

Supplement of

Role of Criegee intermediates in the formation of sulfuric acid at a Mediterranean (Cape Corsica) site under influence of biogenic emissions

Alexandre Kukui et al.

Correspondence to: Alexandre Kukui (alexandre.kukui@cnrs-orleans.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Table of content

S1 Previous studies Table S1. Previous results on the H₂SO₄ budget

S2 Experimental setup

Figure S1. Schema of chemical conversion and ion molecular reactors

S3 Calibration of OH and H₂SO₄

- S3.1 Calibration setup
 - Figure S2. Schema of the calibration setup
- S3.2 Estimation of OH and H₂SO₄ concentrations produced by calibration setup
- S3.3 Mass peaks intensities and OH, H₂SO₄ concentrations
- S3.4 Calibration example
 - S3.4.1 OH and H₂SO₄ wall loss rates
 - Figure S3. Example of wall loss decay rate measurements
 - S3.4.2 Determination of C_{N_2O} from N₂O photolysis

Figure S4. Determination of the calibration coefficient C_{N_2O}

- S3.4.3 Calibration of OH and H₂SO₄
 - Figure S5. Example of "fast" field calibration of OH and H₂SO₄
 - Figure S6. Comparison of measured I^{OH} and I^{H2SO4} with calculated [OH] and [H₂SO₄]
 - Figure S7. Example of OH calibration coefficient determination
 - Figure S8. Example of relative OH and H₂SO₄ sensitivity calibration
- S3.5 Photochemical coefficients and uncertainty estimation
 Table S2. Photochemical coefficients used for the calculation of OH and H₂SO₄
 Table S3. Estimation of uncertainties
- S4 Estimation of H_2SO_4 production in reactions of SCIs with SO_2
 - Figure S9. Median diel concentration profiles of observed unsaturated VOCs
 Table S4. Measured VOCs, measured techniques, median values, SCIs yields
 Table S5. Rate coefficients for SCIs derived from observed unsaturated VOCs
 Figure S10. Calculated mean diel concentration profiles of SCIs and H₂SO₄^{SCI}
- S5 Validity of H₂SO₄ steady state approximation
 - **Figure S11**. Wind direction probability and wind speed at the Ersa site **Figure S12**. Air mass presence time over the land and H₂SO₄ lifetime
- **S6** Importance of nucleation as a loss pathway of H2SO4 **Figure S13.** Example of new particles formation event (NPF)
- S7 SCIs interference with OH and H2SO4 measurements Figure S14 α-pinene ozonolysis chamber study: dependence of background level on the SCI production rate

References

S1 Previous studies

Table S1. Previous results on the H_2SO_4 budget based on the studies including OH, H_2SO_4 , SO_2 and particles measurements

Air type Location		SO ₂ , ppb	Condensation sink (CS), s ⁻¹	Used <i>k</i> _{OH+SO2} , cm ³ mlk ⁻¹ s ⁻¹ (298K, 1Atm)	Ratio of [H ₂ SO ₄] /[OH]	Ratio of H ₂ SO ₄ production in OH+SO ₂ /Loss (if uptake = 1)	Ref
RemoteIdaho Hill, RockycontinentalMountains, Colorado,3000 m a.s.l.TOHPE,Sontombor 1992		≈ 0.5 ^{a)}	6×10 ^{-3 b)}	8.5×10 ⁻¹³	1 – 2 ^{a)}	≈1	(Weber et al., 1997)
Remote marine, 3400 m a.s.l.	Mauna Loa Obs., Hawaii July, 1992	≈ 0.5 ^{a)}	10 ⁻³ - 10 ⁻²	8.5×10 ⁻¹³	≈ 1 ^{a)}	1	(Weber et al., 1997)
Remote marine, polar	Anvers Island, western Antarctica, SCATE, JanFeb., 1994	0.01-0.02	10 ⁻⁴ - 10 ⁻³	8.5×10 ⁻¹³	8.7 ^{c)}	≈ 0.1	(Jefferson et al., 1998)
	Fritz Peak Obs., Colorado, June-August, 1991	0.2-1 ^{a)}	≈ 5×10 ^{-3 a)}	8.5×10 ⁻¹³	≈ 1 ^{a)}	0.5 - 1	(Eisele and Tanner, 1993)
Forested rural	Hohenpeissenberg, southern Germany April, 1998	≈ 0.3 ^{a)}	-	8.5×10 ⁻¹³	≈ 1.5 ^{a)}	≈ 1 >1 ^{e)}	(Birmili et al., 2000)
continental mountain site	Hohenpeissenberg, southern Germany HAFEX 2000 April and June, 2000	≈ 0.3 ^{a)}	≈10 ^{-2 a)}	8.06×10 ⁻¹³	≈ 1 ^{a)}	≈ 1 day <0.5 night	(Boy et al., 2013)
	Hohenpeissenberg, southern Germany HOPE 2012 11/07-19/08, 2012	0.09 ^{c)}	7×10 ^{-3 c)}	1.3x10 ⁻¹²	0.5 ^{c)}	1.1	(Novelli et al., 2017)
	Mace Head, Ireland PARFORCE June, 1999	0.1-1 ^{a)}	5×10 ⁻³ - 10 ^{-2 a)}	8.5×10 ⁻¹³	≈ 5 ^{a)}	< 0.03	(Berresheim et al., 2002)
Remote Coastal	Mace Head, Ireland 2010-2011	≈ 0.2 ^{a)}	≈ 3×10 ^{-3 a)}	9×10 ⁻¹³	7.1 ^{c)}	≈ 0.2	(Berresheim et al., 2014)
	Finokalia, northern coast of Crete (Eastern Mediterranean) MINOS, August, 2001	≈ 1 ^{a)}	≈ 10 ^{-2 a)}	8.5×10 ⁻¹³	1 - 5 ^{a)}	≈ 0.5	(Bardouki et al., 2003)
Boreal Forest	Hyytiälä, Finland EUCAARI March - June, 2007	-	-	8.5×10 ⁻¹³	1.8 ^{b)}	<0.5	(Petäjä et al., 2009)
	Hyytiälä, Finland HUMPPA-COPEC-2010	0.6 ^{d)}	5.5×10 ^{-3 b)}	8.5×10 ⁻¹³	2.8 ^{d)}	≈ 0.4	(Mauldin III et al., 2012)
	Jul. – Aug., 2010	0.03-0.3 ^{a)}	≈10 ^{-2 a)}	8.06×10 ⁻¹³	≈ 1 ^{a)}	≈ 0.3	(Boy et al., 2013)
Moderately polluted	Tarrant County, TX, Dallas–Fort Worth area June 2011	0.3 ^{a)}	-	1.3x10 ⁻¹²	≈ 2 ^{a)}	< 0.43	(Kim et al., 2015)

^{a)} Estimated from presented data; ^{b)} median; ^{c)} mean ^{d)} mean taken from Novelli et al. (2017); ^{e)} nucleation events

S2 Experimental setup

Figure S1. Schema of the reactor comprising a sampling inlet, the chemical conversion reactor (CCR), the ion molecule reactor (IMR), the NO₂/Air or NO₂/N₂ corona discharge ion sources (CD) and a gas curtain / skimmer assembly (GC-Sk). Positions of the three injector assemblies are shown as I, II and III. The 3 switching valves are used to interchange the two inlet positions between the flows of NO₂, SO₂ and NO reactant mixtures and the corresponding equal flows of pure air Air^{NO2}, Air^{SO2} and Air^{NO}, respectively. Switching of the NO₂, SO₂ and NO inlet positions allows for measurements in the background mode (BG), the two different OH+BG modes (OH+BG I and OH+BG II) and the (RO₂) mode. OH signal is derived from the difference of the signals measured in the OH+BG I or the OH+BG II and the BG modes. The OH+BG I and OH+BG II modes correspond to OH to H₂SO₄ chemical conversion times of 5 ms and 40 ms, respectively. Concentrations of SO₂, NO₂ and NO in the CCR are 3×10^{14} cm⁻³, 1.2×10^{16} cm⁻³ and 3×10^{13} cm⁻³, respectively, corresponding to OH consumption by SO₂ and NO₂ of about 4 ms and 7 µs, respectively. Additional NO₂ is added into the ion molecule rector via the ion source and with a flow of pure air sheath gas resulting in NO₂ concentration in the IMR of 5×10^{16} cm⁻³. Presence time in the IMR is of 0.45 s. The reactor is made of stainless steel and Teflon isolation rings.

S3 Calibration of OH and H₂SO₄

Calibration of OH is performed by producing known concentrations of OH by photolysis of H_2O in air flow at λ =184.9 nm:

$$\begin{array}{lll} \mathrm{H_2O} + hv & \rightarrow & \mathrm{H+OH} \\ \mathrm{H+O_2+M} & \rightarrow & \mathrm{HO_2+M} \end{array}$$

The generated in this way OH concentration is quantified by chemical actinometry using photolysis of N₂O at λ =184.9 nm producing NO of measurable concentrations. Calibration system is based on the same principles that have been previously described in the literature, e.g. Dusanter et al. (2008), Kürten et al. (2012) and references therein). Below is given a detailed description of the calibration setup employed during the ChArMEx campaign in July-August 2013. This calibration system differs in several respects from the previously described calibration systems.

Measured signals I^{OH} and $I^{H_2SO_4}$ (see below) are related to OH and H_2SO_4 concentrations via calibration coefficients C_{OH} and $C_{H_sSO_4}$:

$$[OH] = C_{OH} \times I^{OH}$$
(S1)

$$[H_2SO_4] = C_{H_2SO_4} \times I^{H_2SO_4}; \quad C_{H_2SO_4} = C_{SA} \cdot C_{OH}$$
(S2)

In the following we describe the calibration setup and methods used to derive I^{OH} and $I^{H_2SO_4}$ signals and to estimate C_{OH} , $C_{H_sSO_4}$ and C_{SA} coefficients.

S3.1 Calibration setup

Essential elements of the calibration setup are presented in Figure S2. The whole setup is fixed on a frame allowing its placement in front of the instrument sampling aperture during field measurements or in a laboratory.

The photolysis of H₂O or N₂O is performed in a turbulent flow of humidified air or of N₂O/N₂ mixtures, respectively, passing through a photolysis reactor cell (11) (Figure S2). The photolysis reactor cell of 50 mm in length makes a segment of a calibration stainless steel flow tube (2) of diameter 18 mm. The rectangular volume illuminated by a mercury lamp (7) (Pen-Ray Lamp 11SC-1, UVP) is restricted by two 50 mm x 8 mm Heraeus Quarzglas Suprasil windows (10) fixed at a distance of 18 mm between them. The light from the Pen-Ray is passing through a 185 nm narrowband Acton Research 185-N filter (8) (0.1% transmission at 254 nm; 18% transmission at 185 nm) and through an adsorption cell (9) of length 3 cm which is fleshed either with N₂O/N₂ mixtures or with pure nitrogen allowing to vary the 184.9 nm light intensity in the photolysis cell. Inner volume of the adsorption cell is divided into parallel channels of 4x4 mm to reduce the light divergence. The light intensities on the exit from the photolysis cell and near the Pen-Ray lamp are monitored with two Hamamatsu R5764 phototubes (6) using homemade power supply and acquisition electronics. An enclosure surrounding the photolysis cell and other optical components as well as the compartment holding the Pen-Ray are flushed with nitrogen to avoid ozone formation.

The length of the flow tube section (2) between the photolysis cell and the end of the flow tube placed in front of the instrument sampling aperture (1) is variable from 5 cm to 35 cm in step of 5 cm to allow measurements of OH and H_2SO_4 wall loss rates (see below).

The humidified air or N₂O/N₂ mixtures at flow rate of 24-40 slm (*Re*=1800-3000) are introduced into the inlet flow tube (4) via an entrance section (5) containing humidity and temperature sensors (Michell Instruments Optidew chilled mirror hygrometer and Vaisala capacitive DRYCAP dewpoint and temperature transmitter DMT340/347). The flow rates are controlled with Bronkhorst EL-FLOW mass flow controllers. Water is added to the flow of air using Bronkhorst water mass flow controllers (LIQUI-FLOW 24 g/h and μ -FLOW 1.4g/h). Addition of SO₂ (5% SO₂/Air, Air Liquide) for H₂SO₄ calibration can be made either before the entrance section or after the photolysis cell via an injector in the end section of the flow tube. In-field calibration was usually performed using air and nitrogen ALPHAGAZ 2 and N₂O N48 gases (Air Liquid).

Figure S2. Schema of the calibration setup (a) and detailed view of the photolysis cell (b): 1 - inlet of CIMS; 2 – calibration flow tube; 3 – photolysis cell; 4 – inlet flow tube; 5 – entrance volume with temperature and humidity sensors; 6 – phototubes; 7 – Hg Pen-Ray lamp; 8 – bandpass filter; 9 – N₂O absorption cell; 10 – windows; 11 – photolysis reactor cell.

S3.2 Estimation of OH and H₂SO₄ concentrations produced by calibration setup

Accounting for a fast turbulent mixing in the flow tube the concentration of OH on the exit of the photolysis cell is:

$$\left[OH\right] = \frac{1}{S} \iint_{y,z} \left(\int_{0}^{L} \psi(x, y, z) \sigma_{H_2O} \left[H_2O \right] \frac{dx}{v(x, y, z)} \right) \cdot dy \cdot dz$$
(S3)

Here, $\psi(x, y, z)$ and v(x, y, z) are photon flux and flow velocity at point *x*, *y*, *z* of the photolysis cell (Figure S2), respectively, $\sigma_{\text{H}_2\text{O}}$ is the absorption cross section of water at 184.9 nm, *S* is the area of the tube section in *y*, *z* plane excluding viscous sublayer and integration is over *y*, *z* of the illuminated region, also excluding viscous sublayer.

Assuming that all light rays are parallel in z direction, one can separate the dependence of ψ on z and x, y accounting for the attenuation of the light at wavelength of 184.9 nm due to the adsorption by water and oxygen:

$$\psi(x, y, z) = \psi_0(x, y) \exp(-\left(\sigma_{H_2O}[H_2O] + \sigma_{O_2}[O_2]\right) \cdot z)$$
(S4)

Also, assuming a flatness of the flow velocity profile in the turbulent core and assuming that the flow velocity is independent on x and y (the width of illuminated volume in the cell is 8 mm compared to the tube diameter of 18 mm) we obtain:

$$\left[\mathrm{OH}\right] = \frac{1}{S} \times \sigma_{\mathrm{H}_{2}\mathrm{O}} \left[\mathrm{H}_{2}\mathrm{O}\right] \times \Psi_{_{0}}^{\mathrm{OH}} \times \int_{_{0}}^{_{D_{turb}}} \frac{\exp(-\left(\sigma_{\mathrm{H}_{2}\mathrm{O}}\left[\mathrm{H}_{2}\mathrm{O}\right] + \sigma_{\mathrm{O}_{2}}\left[\mathrm{O}_{2}\right]\right) \cdot z)}{v(z)} \cdot dz$$
(S5)

Here, $\Psi_{_0}^{_{0H}} = \iint_{y,z} \psi_0(x,y) \cdot dy \cdot dz$ is the incident photon flux integrated over the entrance window area, D_{turb} is the

distance between the entrance and exit windows of the cell excluding viscous sublayer.

In case of N₂O photolysis one can write a similar expression for the NO concentration:

$$[\mathrm{NO}] = \frac{1}{S} \times \sigma_{\mathrm{N}_{2}\mathrm{O}} [\mathrm{N}_{2}\mathrm{O}] \times f(\mathrm{N}_{2}\mathrm{O}) \times \Psi_{0}^{\mathrm{N}_{2}\mathrm{O}} \times \int_{0}^{D_{\mu\nu\delta}} \frac{\exp(-\sigma_{\mathrm{N}_{2}\mathrm{O}}[\mathrm{N}_{2}\mathrm{O}] \cdot z)}{v(z)} \cdot dz$$
(S6)

Here, $f(N_2O)$ is the yield of NO per one photon absorbed by N₂O according to the reaction mechanism (SR0-SR3, see Table S2):

$$f(N_2O) = \frac{2k_{3a}[N_2O]}{k_1[O_2] + k_2[N_2] + k_3[N_2O]}$$
(S7)

$N_2O + hv$	\rightarrow	$N_2 + O(^1D)$	(SR0)
$O(^{1}D) + O_{2}$	\rightarrow	$O(^{3}P) + O_{2}$	(SR1)
$O(^{1}D) + N_{2}$	\rightarrow	$O(^{3}P) + N_{2}$	(SR2)
$O(^{1}D) + N_{2}O$	\rightarrow \rightarrow \rightarrow	$\begin{aligned} &NO + NO \\ &N_2 + O_2 \\ &O(^3P) + N_2O \end{aligned}$	(SR3a) (SR3b) (SR3c)

As the flow conditions are the same for H₂O and N₂O photolysis we can relate the NO and OH concentrations as:

$$\frac{[OH]}{[NO]} = \frac{\Psi_{0}^{OH}}{\Psi_{0}^{NO}} \frac{\sigma_{H_{2}O}}{\sigma_{N_{2}O}} \frac{[H_{2}O]}{[N_{2}O] \cdot f(N_{2}O)} \times \left\{ \frac{\int_{0}^{D_{mb}} \frac{\exp(-\left(\sigma_{H_{2}O}\left[H_{2}O\right] + \sigma_{O_{2}}\left[O_{2}^{H_{2}O}\right]\right) \cdot z)}{v(z)} \cdot dz}{\int_{0}^{D_{mb}} \frac{\exp(-\sigma_{N_{2}O}\left[N_{2}O\right] \cdot z)}{v(z)} \cdot dz} \right\}$$
(S8)

To evaluate the ratio of the integrals in (S8) we farther approximate the flow velocity profile of the turbulent core in z direction by a flat profile of a plug flow:

$$[OH] = \frac{[NO]}{f(N_2O)} \times \frac{\sigma_{H_2O}[H_2O]}{\sigma_{H_2O}[H_2O] + \sigma_{O_2}[O_2^{H_2O}]} \times \frac{\Psi_{\circ}^{OH} \left(1 - \exp\left(-\left(\sigma_{H_2O}[H_2O] + \sigma_{O_2}[O_2^{H_2O}]\right)D\right)\right)}{\Psi_{\circ}^{NO} \left(1 - \exp\left(-\left(\sigma_{N_2O}[N_2O]\right)D\right)\right)}$$
(S9)

In (S9), we neglect an influence of the viscous sublayer of thickness of about 1 mm at our flow conditions and assume that the absorption length is equal to the distance between the entrance and exit windows of the cell, $D_{turb} \approx D$. The error of the ratio of the integrals in (S8) evaluated using the plug flow approximation is less than 1% for N₂O volume fraction less than 0.5. This was found by comparing the approximated and the numerically calculated integrals using turbulent flow velocity profile consisting of viscous sublayer (y+<5), buffer layer (5<y+<30) and logarithmic low region (y+>30) (Tennekes and Lumley, 1972).

Finally, accounting for first order losses of OH (e.g. wall loss or reactions with impurities) and using the proportionality of the total photon flux and the measured phototube current we obtain for the OH concentration at the exit of the flow tube:

$$[OH] = \frac{I_{185} \left(\exp\left(\left(\sigma_{H_2O} [H_2O] + \sigma_{O_2} [O_2] \right) D \right) - 1 \right)}{1 + \sigma_{O_2} [O_2]} \times C_{N_2O} \times C_{loss}^{cell} \times C_{loss}^{tube}$$
(S10)

Where, I_{185} is the phototube current proportional to the total photon flux at 184.9 nm (see comment in section 3.4.2) on the exit of the photolysis reactor cell and C_{N_2O} is the calibration coefficient derived from the yield of NO in the photolysis of N₂O:

$$C_{N_2O} = \frac{[NO]}{\Delta I^{NO} \times f(N_2O)}$$
(S11)

Here, ΔI^{NO} is the difference of the phototube current in absence and in presence of N₂O and *f*(N₂O) is the yield of NO by photolysis of N₂O defined above by the equation (S7).

The correction coefficients C_{loss}^{cell} and C_{loss}^{tube} accounting for a first order loss of OH in the cell and in the flow tube, respectively, can be easily derived from differential equation describing OH production and the first order loss:

$$C_{loss}^{cell} = \left(\frac{1 - \exp(-K_{OH} \cdot t_{cell})}{K_{OH} \cdot t_{cell}}\right)$$
(S12)

$$C_{loss}^{tube} = \exp(-K_{\rm OH} \cdot t) \tag{S13}$$

In (S12) and (S13), K_{OH} is a first order OH loss rate coefficient, t_{cell} and t are the presence times in the cell and in the flow tube end section, respectively, calculated from corresponding lengths and bulk flow velocity. In absence of SO₂ being added to the flow for H₂SO₄ calibration the OH loss is explained predominantly by the wall losses, $K_{OH} = K_{OH}^{W}$.

Estimation of OH concentration according to (S10) is made using measured phototube current and H₂O concentration, with other parameters C_{N_2O} , C_{loss}^{cell} , C_{loss}^{tube} being determined in separate experiments. It is important to note that calibration of the phototube is not required. It is essential, however, that sensitivity of the phototube remains unchanged after determination of C_{N_2O} .

For H_2SO_4 calibration OH is converted to H_2SO_4 by adding SO_2 to the flow tube. In this case OH concentration is also described by (S10), but with OH loss coefficient taking into account OH wall loss and OH consumption in the reaction of OH with SO_2 :

$$K_{\rm OH} = K_{\rm OH}^{W} + k_{\rm OH+SO_2} \cdot [SO_2]$$
(S14)

Solving differential equation for H_2SO_4 accounting for H_2SO_4 production in the reaction of OH with SO_2 and its first order loss on the walls of the flow tube we obtain:

$$[H_2SO_4] = [OH] \times k_{OH+SO_2} \cdot [SO_2] \cdot \frac{e^{(K_{OH}-K_{SA})t}}{(1-e^{-K_{OH}t_{cell}})} \cdot \left(\frac{1}{K_{SA}} - \frac{K_{OH}e^{-K_{SA}t_{cell}}}{K_{SA}(K_{OH}-K_{SA})} + \frac{1+e^{K_{SA}t}e^{-K_{OH}(t_{cell}+t)} - e^{(K_{SA}-K_{OH})t}}{(K_{OH}-K_{SA})}\right) (S15)$$

Where [OH] is the OH concentration described by (S10) with K_{OH} according to (S14) and K_{SA} is the H₂SO₄ first order wall loss rate coefficient.

Photodissociation of SO₂ at 184.9 nm may lead to SO₃ and, hence, additional H₂SO₄ formation according to the reactions (SR4 – SR6). This contribution is higher for higher ratio of [SO₂] to [H₂O]. Using the listed here rate coefficients and SO₂ photodissociation cross section the maximum contribution to H₂SO₄ formation from the SO₂ photolysis was estimated to be about 0.8% at relative humidity of 10% and SO₂ concentration of 5×10^{13} cm⁻³. In all calibration experiments the ratio [SO₂]/[H₂O] was maintained low enough to keep the contribution of SO₂ photodissociation to H₂SO₄ formation lower than 1%.

$$\begin{array}{rcl} \mathrm{SO}_2 + hv & \rightarrow & \mathrm{SO} + \mathrm{O} & (\mathrm{SR4}) & 3.11 \times 10^{-18} \ \mathrm{cm}^2 \ (\mathrm{Danielache \ et \ al., 2008}). \\ \mathrm{O} + \mathrm{SO}_2 + \mathrm{M} \rightarrow & \mathrm{SO}_3 + \mathrm{M} & (\mathrm{SR5}) & 1.3 \times 10^{-14} \ \mathrm{cm}^3 \ \mathrm{molecule^{-1} \ s^{-1}} \ (\mathrm{Burkholder \ et \ al., 2015}) \\ \mathrm{SO} + \mathrm{O}_2 & \rightarrow & \mathrm{SO}_2 + \mathrm{O} & (\mathrm{SR6a}) & 7.6 \times 10^{-17} \ \mathrm{cm}^3 \ \mathrm{molecule^{-1} \ s^{-1}} \ (\mathrm{Atkinson \ et \ al., 2004}) \\ \mathrm{SO} + \mathrm{O}_2 + \mathrm{M} \rightarrow & \mathrm{SO}_3 + \mathrm{M} \quad (\mathrm{SR6b}) & < 10^{-36} \ \mathrm{cm}^6 \ \mathrm{molecule^{-2} \ s^{-1}} \ (\mathrm{Black \ et \ al., 1982}; \ \mathrm{Whitehill \ et \ al., 2015}) \end{array}$$

At maximum used SO₂ concentration of 5×10¹³ cm⁻³ attenuation of light at 184.9 nm by SO₂ can be neglected.

S3.3 Mass peaks intensities and OH, H₂SO₄ concentrations

To distinguish ambient H₂SO₄ and H₂SO₄ produced by chemical conversion of OH the conversion is performed with ³⁴SO₂ added into the CCR of the CIMS instrument. OH and H₂SO₄ are derived from measurement of peak intensities I_{62} (m/z=62, NO₃⁻), I_{97} (m/z=97, H³²SO₄⁻) and I_{99} (m/z=99, H³⁴SO₄⁻). Accounting for the isotopic composition of SO₂ used for the chemical conversion (99% isotopic enrichment of ³⁴S, EURISO-TOP) and sulphur and oxygen isotope natural abundance (94% and 5% for HSO₄ m/z=97 and m/z=99, respectively) the measured I_{62} , I_{97} and I_{99} are related to OH and H₂SO₄ concentrations as follows:

$$I_{97} / I_{62} = 0.94 \cdot \frac{1}{C_{H_2SO_4}} \cdot \left[H_2SO_4\right] + \frac{1}{C_{OH}} \cdot \left(\frac{0.01 \cdot \left[SO_2\right]^{CCR} + 0.94 \cdot \left[SO_2\right]^{Ext}}{\left[SO_2\right]^{CCR} + \left[SO_2\right]^{Ext}}\right) \cdot \left[OH\right]$$
(S16)

$$I_{99} / I_{62} = 0.05 \cdot \frac{1}{C_{H_2SO_4}} \cdot \left[H_2SO_4\right] + \frac{1}{C_{OH}} \cdot \left(\frac{0.99 \cdot \left[SO_2\right]^{CCR} + 0.05 \cdot \left[SO_2\right]^{Ect}}{\left[SO_2\right]^{CCR} + \left[SO_2\right]^{Ect}}\right) \cdot \left[OH\right]$$
(S17)

Here, indexes FT and CCR indicate concentrations of SO₂ in the calibration flow tube reactor (or ambient concentration of SO₂) and in the CCR, respectively. C_{OH} and $C_{H_2SO_4}$ are the calibration coefficients defined by (S1) and (S2). Then, combinations of I_{97} and I_{99} corresponding to OH and H₂SO₄ concentrations are calculated as follows:

$$I^{OH} = \frac{1}{C_{OH}} \cdot \left[OH\right] = \frac{\left(\frac{I_{99}}{I_{62}} - \frac{0.05}{0.94} \cdot \frac{I_{97}}{I_{62}}\right)}{\left(0.99 - 0.01 \cdot \frac{0.05}{0.94}\right)} \cdot \left(1 + \frac{\left[SO_2\right]^{E_{M}}}{\left[SO_2\right]^{CCR}}\right)$$
(S18)

$$I^{\mathrm{H}_{2}\mathrm{SO}_{4}} = \frac{1}{C_{\mathrm{H}_{2}\mathrm{SO}_{4}}} \cdot \left[\mathrm{H}_{2}\mathrm{SO}_{4}\right] = \frac{1}{0.94} \cdot \frac{I_{97}}{I_{62}} - \frac{\left(\frac{I_{99}}{I_{62}} - \frac{0.05}{0.94} \cdot \frac{I_{97}}{I_{62}}\right)}{\left(0.99 - 0.01 \cdot \frac{0.05}{0.94}\right)} \cdot \left(\frac{0.01}{0.94} + \frac{\left[\mathrm{SO}_{2}\right]^{E_{X}}}{\left[\mathrm{SO}_{2}\right]^{CCR}}\right)$$
(S19)

For ambient measurements, when $\frac{[SO_2]^{Ext}}{[SO_2]^{CCR}}$ is typically less than 10⁻⁴, (S18) and (S19) can be simplified:

$$I^{OH} = \frac{1}{0.99} \cdot \frac{I_{99}}{I_{62}} - \frac{0.05}{0.99 \cdot 0.94} \cdot \frac{I_{97}}{I_{62}}$$
(S20)

$$I^{\rm H_2SO_4} = \frac{1}{0.94} \cdot \frac{I_{97}}{I_{62}} - \frac{0.01}{0.99 \cdot 0.94} \cdot \frac{I_{99}}{I_{62}}$$
(S21)

S3.4 Calibration example

S3.4.1 OH and H₂SO₄ wall loss rates

The wall loss rate coefficients are determined by measuring the dependence of OH or H_2SO_4 signal intensities on the length of the end section of the flow tube (varied from 5 cm to 35 cm with a step of 5 cm (Figure S3). High concentration of SO₂, in these experiments, of up to 5×10^{14} cm⁻³, was used for fast conversion of OH into H_2SO_4 .

Figure S3. Example of wall loss decay rate measurements: red - OH decay at RH=43%; blue - H_2SO_4 decay at RH=45% and $[SO_2] = 5 \times 10^{14}$ cm⁻³.

S3.4.2 Determination of C_{N_2O} from N₂O photolysis

Figure S4. Determination of the calibration coefficient C_{N_2O} by measuring [NO_x] from the photolysis of N₂O at 184.9 nm as a function on $\Delta I^{NO} \times f(N_2O)$ (blue points). Red points represent dependence of the phototube current on N₂O concentration. Absorption cross section of N₂O obtained from this dependence is in agreement with the literature value of 1.43×10^{-19} cm² (Creasey et al., 2000).

NO generated by N₂O photolysis was measured using Ecotech EC9841T NOx Trace Analyser. The lower detection limit of this analyser was estimated to be about 100 ppt (10 min integration time, 1 σ at S/N=1). To produce sufficient NO concentrations the N₂O photolysis was conducted without the 185 nm bandpass filter, while the production of OH by the photolysis of H₂O was performed with the filter installed to allow using of water vapour concentrations high enough for a reliable H₂O measurements. In both cases the contribution of the strongest emission line of the mercury Pen-Ray lamp at 254 nm to the measured with the phototube photocurrent was not negligible. As the absorption by N₂O at 254 nm is negligible, this contribution was determined from the dependence of the photocurrent on the concentration of N₂O in the absorption cell of the calibrator and was found to be of (56±2)% and of (5.10±0.05)% for the configurations without and with filter, respectively (during the ChArMEx campaign).

S3.4.3 Calibration of OH and H₂SO₄

In Figure S5 is presented an example of a typical calibration procedure consisting of measurement of dependences of I^{OH} and I^{H2SO4} defined in (S18) and (S19) on the photolysis light intensity and concentrations of H₂O and SO₂ in the calibration flow tube.

Figure S5. Example of "fast" field calibration of OH and H_2SO_4 including conversion of OH to H_2SO_4 at different SO_2 concentrations and dependencies of OH and H_2SO_4 signals on $[H_2O]$ and of OH signal on light intensity I_{185} . The conversion of OH to H_2SO_4 was conducted at two calibration reactor lengths corresponding to reaction time of 0.19 s and 0.04 s.

Figure S6. Comparison of all measured I^{OH} and I^{H2SO4} shown in Figure S4 with calculated [OH] and [H₂SO₄].

The calibration coefficients C_{OH} and $C_{\text{H}_2\text{SO}_4}$ can be determined by comparing the measured I^{OH} and $I^{\text{H}2\text{SO}4}$ with [OH] and [H₂SO₄] calculated according to (S10) and (S15), as shown in Figure S6 and Figure S7.

Figure S7. Example of OH calibration coefficient determination from the dependence of I^{OH} on light intensity using data presented in Figure S5.

In practice, the calibration coefficient C_{OH} is determined in absence of SO₂ (e.g. as shown in Figure S7) while the ratio $C_{\text{SA}} = C_{\text{H2SO4}}/C_{\text{OH}}$ is determined by fitting measured ratios of $I^{\text{H2SO4}}/\Delta I^{\text{OH}}$ to the calculated ratios of $[\text{H}_2\text{SO}_4]/\Delta[\text{OH}]$ at different $[\text{SO}_2]^R$, as shown in Figure S8. $\Delta[\text{OH}]$ and ΔI^{OH} correspond to a difference of the calculated [OH] and the measured I_{OH} , respectively, in absence and presence of SO₂. Determined in this way, the C_{OH} calibration coefficient is independent on the value used for the OH+SO₂ rate coefficient while the ratio $C_{\text{SA}} = C_{\text{H2SO4}}/C_{\text{OH}}$ is independent on the sensitivity to OH and only slightly depends on the value of the $k_{\text{OH+SO2}}$ as shown in Figure S8.

Figure S8. Calibration of relative sensitivity of OH and H_2SO_4 : dependencies of calculated (lines) and measured (dots) ratios of the generated H_2SO_4 to the OH consumption on the SO₂ concentration in the calibration flow tube reactor. Red and black colors correspond to the shorter and the longer flow tubes, respectively. Shadowed gray and red regions show sensitivity to the used rate coefficient of the reaction OH+SO₂: upper and lower boundaries correspond to the rate constant multiplied and divided by 2. Larger ratio of H_2SO_4 to ΔOH at the shorter reaction time is explained by faster wall loss of OH compared to H_2SO_4 .

S3.5 Photochemical coefficients and uncertainty estimation.

Parameter	Value	Uncertainty (1o)	Reference
$\sigma_{_{ m H_2O}}$	$(7.22\pm0.22)\times10^{-20}$ cm ²	3%	(Creasey et al., 2000)
$\sigma_{\scriptscriptstyle \mathrm{O}_2}$	$(1.14\pm0.05)\times10^{-20} \text{ cm}^2$	5%	(Creasey et al., 2000)
$\sigma_{_{ m N_2O}}$	$(1.43\pm0.02)\times10^{-19} \text{ cm}^2$	2%	(Creasey et al., 2000)
SR1, k_1	$3.3 \times 10^{-11} exp(-55/T) \text{ cm}^3 \text{ s}^{-1}$	10%	(Sander et al., 2011)
SR2, k_2	$2.5 \times 10^{-11} exp(-110/T) \text{ cm}^3 \text{ s}^{-1}$	10%	(Sander et al., 2011)
SR3, k_3	$1.19 \times 10^{-10} exp(-20/T) \text{ cm}^3 \text{ s}^{-1}$	10%	(Sander et al., 2011)
SR3a, k_{3a}	$7.25 \times 10^{-11} exp(-20/T) \text{ cm}^3 \text{ s}^{-1}$	10%	(Sander et al., 2011)
k _{OH+SO2}	$8.06 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}$ (760 torr, 298K)	25% *)	(Atkinson et al., 2004)

Table S2. Photochemical coefficients used for the calculation of OH and H₂SO₄

*) estimated (see discussion in the article)

Table S3. Estimation of uncertainties

	Danga of values	Estimated
	Kalige of values	uncertainty (1σ)
Absorption length D due to light divergence	18 mm	5%
Plug flow approximation		1%
I_{185} , (photocurrent corresponding to 184.9 nm with correction for 254 nm contribution)	0.01 – 1, nA	5%
[H ₂ O]	$(0.5-7) \times 10^{17}$, cm ⁻³	5% ^{a)}
[SO ₂]	$(10^{-4} - 10) \times 10^{14}$, cm ⁻³	5% ^{b)}
$C_{\rm N2O}$ (NO, $f(\rm N_2O)$)	1100 – 1200, ppt nA ⁻¹	20% ^{c)}
K_{OH} (wall loss at $[SO_2]^{R}=0$)	2-3.5, s ⁻¹	10%
K _{H2SO4}	$1 - 2.5, s^{-1}$	10%
Wall losses correction for OH	0.87 - 0.93 ^{d)}	10%
[OH] ^{calc}		25%
$[H_2SO_4]^{calc}$		35% ^{e)}
Сон	$(3.4 - 3.6) \times 10^{10}$	30%
C _{H2SO4}	$(3.4 - 3.6) \times 10^{10}$	40% ^{e)}
$C_{\rm SA} = C_{\rm H2SO4} / C_{\rm OH}$	0.9-0.95	8% ^{f)}
Resulting calibration uncertainties		
[OH], cm ⁻³	$2 \times 10^{5} - 2 \times 10^{9}$	30%
$[H_2SO_4], cm^{-3}$	$1 \times 10^{5} - 2 \times 10^{9}$	32% ^{g)}
[H ₂ SO ₄] / [OH]	$10^{-4} - 10^4$	8% ^{g)}

- a) With Michell Instruments Optidew chilled mirror hygrometer
- b) Using SO₂ monitor TELEDYNE T100U
- c) Uncertainties of NO, $f(N_2O \text{ and } \Delta I^{NO} \text{ are } 10\%, 15\%, 10\%, \text{ respectively}$
- d) At flow tube length of 5 cm
- e) Using $H_2SO_4^{calc}$ from (S15)
- f) Using the method shown in Figure S8
- g) Using C_{SA}

S4 Estimation of H₂SO₄ production in reactions of SCIs with SO₂

Figure S9. Median diel concentration profiles of observed unsaturated VOCs

	VOC	Method	Median (ppt) Day (7 h-20 h) / Night (20 h – 7 h)	<i>k</i> _{VOC+03} ^{a)} , 10 ⁻¹⁷ cm ³ molecule ⁻¹ s ⁻¹	Yield of stabilized SCI $\alpha_{SCI}^{b)}$		SCI: (R1) – (R2) COO / CI specific yield $Y_{SCI}^{b)}$
1	Ethene	А	167 / 153	0.16	0.37	1	CH200 / 1
						1	CH ₂ OO / 0.5 ^{c)}
2	Propene	А	31 / 28	1.0	0.37	2	-CH ₃ -H / 0.4 ^{c)}
						3	-H -CH ₃ / 0.1 ^{c)}
						1	CH2OO / 0.5
3	1-Butene	А	7/7	1.0	0.4	4	-CH ₂ R _a -H / 0.4
						5	-H -CH ₂ R _a / 0.1
4	<u>trans-2-</u>	Δ	7/7	19	0.4	2	-CH ₃ -H / 0.8
-	<u>Butene</u>	~	,,,,	15	0.4	3	-H -CH ₃ / 0.2
5	cis-2-	Δ ¹⁾	5	13	0.38	2	-CH₃ -H / 0.8
5	Butene	~	5	15	0.58	3	-H -CH₃ / 0.2
	2-Methyl-1-		2	1.4 ^{d)}	0.4	1	CH2OO / 0.5
6	butene	A ¹⁾				6	-CH ₂ R _a -CH ₃ / 0.25
						7	-CH ₃ -CH ₂ R _a / 0.25
	2-Methyl-2-	A ³⁾	6 / 4	40 ^{e)}	0.4	2	-CH ₃ -H / 0.4
7						3	-H -CH₃/0.1
	butche					8	-CH₃ -CH₃ / 0.5
						2	-CH₃ -H / 0.4
8	trans-2-	A 1)	11	16 ^{d)}	0.4	3	-H -CH ₃ / 0.1
Ŭ	Pentene					4	-CH ₂ R _a -H / 0.4
						5	-H -CH ₂ R _a / 0.1
						2	-CH₃ -H / 0.4
q	cis-2-	Δ ¹⁾	6/6	13 ^{d)}	0.20	3	-H -CH₃ / 0.1
5	Pentene	~	0,0	15	0.25	4	-CH ₂ R _a -H / 0.4
						5	-H -CH ₂ R _a / 0.1
			6 / 4	0.9 ^{d)}		1	CH2OO / 0.5
10	1-Pentene	A ³⁾			0.29	4	-CH ₂ R _a -H / 0.4
						5	-H -CH ₂ R _a / 0.1
			4 / 4		0.4	1	CH2OO / 0.5
11	1-Hexene	B ¹⁾		1.0 ^{d)}		4	-CH ₂ R _a -H / 0.4 ^{g)}
						5	-H -CH ₂ R _a / 0.1 ^{g)}

Table S4. Measured unsaturated VOCs and the corresponding measurement techniques, VOCs+O₃ reaction rate coefficients (k_{VOC+O3}), specific yields of Criegee Intermediates (CI) (Y_{SCI}) and yields of stabilized CIs (SCIs) (α_{SCI})

					0.95 ^{f)}	1	CH ₂ OO / 0.33 ^{f)}
					0.34 ^{f)}	9	Z-(CH=CH ₂)(CH ₃)COO / 0.21 ^{f)} (MVK oxide)
12	Isoprene	C.D	355 / 32	1.3	0.54 ^{f)}	10	$E-(CH=CH_2)(CH_3)COO / 0.26^{f}$
		- /	, -	-	0.37 ^{f)}	11	$Z-(C(CH_3)=CH_2)CHOO / 0.02^{\text{f}} (MACR-oxide)$
					0.2 ^{f)}	12	$F_{1}(C(CH_{3})=CH_{2})CHOO / 0.2^{f}$
					0.2	13	Z-ninonaldehyde-K-oxide / 0.25
						14	E-pinonaldehyde K oxide / 0.25
13	<u>a-pinene</u>	В	162 / 13	9.6	0.15	15	Z-pinonaldehyde R oxide / 0.25
						16	E-pinonaldehyde-A-oxide / 0.25
						1	
14	ß-ninene	в	247/6	1 0	0.5	17	7-Noninone oxide / 0.77
14	<u>p-pinene</u>	D	24770	1.5		18	E-Nopinone oxide / 0.13
						10	
15	Camphono	P	11/1	0.05	0 5 ^{h)}	10	$(P_2 P_2 P_2 P_3 P_4 P_4 P_6 / 0.25^8)$
13	Camphene	В	44/1	0.05	0.5	20	CHPdPo CPoPhPo (0.25 g)
						20	
						1	
						4	$-CH_2R_a - H / 0.31$
10	1		F2 / 7	22	0.07	5	$-H - CH_2 R_a / 0.08$
10	Limonene	в	53 / 7	22	0.27	0	$-CH_2R_a$ -CH ₃ / 0.195
						21	$-CH_3 - CH_2R_a / 0.195$
						21	$-CHK_{3}K_{b} - CH_{3} / 0.055$
						22	- CH ₃ -CHR ₂ R _b / 0.055
						5	$-H - CH_2R_a / 0.135 + 0.115$
					0.45	/	$-CH_3 - CH_2R_a / 0.115$
17	y-terpinene	В	11/0	16	0.15	23	$-CH_2-CR_3=CR_4R_5$ –H / 0.135+0.115
			-			24	$-CH_2-CR_3=CR_4R_5$ – CH_3 / 0.115
						25	$-CH_2-CR_3=CR_4R_5$ – CHR_aR_b / 0.135
						26	$-CHR_{a}R_{b}-CH_{2}R_{a}/0.135$
						6	-CH ₂ R _a -CH ₃ / 0.125
						7	-CH ₃ -CH ₂ R _a / 0.125
18	α-	в	124 / 3	1900	0.15	26	$-CHR_{a}R_{b}-CH_{2}R_{a}/0.125$
	terpinene	-	, _			27	$-CH_2R_a$ -CHR _a R _b / 0.125
						28	-(CR ₃ =CR ₄ CH ₃) –H / 0.25
						29	-H -(CR ₃ =CR ₄ CH ₃) / 0.25
	Methyl					1	CH200 / 0.5
19	vinyl	C & D ²⁾	102 / 45	0.52	0.4	30	-C(O)Ra –H / 0.25
	<u>ketone</u>		,			31	$-H - C(O)B_3 / 0.25$
	<u>(MVK)</u>					01	
	Ethyl vinyl					1	CH ₂ OO / 0.5
20	ketone	С	62 / 40	0.6 ^{g)}	0.4	30	-C(O)Ra –H / 0.25
	(EVK)					31	-H -C(O)R ₃ / 0.25
	Methacrole					1	CH ₂ OO / 0.5
21	in (MACR)	C & D ²⁾	48 / 5	0.12	0.4	32	-C(O)H –CH₃ / 0.25
	<u>III (MACIO</u>					33	-CH ₃ -C(O)R ₃ / 0.25
	Acrolein					1	CH2OO / 0.5
22	(Propenal)	E ¹⁾	68	0.014 ^{g)}	0.4	34	-C(O)H –H / 0.25
	(i i openal)					31	-H -C(O)R ₃ / 0.25
						1	CH2OO / 0.5
23	Styrene	B & A ⁴⁾	8/6	1.4 ^{h)}	0.4	35	-CRaRbRc –H / 0.25
						36	-H -CRaRbRc / 0.25

A) Online GC-FID-FID; time resolution 90 min; LOD range 10-100ppt; uncertainty range 5-23%

B) Offline solid adsorption + GC FID; time resolution 180 min; LOD 5ppt; uncertainty range 25%

C) PTR MS; time resolution 10 min; LOD range 7-500ppt; uncertainty range 6-23%

D) Online GC-FID-MS; time resolution 90 min; LOD range 5-100ppt; uncertainty range 5-14%

E) DNPH-HPLC; time resolution 180 min; LOD range 6-40ppt; uncertainty range 25%

1) Averaged value was used

2) The sum of MVK and MACR measured by PTRMS the MVK measurements by online GC-FID-MS

3) From the sum of 1-Pentene and 2-Methyl-2-butene (taken 1 to 1)

4) combined data from GC-FID and SA-GC-FID

a) All the rate constants are from Atkinson et al. (2006) and IUPAC (2020), except indicated otherwise

b) SCIs naming convention and Y_{SCI} are from Vereecken et al. (2017) and references therein, except indicated otherwise

c) (Novelli et al., 2014)

d) (Avzianova and Ariya, 2002)

e) (Witter et al., 2002)

f) (Zhang et al., 2002)

g) (Grosjean et al., 1993)

h) (Le Person et al., 2008)

	SCI	<i>K</i> , ^{Α)} s ⁻¹	k _{н20} , ^{А) в)} cm ⁻³ s ⁻¹	k _{(H2O)2} , ^{A) B)} cm ⁻³ s ⁻¹	<i>k</i> _{so2} , cm ⁻³ s ⁻¹	Precursor
1	CH2OO	0.3	8.7×10 ⁻¹⁶ (435)	1.4×10 ⁻¹² (700)	3.7×10 ⁻¹¹	Ethene, propene, 1-Butene, 2-Methyl-1- butene, 1-pentene, 1-hexene, isoprene, β-pinene, camphene, limonene, MVK, EVK, MACR, acrolein, styrene
2	Z-(CH₃)CHOO	136	6.7×10 ⁻¹⁹ (0.3)	2.3×10 ⁻¹⁴ (12)	2.7×10 ⁻¹¹	Propene, trans-2-butene, cis-2-butene, 2-Methyl-2-butene, trans-2-pentene, cis-2-pentene
3	E-(CH₃)CHOO	53	2.3×10 ⁻¹⁴ (1.2×10 ⁴)	2.7×10 ⁻¹¹ (1.4×10 ⁴)	1.4×10 ⁻¹⁰	Propene, trans-2-butene, cis-2-butene, 2-Methyl-2-butene, <i>trans</i> -2-pentene, <i>cis</i> -2-pentene
4	Z-(CH ₂ R _a)CHOO	205	1.5×10 ⁻¹⁸ (1)	4.3×10 ⁻¹⁵ (2)	2.7×10 ⁻¹¹	1-butene, <i>trans</i> -2-pentene, <i>cis</i> -2- pentene, 1-pentene, 1-hexene, limonene
5	E-(CH ₂ R _a)CHOO	74	1.6×10 ⁻¹⁴ (8×10 ³)	1.7×10 ⁻¹¹ (8.5×10 ³)	1.4×10 ⁻¹⁰	1-butene, <i>trans</i> -2-pentene, <i>cis</i> -2- pentene, 1-pentene, 1-hexene, limonene, γ-terpinene
6	Z-(CH ₂ R _a)(CH ₃)COO	689	1.5×10 ⁻¹⁷ (8)	3.2×10 ⁻¹⁴ (16)	1.6×10 ⁻¹⁰	2-methyl-1-butene, limonene, α- terpinene
7	E-(CH₂R₂) (CH₃)COO	433	9.0×10 ⁻¹⁸ (5)	2.1×10 ⁻¹⁴ (11)	1.6×10 ⁻¹⁰	2-methyl-1-butene, limonene, γ- terpinene, α-terpinene
8	(CH ₃) ₂ COO	478	7.5×10 ⁻¹⁸ (4)	1.8×10 ⁻¹⁴ (9)	1.6×10 ⁻¹⁰	2-methyl-2-butene
9	Z-MVK-oxide	1.3×10⁴ 2140 ^{a)}	1.8×10 ⁻¹⁸	4.8×10 ⁻¹⁵	1.6×10 ⁻¹⁰	isoprene
10	E-MVK-oxide	33 ^{a) b)} 70 ^{c)}	8.1×10 ⁻²⁰	3.1×10 ⁻¹⁶	4.2×10 ^{-11 b)}	isoprene
11	Z-MACR- oxide	1.4×10 ⁴	1.2×10 ⁻¹⁹	4.3×10 ⁻¹⁶	1.6×10 ⁻¹⁰	isoprene
12	E-MACR- oxide	30	(0.1) 1.4×10 ⁻¹⁶ (70) (9±5) ×10 ^{-17 d)}	2.7×10 ⁻¹³ (135)	1.6×10 ⁻¹⁰ 1.5 ×10 ^{-10 d)}	isoprene
13	Z-pinonaldehyde-K- oxide	60	2.4×10 ⁻¹⁹ (0.1)	8.9×10 ⁻¹⁶ (0.4)	1.6×10 ⁻¹⁰	α-pinene
14	E-pinonaldehyde-K- oxide	250	9.8×10 ⁻¹⁸	3.2×10 ⁻¹⁵	1.6×10 ⁻¹⁰	α-pinene
15	Z-pinonaldehyde-A-oxide	634	1.3×10 ⁻¹⁸	3.6×10 ⁻¹⁵	2.7×10 ⁻¹¹	α-pinene
16	E-pinonaldehyde-A-oxide	62	1.6×10 ⁻¹⁴ (8×10 ³)	1.7×10 ⁻¹¹ (8.5×10 ³)	1.4×10 ⁻¹⁰	α-pinene
17	Z-Nopinone oxide	2	4.2×10 ⁻¹⁶ (210)	6.0×10 ⁻¹³ (300)	4.0×10 ⁻¹¹	β-pinene
18	E-Nopinone oxide	375	1.7×10 ⁻¹⁸ (1)	3.7×10 ⁻¹⁵ (2)	1.6×10 ⁻¹⁰	β-pinene
19	Z-(CRaRbRc)(CHRdRe)COO	1.1	2.4×10 ⁻¹⁷ (12)	4.5×10 ⁻¹⁴ (23)	1.6×10 ⁻¹⁰	Camphene
20	E-(CRaRbRc)(CHRdRe)COO	1	3.2×10 ⁻¹⁷ (16)	5.9×10 ⁻¹⁴ (30)	1.6×10 ⁻¹⁰	Camphene
21	Z-(CHR₄R♭)(CH₃)COO	14	9.8×10 ⁻¹⁸ (5)	1.9×10 ⁻¹⁴ (10)	1.6×10 ⁻¹⁰	Limonene
22	E-(CHR _a R _b)(CH₃)COO	611	4.3×10 ⁻¹⁸ (2)	1.1×10 ⁻¹⁴ (6)	1.6×10 ⁻¹⁰	Limonene
23	Z-(CH ₂ -CR ₃ =CR ₄ R ₅)CHOO	4180	1.5×10 ⁻¹⁸ (1)	3.9×10 ⁻¹⁵ (2)	2.7×10 ⁻¹¹	γ-terpinene
24	Z-(CH ₂ -CR ₃ =CR ₄ R ₅)(CH ₃)COO	1400	4.1×10 ⁻¹⁸ (2)	2.9×10 ⁻¹⁴ (15)	1.6×10 ⁻¹⁰	γ-terpinene
25	Z-(CH ₂ - CR ₃ =CR ₄ R ₅)(CHR ₂ R _b)COO	5250	3.4×10 ⁻¹⁷ (17)	6.1×10 ⁻¹⁴ (31)	1.6×10 ⁻¹⁰	γ-terpinene
26	Z-(CHR _a R _b)(CH ₂ R _a)COO	13	1.3×10 ⁻¹⁷ (7)	2.8×10 ⁻¹⁴ (14)	1.6×10 ⁻¹⁰	γ-terpinene, α-terpinene
27	E-(CH ₂ R _a)(CHR _a R _b)COO	257	3.5×10 ⁻¹⁷ (18)	6.8×10 ⁻¹⁴ (34)	1.6×10 ⁻¹⁰	α-terpinene
28	Z-(CR ₃ =CR ₄ CH ₃)CHOO	4.8×10 ⁶	1.2×10 ⁻¹⁹ (0.1)	4.3×10 ⁻¹⁶ (0.2)	2.7×10 ⁻¹¹	α-terpinene

Table S5. SCIs derived from observed unsaturated VOCs, their precursor VOCs and their rate coefficients for thermal decomposition and reactions with H_2O and $(H_2O)_2^{*)}$

29	E-(CR ₃ =CR ₄ CH ₃)CHOO	30	1.4×10 ⁻¹⁶ (70)	2.7×10 ⁻¹³ (135)	1.4×10 ⁻¹⁰	α-terpinene
30	Z-(C(O)R₃)CHOO	20	3.7×10 ⁻¹⁵ (1850)	4.4×10 ⁻¹² (2200)	2.7×10 ⁻¹¹	MVK, EVK
31	E-(C(O)R₃)CHOO	0.04	5.1×10 ⁻¹⁸ (3)	1.4×10 ⁻¹⁴ (7)	1.4×10 ⁻¹⁰	MVK, EVK, Acrolein
32	Z-(C(O)H)(CH₃)COO	7.1×10 ⁴	1.4×10 ⁻¹⁴ (7×10 ³)	1.5×10 ⁻¹¹ (7.5×10 ³)	1.6×10 ⁻¹⁰	MACR
33	E-(C(O)R ₃)(CH ₃)COO	3.8	9.8×10 ⁻²¹ (0.005)	4.4×10 ⁻¹⁷ (0.02)	1.6×10 ⁻¹⁰	MACR
34	Z-(C(O)H)CHOO	144	7.7×10 ⁻¹⁶ (385)	1.1×10 ⁻¹² (550)	2.7×10 ⁻¹¹	Acrolein
35	Z-(CR₄R♭Rc)CHOO	0.01	1.0×10 ⁻¹⁸ (1)	2.8×10 ⁻¹⁵ (1)	2.7×10 ⁻¹¹	Styrene
36	E-(CR₃R♭R₅)CHOO	111	4.5×10 ⁻¹⁴ (2.3×10 ⁴)	4.7×10 ⁻¹¹ (2.3×10 ⁴)	1.4×10 ⁻¹⁰	Styrene

*) SCIs naming convention and rate coefficients are from Vereecken et al. (2017) recommendations based on available measurements or theoretically derived SARs, except when otherwise noted.

A) In bold are presented the major loss pathways.

B) In parenthesis are presented the corresponding loss rate in s⁻¹ at median during [H₂O] and [(H₂O)₂] ChArMEx.

a) (Barber et al., 2018)

b) (Caravan et al., 2020)

c) (Lin et al., 2020)

d) (Lin et al. 2021)

Figure S10. Calculated median diel concentration profiles of SCIs (a) produced by ozonolysis of measured unsaturated VOCs and of $H_2SO_4^{SCI}$ (b) produced by these SCIs in reaction with SO₂. The numbers correspond to the SCIs listed in Tables S4 and S5.

S5 Validity of H₂SO₄ steady state approximation

Figure S11. Wind direction probability centered at the Ersa measurements site and color coded median wind speed. Green curve represents the Cap Corse coastline

Figure S12. Ratio of air mass presence time over the land to H₂SO₄ lifetime, $t_{pr} / t_{\text{H2SO4}}$, (blue points) and the presence time t_{pr} (black points) as functions of the wind direction. Red points – median values of the ratios of $t_{pr} / t_{\text{H2SO4}}$.

S6 Importance of nucleation as a loss pathway of H₂SO₄

Figure S13. Example of new particles formation event (NPF) observed on 31 of July at Ersa station. (a) Time evolution of particle size distribution measured with SMPS. (b) Time profiles of the condensation sink (CS) and of the number concentration of 10–15 nm particles (N_{10-15}). (c) Concentration time profiles of measured OH radicals, H_2SO_4 , SO_2 and calculated $H_2SO_4^{OH}$, the sulfuric acid produced via OH+SO₂.

S7 SCIs interference with OH and H₂SO₄ measurements

Figure S14. Example of a chamber study of the α -pinene ozonolysis showing dependence of background level (BG) on the SCI production rate: (a) α -pinene and ozone concentrations, (b) observed (black) and calculated (red) background levels. The calculations were made assuming O₃ concentration of 2 ppm in the IMR.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J. and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O_x, HO_x, NO_x and SO_x species, Atmos. Chem. Phys., 4(6), 1461–1738, doi:10.5194/acp-4-1461-2004, 2004.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J. and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6(11), 3625–4055, doi:10.5194/acp-6-3625-2006, 2006.

Avzianova, E. V. and Ariya, P. A.: Temperature-dependent kinetic study for ozonolysis of selected tropospheric alkenes, Int. J. Chem. Kinet., 34(12), 678–684, doi:10.1002/kin.10093, 2002.

Barber, V. P., Pandit, S., Green, A. M., Trongsiriwat, N., Walsh, P. J., Klippenstein, S. J. and Lester, M. I.: Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production, J. Am. Chem. Soc., 140(34), 10866–10880, doi:10.1021/jacs.8b06010, 2018.

Bardouki, H., Berresheim, H., Vrekoussis, M., Sciare, J., Kouvarakis, G., Oikonomou, K., Schneider, J. and Mihalopoulos, N.: Gaseous (DMS, MSA, SO_2 , H_2SO_4 and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete, Atmos. Chem. Phys., 3, 1871–1886, doi:10.5194/acp-3-1871-2003, 2003.

Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H., Rosman, K., Maso, M. D., Mäkelä, J. M., Kulmala, M. and O'Dowd, C. D.: Gas-aerosol relationships of H₂SO₄, MSA , and OH : Observations in the coastal marine boundary layer at Mace Head , Ireland, J. Geophys. Res., 107, 1–12, doi:10.1029/2000JD000229, 2002.

Berresheim, H., Adam, M., Monahan, C., O'Dowd, C., Plane, J. M. C., Bohn, B. and Rohrer, F.: Missing SO₂ oxidant in the coastal atmosphere? - Observations from high-resolution measurements of OH and atmospheric sulfur compounds, Atmos. Chem. Phys., 14(22), 12209–12223, doi:10.5194/acp-14-12209-2014, 2014.

Birmili, W., Wiedensohler, A., Plass-Dülmer, C. and Berresheim, H.: Evolution of Newly Formed Aerosol Particles in the Continental Boundary Layer : A Case Study Including OH and H₂SO₄ Measurements, Geophys. Res. Lett., 27(15), 2205–2208, 2000.

Black, G., Sharpless, R. L. and Slanger, T. G.: Rate coefficients at 298 K for SO reactions with O₂, O₃, and NO₂, Chem. Phys. Lett., 90(1), 55–58, 1982.

Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., Paasonen, P., Plass-Dülmer, C., Sipilä, M., Petäjä, T., Mauldin, L., Berresheim, H. and Kulmala, M.: Oxidation of SO₂ by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations, Atmos. Chem. Phys., 13(7), 3865–3879, doi:10.5194/acp-13-3865-2013, 2013.

Burkholder, J. B., Sander, S. P., Abbat, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M. and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, [online] Available from: http://jpldataeval.jpl.nasa.gov/, 2015.

Caravan, R. L., Vansco, M. F., Au, K., Khan, M. A. H., Li, Y.-L., Winiberg, F. A. F., Zuraski, K., Lin, Y.-H., Chao, W., Trongsiriwat, N., Walsh, P. J., Osborn, D. L., Percival, C. J., Lin, J. J.-M., Shallcross, D. E., Sheps, L., Klippenstein, S. J., Taatjes, C. A. and Lester, M. I.: Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate, Proc. Natl. Acad. Sci., 117(18), 9733–9740, doi:10.1073/pnas.1916711117, 2020.

Creasey, D. J., Heard, D. E. and Lee, J. D.: Absorption cross-section measurements of water vapour and oxygen at 185 nm . Implications for the calibration of field instruments to measure OH , HO_2 and RO_2 radicals, , 27(11), 1651–1654, 2000.

Danielache, S. O., Eskebjerg, C., Johnson, M. S., Ueno, Y. and Yoshida, N.: High-precision spectroscopy of ³²S, ³³S, and ³⁴S sulfur dioxide : Ultraviolet absorption cross sections and isotope effects, J. Geophys. Res. Atmos., 113, D17314, doi:10.1029/2007JD009695, 2008.

Dusanter, S., Vimal, D. and Stevens, P. S.: Technical note : Measuring tropospheric OH and HO2 by laser-

induced fluorescence at low pressure . A comparison of calibration techniques, Atmos. Chem. Phys., 8, 321–340, 2008.

Eisele, F. L. and Tanner, D. J.: Measurement of the gas phase concentration of H_2SO_4 and methane sulfonic acid and estimetes of H_2SO_4 production and loss in the atmosphere, J. Geophys. Res., 98, 9001–9010, 1993.

Grosjean, E., Grosjean, D. and Williams, E. L.: Rate constants for the gas-phase reactions of Ozone with unsaturated Alcohols, Esters and Carbonyls, Int. J. Chem. Kinet., 25, 783, doi:10.1002/kin.550261206, 1993.

IUPAC: Task Group on Atmospheric Chemical Kinetic Data Evaluation, http://iupac.pole-ether.fr, last access: April, 2020.

Jefferson, A., Tanner, D. J., Eisele, F. L. and Berresheim, H.: Sources and sinks of H₂SO₄ in the remote Antarctic marine boundary layer, J. Geophys. Res. Atmos., 103(D1), 1639–1645, doi:10.1029/97JD01212, 1998.

Kim, S., Guenther, A., Lefer, B., Flynn, J., Griffin, R., Rutter, A. P., Gong, L. and Cevik, B. K.: Potential role of stabilized Criegee radicals in sulfuric acid production in a high biogenic VOC environment, Environ. Sci. Technol., 49(6), 3383–3391, doi:10.1021/es505793t, 2015.

Kürten, A., Rondo, L., Ehrhart, S. and Curtius, J.: Calibration of a Chemical Ionization Mass Spectrometer for the Measurement of Gaseous Sulfuric Acid, J. Phys. Chem. A, 116, 6375–6386, 2012.

Lin, Y.-H., Yang, C., Takahashi, K. and Lin, J. J.-M.: Kinetics of Unimolecular Decay of Methyl Vinyl Ketone Oxide, an Isoprene-Derived Criegee Intermediate, under Atmospherically Relevant Conditions, J. Phys. Chem. A, 124, 9375–9381, doi:10.1021/acs.jpca.0c07928, 2020.

Lin, Y.-H., Yin, C., Takahashi, K., Lin, J.-M.; Surprisingly long lifetime of methacrolein oxide, an isoprene derived Criegee intermediate, under humid conditions, Commun. Chem., 4(12), https://doi.org/10.1038/s42004-021-00451-z, 2021.

Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V.-M. and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide, Nature, 488(7410), 193–196, doi:10.1038/nature11278, 2012.

Novelli, A., Vereecken, L., Lelieveld, J. and Harder, H.: Direct observation of OH formation from stabilised Criegee intermediates, Phys. Chem. Chem. Phys., 16(37), 19941–19951, doi:10.1039/C4CP02719A, 2014.

Novelli, A., Hens, K., Ernest, C. T., Martinez, M., Nölscher, A. C., Sinha, V., Paasonen, P., Petäjä, T., Sipilä, M., Elste, T., Plass-Dülmer, C., Phillips, G. J., Kubistin, D., Williams, J., Vereecken, L., Lelieveld, J. and Harder, H.: Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument, Atmos. Chem. Phys., 17(12), 7807–7826, doi:10.5194/acp-17-7807-2017, 2017.

Le Person, A., Eyglunent, G., Daële, V., Mellouki, A. and Mu, Y.: The near UV absorption cross-sections and the rate coefficients for the ozonolysis of a series of styrene-like compounds, J. Photochem. Photobiol. A Chem., 195(1), 54–63, doi:10.1016/j.jphotochem.2007.09.006, 2008.

Petäjä, T., Mauldin III, R. L., Kosciuch, E., McGrath, J., Nieminen, T., Paasonen, P., Boy, M., Adamov, A., Kotiaho, T. and Kulmala, M.: Sulfuric acid and OH concentrations in a boreal forest site, Atmos. Chem. Phys., 9, 7435–7448, 2009.

Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L. and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17," JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov, 2011.

Tennekes, H. and Lumley, J. L.: A first course in turbulence, Cambridge, Mass. : MIT Press., 1972.

Vereecken, L., Novelli, A. and Taraborrelli, D.: Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates, Phys. Chem. Chem. Phys., 19, 31599–31612, doi:10.1039/C7CP05541B, 2017.

Weber, R. J., Marti, J. J., Mcmurry, P. H., Eisele, F. L., Tanner, D. J. and Jefferson, A.: Measurements of new particle formation and ultrafine particle growth rates at a clean continental site, J. Geophys. Res., 102, 4375–4385, 1997.

Whitehill, A. R., Jiang, B., Guo, H. and Ono, S.: SO₂ photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols, Atmos. Chem. Phys., 15, 1843–1864, doi:10.5194/acp-15-1843-2015, 2015.

Witter, M., Berndt, T., Böge, O., Stratmann, F. and Heintzenberg, J.: Gas-phase ozonolysis: Rate coefficients for a series of terpenes and rate coefficients and OH yields for 2-methyl 2-butene and 2,3-dimethyl-2-butene, Int. J. Chem. Kinet., 34(6), 394–403, doi:10.1002/kin.10063, 2002.

Zhang, D., Lei, W. and Zhang, R.: Mechanism of OH formation from ozonolysis of isoprene: Kinetics and product yields, Chem. Phys. Lett., 358(3–4), 171–179, doi:10.1016/S0009-2614(02)00260-9, 2002.