 −1.41 −0.07 0.91 −0.09
CRB (e) 1.10 0.78 0.94 1.59 1.97 −0.40 −1.39 −0.34 0.79 −1.09
MED (f) 0.10 0.32 0.49 −0.71 0.03 −1.09 −1.07 −1.63 −1.20 −0.52
NWP (g) −1.67 −2.33 −1.93 0.63 −1.35 −1.58 −3.01 −2.89 −0.40 −0.19
ARB (h) −1.42 −0.72 −1.81 −1.85 −0.31 −1.17 −1.70 −0.46 −3.60 −0.06
IND (i) −0.09 −0.51 0.40 0.38 −0.89 −1.96 −2.92 −2.43 −0.21 −0.54

Figure 16. Interannual variability of CALIOP (green) and MODIS (red) DAOD in the six potential dust source areas in eastern Asia (refer
to Fig. 8).

Figure 17. Correlation between DAOD in EAS-5 (southern Gobi
Desert) and DAOD in NWP for annual mean (a) and springtime
average (b).

annual variability of Asian dust loading and deposition. Ac-
cording to the NOAA Oceanic Niño Index (ONI), the cli-
mate switched from a strong La Niña phase in 2010–2011 to
a strong El Niño phase in 2015–2016. However, the potential
impact of ENSO on the dust interannual variability is beyond
the scope of this study and will be left for the future research.

5 Summary and conclusion

We derive two observation-based global monthly mean dust
aerosol optical depth (DAOD) climatological datasets from
2007 to 2019 with a 2◦ (latitude)× 5◦ (longitude) spatial res-
olution, one based on CALIOP and the other on MODIS ob-
servations. Our product captures very well as much hotspots
along the “dust belt” region well, as weaker signals in
other dust-active regions such as the southwestern United
States, Patagonian Desert in South America, central Aus-
tralia, and South Africa (Fig. 5). Since DAOD climatol-
ogy product contains and mixes the information of the in-
tensity and frequency of dust activities, we introduce the
conditional DAOD product, which diminishes impacts from
dust frequency by excluding dust-free cases in the average.
The comparison between DAOD climatology data and con-
ditional DAOD data suggests that dust activities in those re-
gions are highly episodic. The two data records compare rea-
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Figure 18. The trend of Enhanced Vegetation Index (EVI), surface wind speed, and precipitation and their correlation with DAOD in spring
in the EAS-5 region. Panels (a)–(c) show the trend of EVI, surface wind speed, and precipitation. Panels (d)–(f) show the correlation of EVI,
surface wind speed, and precipitation with MODIS-based DAOD and CALIOP-based DAOD, respectively. In addition, the time series of
EVI versus DAOD, wind speed versus DAOD, and precipitation versus DAOD is shown in Fig. S10.

sonably well with the results reported in previous studies
and the collocated AERONET coarse-mode AOD. The com-
parison of our MODIS-based and CALIOP-based DAOD
with AERONET COD indicates that MODIS overestimates
DAOD, while CALIOP underestimates DAOD. It is highly
probable that the true DAODs fall between MODIS and
CALIOP DAOD.

CALIOP distinguishes dust aerosols based on its non-
spherical shape, whereas MODIS separates dust aerosols
from others based on its large size characteristics. The dis-
crepancy in dust retrieval based on two instruments are ex-
pected due to the uncertainty associated with their TAOD
retrieval and the uncertainty associated with their different
mechanism in dust detection and separation. The comparison
between CALIOP dust retrieval and MODIS dust retrieval
facilitate a better understanding of advantages and limita-
tions of each dust product and also provide some insights
on dust morphology and dust size. Through the compari-
son, we found generally CALIOP-based DAOD correlates
well with MODIS-based DAOD over dust-laden regions such
as Sahara (R = 0.78), TAT (R = 0.84), CRB (R = 0.75),
and ARB (R = 0.85), but with CALIOP-based DAOD 18 %,
34 %, 54 %, and 31 % lower than MODIS-based DAOD over
those regions, respectively. This result is consistent with the
different treatment of the dust–pollution mixtures in the dust
separation approaches of two instruments. Applying LR of
58 sr to Saharan dust reduce the difference from 18 % to 8 %
over the Sahara and from 34 % to 12 % over TAT. Over the
Sahara, the good agreement in DAOD between the two sen-
sors (bias of 8 % and R = 0.78) suggests that dust aerosols
are irregular non-spherical and at the same time large in size
in this region. In some regions such as NWP, the DAOD
correlation between two sensors is quite low. There could

be many reasons for this; for example, the total TAOD re-
trievals from MODIS have larger uncertainty due to cloud
contamination, or the DAOD retrieval from CALIOP may
miss coarse spherical dust–pollution mixtures.

The interannual variability of DAOD over dust-laden re-
gions shows a clear trend in eastern Asia at a rate of
−1.7 % yr−1 based on two sensors. Over the outflow re-
gion of eastern Asia, DAOD in the NWP region shows a
clear trend at a rate of −1.6 %yr−1 and −1.7 % yr−1 based
on CALIOP and MODIS respectively, this trend is mainly
attributed to the decreasing trend in spring with a rate of
−3.0 % yr−1 based on CALIOP and −2.3 % yr−1 based on
MODIS. Further investigation of DAOD trend in six dust
source areas in eastern Asia, where NWP dust aerosols come
from, shows that there is an obvious decreasing trend in
DAOD during 2007–2019 over the southern Gobi Desert
based on both CALIOP and MODIS dust retrievals. The de-
creasing trend of DAOD is correlated significantly with the
vegetation index and surface wind speed in the area, whereas
there is almost no correlation with the precipitation.

The two observation-based DAOD climatological datasets
derived in this study can be highly valuable for many dust-
related studies. For example, they can be used to assess dust
direct radiative effects (e.g., Kok et al., 2017), study aerosol–
cloud interactions (e.g., Choi et al., 2010; Tan et al., 2014),
and identify global and regional dust trends and variabilities.
They may also be used to evaluate the dust simulations in
global climate models (e.g., Wu et al., 2020a, b). On the other
hand, the current study faces several important limitations.
For example, as explained in Sect. 4, the current MODIS-
based DAOD climatology suffers from the land-to-ocean dis-
continuity problem due to the use of two AOD products and
potential cloud contaminations. The small horizontal sam-
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pling rate of CALIOP is also an important limitation. These
problems are beyond the scope of this study and will be left
for future research.

Data availability. The global DAOD and dust vertical extinc-
tion coefficient climatology data derived from CALIOP in
this study and the MODIS DAOD retrieval data over land
and ocean are available at https://drive.google.com/drive/folders/
1aQVupe7govPwR6qmsqUbR4fJQsp1DBCX?usp=sharing (Song
et al., 2021).

The MODIS EVI data can be downloaded from https://
lpdaac.usgs.gov/products/myd13c2v006/#tools (Didan, 2015). The
MERRA-2 surface wind speed and precipitation data are avail-
able at https://disc.sci.gsfc.nasa.gov/datasets/M2T1NXFLX_5.12.
4/summary?keywords=%22MERRA-2%22 (Global Modeling and
Assimilation Office, 2015).

Supplement. The supplement related to this article is available on-
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