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Abstract. The evolving nature of the COVID-19 pandemic
necessitates timely estimates of the resultant perturbations
to anthropogenic emissions. Here we present a novel frame-
work based on the relationships between observed column
abundance and wind speed to rapidly estimate the air-basin-
scale NOx emission rate and apply it at the Po Valley in Italy
using OMI and TROPOMI NO2 tropospheric column obser-
vations. The NOx chemical lifetime is retrieved together with
the emission rate and found to be 15–20 h in winter and 5–
6 h in summer. A statistical model is trained using the esti-
mated emission rates before the pandemic to predict the tra-
jectory without COVID-19. Compared with this business-as-
usual trajectory, the real emission rates show three distinctive
drops in March 2020 (−42%), November 2020 (−38 %), and
March 2021 (−39 %) that correspond to tightened COVID-
19 control measures. The temporal variation of pandemic-
induced NOx emission changes qualitatively agrees with
Google and Apple mobility indicators. The overall net NOx
emission reduction in 2020 due to the COVID-19 pandemic
is estimated to be 22%.

1 Introduction

Satellites have revolutionized our ability to observe the
Earth’s atmospheric composition and air quality. Verti-
cal column densities (VCDs) of reactive species such as
NO2, HCHO, SO2, and NH3 are retrieved from the ob-
served radiances in the ultraviolet, visible, or infrared bands.

The tropospheric VCD (TVCD) retrieval of NO2 has been
widely used to infer the emissions of nitrogen oxides
(NOx =NO2+NO), which is at the center stage of at-
mospheric chemistry by modulating ozone and secondary
aerosol formation (Kroll et al., 2020). The NOx emissions are
dominated by anthropogenic fossil fuel combustion, and its
chemical lifetime in the lower troposphere is relatively short.
Consequently, the satellite-observed NO2 TVCD is highly
responsive to perturbations of human activities, including
economic recession (Castellanos and Boersma, 2012; Russell
et al., 2012), long- and short-term emission regulations (Dun-
can et al., 2016; Mijling et al., 2009; Witte et al., 2009), and
the ongoing global pandemic caused by the coronavirus, or
COVID-19 (Bauwens et al., 2020; Liu et al., 2020; Huang
and Sun, 2020).

Although NO2 TVCD is well established as an indica-
tor of NOx emission, the quantitative connection between
NO2 abundance and NOx emission is confounded by non-
linear chemistry and meteorology (Valin et al., 2014; Gold-
berg et al., 2020; Keller et al., 2021). Many NOx emis-
sion inference methods have been proposed using chemical
transport models (CTMs) that resolve chemistry and mete-
orology in space and time, including mass balance (Martin
et al., 2003; Lamsal et al., 2011; Zheng et al., 2020), four-
dimensional variational data assimilation (4D-Var, Qu et al.,
2019; Wang et al., 2020), and Kalman filters (Miyazaki et al.,
2020a; Mijling and Van Der A, 2012; Ding et al., 2020). Ding
et al. (2020) and Miyazaki et al. (2020b) used CTMs to es-
timate NOx emission reduction in China in the early phase
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of the COVID-19 pandemic, but it is a growing challenge to
match the resolution, lag time, and running cost of CTMs
with the new generation of satellite products that resolve the
NO2 spatial distribution down to a few kilometers. As such,
observational-data-driven approaches have also been devel-
oped, which attempt to derive emissions based on the ob-
served column abundance and without invoking CTMs. A
common way to estimate emissions of short-lived species
like NOx is to retrieve emission and lifetime simultaneously
by fitting an exponentially modified Gaussian (EMG) func-
tion to the downwind plumes from relatively isolated emis-
sion sources (e.g., cities or power plants) (Beirle et al., 2011;
Liu et al., 2016; de Foy et al., 2015; Lu et al., 2015; Gold-
berg et al., 2019a, b; Laughner and Cohen, 2019; Valin et al.,
2013; Zhang et al., 2019). However, the observational-data-
driven approaches using OMI only provide warm-season
or annually averaged emissions and hence cannot capture
the rapidly varying and ongoing COVID-19-induced emis-
sion changes. The availability of much more finely resolved
TROPOMI observations since 2018 enables observation-
based NOx emission estimates at daily scale over a megac-
ity (Lorente et al., 2019).

Based on satellite observations and reanalysis wind speed,
we develop a novel framework that directly and quickly
quantifies air-basin-scale NOx emissions at monthly reso-
lution. We demonstrate this framework using NO2 TVCDs
from both OMI and TROPOMI over the Po Valley air basin
in Italy, which has been severely affected by COVID-19 (Fil-
ippini et al., 2020). The COVID-19-induced emission decline
has to be disentangled from pre-existing trends and season-
ality. Leveraging the long data record from OMI, we build
a statistical model using historic emission rates and predict
the business-as-usual trajectory in 2020–2021. The differ-
ence between this trajectory and the real 2020–2021 emis-
sions reflects the net effect of COVID-19. As the pandemic
and the controlling policies are still evolving in 2021, this
extrapolation using a long-term satellite record offers a sig-
nificant advantage over a simple 2020 vs. 2019 comparison.
Although only NOx emission in the Po Valley is investigated
in this work, this satellite-data-driven framework can be read-
ily applied to other satellite products and regions to rapidly
characterize emission changes.

2 Materials

2.1 Satellite TVCDs

We use the most recent (version 4) NO2 level 2 TVCD re-
trievals from the NASA operational standard product for
OMI (Lamsal et al., 2021). The operational TROPOMI NO2
product (van Geffen et al., 2020; ESA, 2018) used in this
study underwent several algorithm updates since its public
release in 30 April 2018. A significant cloud retrieval algo-
rithm update happened in November 2020, leading to sub-

stantial increase in retrieved NO2 TVCD in polluted regions.
The TROPOMI NO2 algorithm is expected to be updated
with full reprocessing in 2021 to improve its consistency and
continuity (GES DISC, 2021). The level 2 orbits covering the
geographical region of interest over every month are stan-
dardized into single files from October 2004 to June 2021
for OMI and from May 2018 to June 2021 for TROPOMI.
We only use quality-assured level 2 pixels with cloud frac-
tion< 0.3 and solar zenith angle< 70◦. Throughout the OMI
mission, its across-track pixels are limited to 5–23 out of 1–
60 to avoid the row anomaly and keep the time series analy-
sis consistent (Duncan et al., 2016; Schenkeveld et al., 2017).
TROPOMI features 450 pixels across its 2600 km swath and
a nadir pixel size of 3.5×5.5 km2 (3.5×7 km2 before 6 Au-
gust 2019), leading to significantly higher spatial resolution
than OMI, whose nadir pixel size is 13× 24 km2.

Validation studies of both OMI and TROPOMI NO2
TVCDs consistently show systematic low biases (Choi et al.,
2020; Judd et al., 2020; Verhoelst et al., 2021), which can be
attributed to the horizontally coarse a priori profile represen-
tation as well as uncertainties in surface albedo and cloud pa-
rameters in the air mass factor (AMF) calculation. This low
bias matters less for emission trend analysis but will propor-
tionally impact the absolute values of the derived emission
rate. This study focuses on an air basin in which a high level
of pollution is confined, and the spatial gradient is signifi-
cantly less than many other polluted regions. The relative bi-
ases between OMI and TROPOMI NO2 TVCD are assessed
by comparing strictly collocated level 2 retrievals and given
in Appendix A. The OMI NO2 TVCD is generally higher
than TROPOMI in the cold season, with a monthly OMI–
TROPOMI normalized mean bias (NMB) up to over 30%,
whereas the TROPOMI TVCD is generally higher in the
warm season, with a monthly OMI–TROPOMI NMB down
to −20%.

2.2 Study domain and NOx emission inventories

The Po Valley air basin is delineated according to the bound-
ary between the flat terrain in northern Italy and mountain
ranges in the north, west, and south as well as the Adri-
atic Sea coastline in the east, as shown in Fig. 1. The air
basin area is 6.6× 104 km2. The west–east length scale is
∼ 500 km, and the south–north length scale is ∼ 300 km;
both are larger than the square root of basin area (257 km)
due to the irregularity of the basin shape. We contrast our de-
rived monthly air-basin-scale NOx emission rates with four
global inventories. Their emission distributions near the Po
Valley air basin are illustrated in Fig. 1. The Jet Propulsion
Laboratory (JPL) chemical reanalysis provides monthly top-
down emission estimates at 1.1◦× 1.1◦ spatial resolution for
2005–2019 (Miyazaki et al., 2019, 2020a). The NOx emis-
sions from the JPL chemical reanalysis (Fig. 1a) are con-
strained by assimilating O3, NO2, CO, HNO3, and SO2 from
the OMI, GOME-2, SCIAMACHY, MLS, TES, and MO-
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PITT satellite instruments (Miyazaki et al., 2020a) and are
considered to have the highest accuracy in spite of the rel-
atively low spatial resolution. The other three are bottom-
up emission inventories, including the Community Emission
Data System (CEDS; McDuffie et al., 2020), the Emis-
sions Database for Global Atmospheric Research version
4.3.2 (EDGAR; Crippa et al., 2018), and the Peking Uni-
versity NOx inventory (PKUNOx; Huang et al., 2017). The
CEDS inventory is spatially resolved at 0.5◦× 0.5◦ (Fig. 1b)
and available monthly from 1970 to 2017. Both EDGAR
and PKUNOx are at 0.1◦× 0.1◦ spatial resolution (Fig. 1c,
d). EDGAR is available annually from 1970 to 2012, and
PKUNOx is available monthly from 1960 to 2014. Because
of the large grid sizes of the JPL chemical reanalysis and
CEDS inventory, we calculate the air-basin-mean emission
rate by averaging inventory grid cells that overlap with the
Po Valley air basin, weighted by the overlapping area.

2.3 Wind fields

We use wind fields gridded at 0.25◦× 0.25◦ spatial reso-
lution and hourly temporal resolution from the ERA5 re-
analysis meteorology (Hersbach et al., 2020). The relevant
ERA5 fields are spatiotemporally interpolated at each indi-
vidual OMI and TROPOMI level 2 observation. Previous
observational-data-driven emission inference studies repre-
sented horizontal advection of NO2 (or similar short-lived
tracers like SO2 and NH3) by 10 m wind above the sur-
face (de Foy et al., 2015), 100 m above the surface (Gold-
berg et al., 2020), vertically averaged wind from the sur-
face to 500 m (Lu et al., 2015; Liu et al., 2016; Gold-
berg et al., 2019a), or vertically averaged wind from the
surface to 1000 m (Fioletov et al., 2017; Dammers et al.,
2019). Figure 2 quantitatively compares the wind speeds of
these four options using ERA5 data sampled at OMI level
2 observations within the Po Valley air basin boundary (see
Fig. 1) from October 2004 to February 2021. These four
wind speeds show strong linear correlation, with stronger
winds when higher altitudes are involved. The surface–
1000 m wind speed is almost twice as strong as the 10 m
wind, whereas the two intermediate options, the 100 m wind
and the surface–500 m wind, are similar with a difference of
13%. The wind directions among those four options show
much larger discrepancy, but only the wind speeds will be
used in this study.

2.4 In situ NOx observations

We use the ground-based NOx observations over the Po Val-
ley available from the air quality data portal of the European
Environment Agency (EEA) to constrain the temporal varia-
tion of the NOx :NO2 ratio (EEA, 2021). The validated data
(E1a) are used for the years 2013–2019 and combined with
up-to-date data (E2a) for 2020–2021. Only valid hourly data
labeled at 13:00 and 14:00 local time with both NO2 and

NOx available are included in the analysis. We include only
ground-based observations within OMI level 2 pixels with
cloud fraction< 0.3, but the resultant all-sky vs. clear-sky
differences are insignificant.

3 Methods

3.1 Construction of column–wind speed relationships
by physical oversampling

A key step to estimating NOx emissions from the observed
NO2 TVCDs is to construct the column–wind speed rela-
tionship by averaging column amounts over a range of wind
speed intervals. Physical oversampling (Sun et al., 2018) pro-
vides a flexible way to spatiotemporally average satellite data
with proper weighting and slice the data under different envi-
ronmental conditions (e.g., wind speed). The averaged NO2
TVCD (〈�〉) given sets of filtering criteria with respect to
space (s), time (t), and other level 2 parameters (p) can be
calculated as

〈�〉(s, t,p)=

∑
j∈s

∑
i∈t,pwi, j�i∑

j∈s

∑
i∈t,pwi, j

. (1)

Here j is the index of each level 3 grid cell at 0.01◦ reso-
lution, and j ∈ s includes all grid cells satisfying the spatial
aggregation criterion s (e.g., within the boundary of an air
basin). �i is NO2 TVCD retrieved at level 2 pixel i. i ∈ t
and p keep only level 2 pixels satisfying time filtering cri-
teria (e.g., within a calendar month) and parameter filtering
criteria (e.g., wind speed at the level 2 pixel within a certain
interval). wi, j is the weight of level 2 pixel i at level 3 grid
cell j and depends on the spatial response of pixel i at grid
cell j as well as the retrieval uncertainty at pixel i (Zhu et al.,
2017; Sun et al., 2018).

The column–wind speed relationship for an air basin over
a certain time interval is an array of averaged NO2 TVCDs
over different wind speed intervals (every 0.5 m s−1 in this
study):

〈�〉 = [〈�〉(0 m s−1
≤W < 0.5 m s−1), 〈�〉(0.5 m s−1

≤W < 1.0 m s−1), . . . ], (2)

where W is the horizontal wind speed that is interpolated at
level 2 pixels and is representative of horizontal advection.
The four wind speed options shown in Fig. 2 are tested in
this study. Figure 3 shows the column–wind speed (100 m
wind here) relationships for OMI and TROPOMI over the Po
Valley in December 2018–November 2020 grouped into four
seasons. TROPOMI provides 2–3 times more coverage than
OMI, as indicated by the dot sizes, but∼ 50 times more valid
level 2 pixels due to much finer spatial resolution, as labeled
in the legends.
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Figure 1. Spatial distribution of annual NOx emissions in 2005 near the Po Valley air basin (black dashed line) from (a) JPL chemical
reanalysis, (b) CEDS, (c) EDGAR, and (d) PKUNOx.

Figure 2. Correlations between speeds of 100 m wind and 10 m wind (a), 100 m wind and surface–500 m wind (b), 100 m wind and surface–
1000 m wind (c), 10 m wind and surface–500 m wind (d), 10 m wind and surface–1000 m wind (e), and surface–500 m wind and surface–
1000 m wind (f). Wind data are from ERA5 meteorology sampled at valid OMI NO2 observation locations in the Po Valley air basin in
2004–2021. The slopes labeled in the plot are from orthogonal regression, and r is the correlation coefficient (wind speed unit: m s−1).
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Figure 3. Relationships between OMI (blue) and TROPOMI (red) NO2 TVCDs and wind speeds in December, January, February (DJF, a),
March, April, May (MAM, b), June, July, August (JJA, c), September, October, and November (SON, d). Data are shown as solid lines for
2019 (including December 2018) and dotted lines for 2020 (including December 2019). Layers of level 2 observation coverage are indicated
by dot sizes. N in the legends denotes the total number of level 2 pixels used in each column–wind speed relationship. Thick gray lines show
the behaviors of Eq. (5) using prescribed NOx emission rates (Q) of 240, 170, 160, and 170 µmol m−2 and chemical lifetimes (τc) of 16, 9,
5.5, and 11 h for the four seasons. A modest wind range of 3–8 m s−1 is highlighted by cyan shading.

3.2 Conceptual model of column–wind speed
relationships

The emission rate over an air basin Q can be linked to the
basin-average column amount through a box model:

〈�〉 =
Q

φA
(

1
τ d
+

1
τc

) , (3)

where boldface symbols indicate vectors. The averaged NO2
TVCD 〈�〉 and dynamic lifetime τ d are both vectors re-
solved over a range of wind speeds W , φ is the NOx :NO2
ratio, A is the air basin area, and τc is the NOx chemical
lifetime. For cloud-free midday conditions in a polluted air
mass, φ is conventionally assumed to be a constant of 1.32
with 20 % uncertainty in satellite-based NOx emission esti-
mates (Seinfeld and Pandis, 2006; Liu et al., 2016; Beirle
et al., 2019). We further constrain the temporal variation of
φ using observations in Sect. 4.3. The NOx chemical life-
time may vary with wind speed depending on complicated
nonlinear chemistry (Valin et al., 2013), so the scalar τc here
should be considered the average value over the wind speed
range. The high noise level in column–wind speed relation-
ships prevents us from obtaining further wind speed depen-
dence of the chemical lifetime. We simplify the dynamic life-
time dimensionally as the ratio between wind speed and the

horizontal length scale of the air basin L:

τ d =
L

W
. (4)

This implicitly assumes that the horizontal wind efficiently
ventilates pollution away from the air basin. However, the
Po Valley is surrounded by mountains except the east side.
Low wind conditions may only circulate air pollution within
the basin boundary. We thus limit our analysis over moderate
wind speeds as shown in Fig. 3. We do not find systematic
differences in column–wind relationships over different wind
directions over moderate wind speeds, so all wind directions
are combined to maximize the number of observations. Then,
the conceptual model of column–wind speed relationship can
be written as

〈�〉 =
Q

φA
(
W
L
+

1
τc

) . (5)

Van Damme et al. (2018) and de Foy et al. (2015) have ap-
plied such box models to estimate short-lived NH3 and NOx
emission rates by prescribing their chemical lifetimes. The
dynamic lifetime was neglected (Van Damme et al., 2018)
or calculated as the ratio between the near-surface wind
speed and the half-edge length of the square box (de Foy
et al., 2015). Similar box models have also been used to
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infer area-integrated CH4 emission rates from column ob-
servations (Buchwitz et al., 2017; Varon et al., 2018). The
chemical lifetime of CH4 is negligible, and the dynamic life-
time was constrained by CTM simulations in these studies.
Considering that the four wind options described in Sect. 2.3
(10 m, 100 m, surface–500 m, and surface–1000 m) give dif-
ferent yet strongly correlated wind speed values (Fig. 2), we
expect that different L values are needed for those wind op-
tions. End-to-end emission rate estimates are performed us-
ing those four wind speed options with a range of L values in
Sect. 4.1. We found that using 100 m wind and L= 280 km
for the Po Valley air basin (close to

√
A= 257 km) gives

emission rate estimates that are most consistent with the
JPL chemical reanalysis, which is considered to contain the
smallest bias due to the high level of observational con-
straints. This is deemed a calibration for the dynamic lifetime
and is specific to the Po Valley air basin.

The behavior of Eq. (5) is shown in Fig. 3 as gray lines
with prescribed emission rate Q and chemical lifetime τc
values for each season. Equation (5) implies that the column
abundance should monotonously decrease with wind speed
and, for the same chemical lifetime, scales with emission
rate. When the chemical lifetime gets shorter, the 1/τc term
becomes larger relative to the dynamic lifetime term W/L,
and hence the column abundance becomes a weaker function
of wind speed. This is demonstrated by the fact that the NO2
TVCDs decrease more rapidly with stronger wind in win-
ter, indicating a longer NOx chemical lifetime. The overall
higher levels of NO2 TVCDs in winter result from the com-
bined effects of longer chemical lifetime and stronger emis-
sions (see Sect. 4.4 for the seasonality of emission rates de-
rived from this study as well as other top-down and bottom-
up inventories).

As shown in Fig. 3, the observed column–wind speed re-
lationship deviates from Eq. (5) at the lower and upper limits
of wind speed. The simple parameterization of dynamic life-
time by L/W assumes that the ventilation of the air basin is
driven by horizontal advection, which is not valid when the
basin air mass is stagnant. This is supported by the flattening
of column–wind speed relationships at low wind speeds. At
high wind speed, the number of valid observations rapidly
decreases, leading to excessive noise. Therefore, we restrict
our analysis to a moderate wind speed range of 3–8 m s−1, as
indicated by the shaded areas in cyan in Fig. 3.

3.3 Retrieving emission rate and chemical lifetime
from column–wind speed relationships

As shown in Eq. (5), 〈�〉 and W are vectors with elements
separated by wind speeds, so we may directly fit Eq. (5) to the
observed column–wind speed relationships and simultane-
ously obtain emission rateQ and chemical lifetime τc. How-
ever, the information on τc mainly comes from the flatness of
the observed column–wind speed relationship, and thus the
fitted τc is highly sensitive to observational noise. BecauseQ

and τc are strongly anticorrelated, the error in τc is efficiently
propagated to the fittedQ. For example, the spikes in the ob-
served OMI column–wind speed relationships in Fig. 3c and
d would result in an unphysically low chemical lifetime and
unrealistically high emission rate without proper regulariza-
tion. To reliably retrieveQ for each calendar month through-
out the OMI and TROPOMI record, we build a monthly cli-
matology of τc from aggregated observation data and use it
as prior information in a Bayesian optimal estimation frame-
work (Rodgers, 2000; Brasseur and Jacob, 2017). The steps
are summarized below, followed by a description in this sec-
tion.

1. The monthly column–wind speed relationships are
aggregated into 12 months for all the years (“cli-
matological months” hereafter, in contrast to calen-
dar months) separately for OMI (2004–2021) and
TROPOMI (2018–2021). τc and Q are then fitted from
the column–wind speed relationship of each climatolog-
ical month.

2. The fitted τc values in the previous step are used as prior
constraints in a Bayesian inversion to optimally esti-
mate NOx chemical lifetimes in the 12 climatological
months.

3. The optimally estimated τc climatology is used as
a prior constraint to retrieve emission rate Q and
τc for each calendar month separately for OMI and
TROPOMI.

3.3.1 Constructing and fitting climatological
column–wind speed relationships

The column–wind speed relationship of each climatological
month is averaged from 3-month windows in all available
years. For example, the climatological month June is aver-
aged from May–July in 2005–2020 for OMI and 2018–2020
for TROPOMI. Although each climatological column–wind
speed relationship is averaged from a significant number of
calendar months (48–51 for OMI and 7–9 for TROPOMI),
unregularized nonlinear fitting of Q and τc is still highly un-
stable. Figure 4 shows the independent fitting of the column–
wind speed relationships for each climatological month for
OMI (panels a and b) and TROPOMI (panels c and d) as
black symbols. The gray symbols show 100 bootstrap real-
izations for each climatological month, for which the calen-
dar months used for averaging are selected randomly with
replacement in each realization. This bootstrapping is nec-
essary for realistic error estimation, as the fitting errors are
substantially biased low due to strong anticorrelation of fit-
ted parameters. Some climatological months (April, May,
and September for OMI and August–October for TROPOMI)
are characterized by a nonphysically high emission rate and
low chemical lifetime, whereas others (January and Febru-
ary for OMI) are subject to a spuriously high chemical life-
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time. Those originate from irregular features in the column–
wind speed relationship (observable in Fig. 3) and tend to
be more significant when satellite coverage is low. Because
of the stochastic nature of atmospheric motion, those irregu-
lar features randomly appear in a limited number of calendar
months, leading to wide spread of bootstrapping realizations
and namely large uncertainties in emission rate and chemical
lifetime estimates.

We additionally remove “outlier” calendar months that
would significantly alter the fitted τc and Q from the cli-
matological column–wind speed relationship. These outlier
months are often characterized by anomalously high NO2
TVCDs over a few wind speed bins. For each calendar
month, the corresponding climatological month is processed
twice, with and without that calendar month included in the
averaging. The differences of the fitted Q and τc the clima-
tological month with and without a specific calendar month
are displayed in Fig. 5. The calendar month is excluded as an
outlier if the absolute value of its impact on the climatolog-
ical Q is larger than 70 mol s−1 or the absolute value of its
impact on the climatological τc is larger than 1.5 h. The long
record of OMI enables a second round of outlier removal,
whereby the climatology is averaged from a single month
(instead of 3-month window). It is impossible to do that for
TROPOMI as 1 climatological month would only have 2–3
calendar months to average from. In this round, the max Q
difference with and without including a calendar month is
still 70 mol s−1, but the max τc difference is relaxed to 5 h.
The excluded calendar months are highlighted by red dots in
Fig. 5. More winter months are excluded due to lower cov-
erage and consequently noisier column–wind speed relation-
ship. 53 % of winter calendar months in the OMI record are
excluded, while the overall removal rate is 30 %.

After identifying and excluding the outlier calendar
months, the climatological column–wind speed relationships
are finalized, and the climatology of emission rates and
chemical lifetimes are fitted again. The results are shown in
Fig. 6. The fitting quality is significantly improved, as indi-
cated by the reduced variation of bootstrap realizations.

3.3.2 Optimal estimation of climatological chemical
lifetime

The climatological NOx chemical lifetimes fitted from the
previous step are still unsatisfactory due to remaining large
errors and correlation between fitted emission rates and
chemical lifetimes. For instance, the OMI-based chemical
lifetimes in climatological months April and September are
unrealistically shorter than the summer months (Fig. 6b),
which is inconsistent with the TROPOMI values (Fig. 6d)
and corresponds to suspiciously high emission rates in those
two climatological months (Fig. 6a). To further improve the
climatology estimates, we incorporate the a priori informa-
tion that the climatology should vary smoothly over the year
through a Bayesian optimal estimation. The regularization

from the optimal estimation will effectively suppress noise
in the observed column–wind speed relationship.

In this optimal estimation setup, the 12 climatological
column–wind relationships are concatenated into a single
observation vector, and the 12 climatological chemical life-
times and emission rates are retrieved simultaneously as a 24-
element state vector. The fitted OMI- and TROPOMI-based
τc values with outlier calendar months removed (black sym-
bols in Fig. 6b and d) are averaged together and smoothed
by a first-order Savizky–Golay filter with a 3-month win-
dow (Savitzky and Golay, 1964). This smoothed curve is
used as the prior values of chemical lifetimes for both OMI
and TROPOMI. The prior value for the emission rates is a
constant 260 mol s−1 for all climatological months. The prior
error standard deviation is loosely set at 150% for both Q
and τc, and a time correlation scale of 1.5 months is as-
sumed within the lifetime terms and the emission rate terms
in the prior error covariance matrix. The model–observation
mismatch error depends on satellite retrieval error, the rep-
resentativeness of satellite observation in the air basin, and
the chaotic nature of atmospheric motion. Little is known
about the last two sources of error except that longer av-
eraging time may reduce them, so we simplify the model–
observation mismatch error as a single regularization factor
λ that presents its overall variance. Optimal λ values are de-
termined separately for OMI and TROPOMI by balancing
the norm of fitting residuals and the norm of the prior error-
weighted deviation of the solution to the prior using the L
curve (Hansen and O’Leary, 1993). Details on the optimal
estimation setup are provided in Appendix B.

Figure 7 shows the posterior climatological emission rates
Q (a and c) and chemical lifetimes τc (b and d) optimally
estimated using OMI (a and b) and TROPOMI (c and d)
column–wind speed relationships. After taking into account
the correlations between climatological months via Bayesian
optimal estimation, the errors are markedly reduced com-
pared with individual climatological month fittings shown in
Figs. 4 and 6. The climatological emission rates estimated
from OMI data are higher than TROPOMI because overall
the OMI record covers more early years (2004–2021) than
TROPOMI (2018–2021), and the emission rate has been de-
creasing (see Sect. 4.4). The posterior climatological chemi-
cal lifetimes will be discussed in Sect. 4.2.

3.3.3 Optimal estimation of emission rates and
chemical lifetimes for all calendar months

Finally, the monthly NOx emission rate and chemical life-
time are retrieved from the column–wind speed relationships
of all calendar months simultaneously in an optimal estima-
tion algorithm (see Appendix B for technical details). The
prior values of monthly τc are taken from the OMI-based τc
climatology due to its overall higher quality and longer tem-
poral coverage (see Fig. 7b and d and further discussion in
Sect. 4.2). In other words, the OMI-based posterior chemical
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Figure 4. Fitting of the column–wind speed relationships for each climatological month for OMI (a, b) and TROPOMI (c, d). The black
symbols are fitted from real observed data, and the gray symbols are bootstrapping realizations.

Figure 5. Exclusion of outlier months (red) for OMI (a) and TROPOMI. Each dot locates the differences ofQ and τc from the corresponding
climatological month fitting with and without a specific calendar month. The blue boxes show the boundaries delineating the maximum
tolerated Q and τc influences from each calendar month to their corresponding climatological month.

lifetimes in the 12 climatological months are used as the prior
chemical lifetime in each calendar month for both OMI and
TROPOMI. The prior error of calendar month τc is assumed
to be 30%, autocorrelated with an interannual timescale of
1.5 years and an intra-annual timescale of 1.5 months. This
prior regularization to the τc terms is instrumental in the suc-
cessful retrieval of the emission rate Q. The prior values of
monthly Q are estimated from an exponential function fitted
from the annually averaged JPL chemical reanalysis emis-
sion rates, and 100 % prior errors are used. No error corre-
lations are assumed among the Q terms and between Q and
τc terms. This configuration maximizes the information con-
tent of emission ratesQ from observations while suppressing
excessive noise in the results.

4 Results

4.1 Selection of air basin length scale

Equation (5) expresses the dynamic lifetime of NOx in an air
basin dimensionally as the ratio between a length scale L and
wind speed. To assess the uncertainties induced by such sim-
plification, we conduct sensitivity studies using end-to-end
emission rate and chemical lifetime estimations described
in Sect. 3.3 by switching wind speed options described in
Sect. 2.3 and varying the prescribed values for L. The resul-
tant OMI-based emission rates are compared with total sur-
face NOx emission rates from the JPL chemical reanalysis.
We choose OMI-based emission rates due to long-term con-
sistency and large overlap with the JPL chemical reanalysis.
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Figure 6. Similar to Fig. 4, but after outlier month exclusion shown in Fig. 5.

Figure 7. Similar to Figs. 4 and 6, but using Bayesian optimal estimation incorporating the prior knowledge that the climatological emission
rates and lifetimes should vary smoothly.

The combined wind speed option and L value that gives the
closest agreement with the JPL chemical reanalysis monthly
emission rate is selected, as the overall accuracy of the JPL
chemical reanalysis is constrained by multiple observation
datasets.

Figure 8a shows the root mean square error (RMSE) be-
tween the OMI-based emission rates and corresponding JPL
chemical reanalysis values for 2005–2019, and Fig. 8b com-

pares the temporally averaged emission rates. The optimal
L value, characterized by the lowest RMSE and the match-
ing of temporal mean emission rates to the JPL mean value,
increases in the order of 10 m, 100 m, surface–500 m, and
surface–1000 m wind, consistent with the overall magnitude
of those four wind options. As shown in Fig. 2, those four
wind speeds are linearly well correlated. Therefore, the op-
timal L value scales with the wind strengths and partially
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Figure 8. (a) Root mean square error (RMSE) of OMI-based emission rates relative to the monthly JPL chemical reanalysis emission rates
for 2005–2019 when using 10, 100, surface–500 m, and surface–1000 m wind speeds asW in Eq. (5) and a range of L values. (b) Comparison
of the temporal mean emission rates estimated from those wind and length scale options with the mean JPL chemical reanalysis emission
rate. The square root of the air basin area is shown as the black vertical dashed line, and the selected air basin length scale (280 km) is shown
as the red vertical dotted line.

“absorbs” the systematic differences between wind speed op-
tions. We choose 100 m wind due to its low optimal RMSE
and better representation of horizontal advection than the
10 m wind. The basin length scale L is selected to be 280 km,
similar to the square root of the air basin area (257 km). One
should note that this length scale is specific to the Po Valley
air basin and should be fixed in time. A length scale should
be similarly estimated before applying such a framework to
other source regions.

4.2 NOx chemical lifetimes

The optimally estimated climatological chemical lifetimes,
which are shown in Fig. 7b and d, are replotted in Fig. 9 to
emphasize the confidence intervals and the prior values com-
mon for OMI and TROPOMI. The TROPOMI-based chemi-
cal lifetime estimates are consistently lower than the OMI-
based values, but the error bars overlap in climatological
months January–July, indicating that the differences are not
significant. Because the OMI climatology spans 2004–2021
while the TROPOMI one spans 2018–2021, this difference
implies a weak yet notable long-term decrease in NOx chem-
ical lifetime. This is likely due to the decrease in NOx emis-
sions (see Fig. 12) and consequently the shifting of chemical
regimes away from NOx-saturated conditions (Martin et al.,
2004). Shifting in summertime NOx chemical lifetime due
to a change in NOx abundance and chemical regimes has
been identified in North American cities using OMI obser-
vations and an EMG-based approach (Laughner and Cohen,
2019). Model studies indicated a similar NOx chemical life-
time change in polluted regions undergoing decreasing emis-
sions. Using the GEOS-Chem CTM, Silvern et al. (2019)
found that the annual mean tropospheric NO2 column life-
time over the contiguous US was 8.1 h in 2005 and 7.7 h in
2017. Shah et al. (2020) simulated NOx lifetime to be 6.1

and 27 h in summer and winter in 2012 and 5.9 and 21 h
in summer and winter 2017 using GEOS-Chem in China.
Over the Netherlands, Zara et al. (2021) found that the win-
ter NOx lifetime decreased from 25 to 19 h and the summer
NOx lifetime decreased from 9 to 8 h using the Chemistry
Land-surface Atmosphere Soil Slab (CLASS) model.

The TROPOMI-based climatological chemical lifetimes
are suspiciously low after September. As the NOx sinks are
driven by ambient temperature and solar radiation, we do
not expect lower chemical lifetimes in September–October
than June–July. This anomaly likely results from abnormal
TROPOMI column–wind speed relationships characterized
by high NO2 TVCDs in a few wind speed bins. Although
the individual monthly column–wind speed relationship from
OMI is noisier than TROPOMI (Fig. 3), the much longer
OMI record (201 calendar months vs. 38 calendar months
for TROPOMI) enables more effective removal of outlier
months and retrieval of climatological chemical lifetimes.
As such, we focus on the OMI-based chemical lifetime cli-
matology for the following analysis. The NOx climatolog-
ical chemical lifetimes are 5–6 h in summer and 15–20 h
in winter, generally consistent with CTM studies that con-
sider NOx sinks comprehensively (Mijling and Van Der A,
2012; Stavrakou et al., 2013; Silvern et al., 2019; Shah et al.,
2020). The summertime NOx chemical lifetime is also close
to or slightly higher than other observational-data-driven es-
timates, mostly through fitting the downwind decay of NO2
plumes (Valin et al., 2013; de Foy et al., 2015; Liu et al.,
2016; Goldberg et al., 2019a; Laughner and Cohen, 2019).
This is consistent with the modeling verification by de Foy
et al. (2014), which found the NOx chemical lifetime derived
from the EMG-based approach to be biased low compared to
the true lifetimes in the model simulations.

The OMI-based climatological chemical lifetimes in Fig. 9
are then used as priors to derive chemical lifetimes in each
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Figure 9. Prior (black) and posterior (blue for OMI and red for TROPOMI) climatological chemical lifetimes from optimal estimation. The
prior chemical lifetimes are based on nonlinear fitting to the climatological column–wind speed relationships. The error bars indicate 95%
confidence intervals by bootstrapping the calendar months used to construct each climatological column–wind speed relationship.

Figure 10. Time series of chemical lifetime (a), degrees of freedom for signal (DOFS) for chemical lifetime τc (b), and DOFS for emission
rate Q (c) from the calendar-month-based optimal estimations using OMI (blue) and TROPOMI (red) monthly data.

calendar month for both OMI and TROPOMI. The resul-
tant monthly NOx chemical lifetimes are shown in Fig. 10a.
Note that the chemical lifetimes in Fig. 10a are retrieved
from column–wind speed relationships for each calendar
month, whereas the chemical lifetimes in Fig. 9 are retrieved
from column–wind speed relationships for each climatolog-
ical month. The degrees of freedom for signal (DOFS) of
retrieved emission rates and chemical lifetimes, shown by
Fig. 10b and c, are the diagonal elements of the averaging
kernel matrix as given in Appendix B. The DOFS quantifies
the number of pieces of information retrieved from obser-
vations for a specific state vector element (Rodgers, 2000;
Brasseur and Jacob, 2017). The observational information
content of τc for each calendar month, as indicated by the
DOFS, is only∼ 0.02 (Fig. 10b). This implies that the chem-

ical lifetimes for calendar months are dominated by prior in-
fluences from the climatological chemical lifetimes, which
reflects our trade-off between emission rates and chemical
lifetimes by applying relatively strong prior regularization to
τc in each calendar month. While the climatological chemical
lifetimes are also derived from observations, the lack of ob-
servational constraints for the lifetime in each individual cal-
endar month makes them closely resemble the corresponding
climatological month values (i.e., the prior) and prevents us
from further interpretation of these monthly lifetime values.

The information on the retrieved emission rate Q that
is gained from observations, indicated by the correspond-
ing DOFS, is, however, high and close to unity (Fig. 10c).
This indicates that we can confidently retrieve emission rates
from the monthly column–wind speed relationships. The de-
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caying DOFS for OMI-based emission rates from 2004 to
2021 is likely due to the gradual increase in OMI radiance
noise (Schenkeveld et al., 2017) and consequently increased
uncertainties in OMI NO2 TVCD. The higher DOFS from
TROPOMI than OMI is also consistent with the instrument
performances.

4.3 Observational constraints on the NOx : NO2 ratio

Despite its limited effect on the estimates of NOx chemi-
cal lifetime and relative emission changes, the uncertainty
of the NOx :NO2 ratio (φ in Eq. 5) will directly propa-
gate to the NOx emission rate estimates. We investigate the
ground-based NOx :NO2 ratio measured at EEA sites as la-
beled in Fig. 11a. No ratio data are available in the most
polluted Milan metropolitan area because only NO2 data are
reported. Figure 11b shows the monthly distribution of the
NOx :NO2 ratio in the Po Valley as grayscale background
and the monthly median values as a red line. The data cov-
erage is sparse in 2015–2017, and no sensible temporal vari-
ation can be identified. Consistent seasonal variation of the
NOx :NO2 ratio is observable in 2018–2021 with high values
(1.5–1.6) in the winter and low values (1.2–1.3) in other sea-
sons, with the caveat that the data after 2020 are not fully val-
idated. The ratios in 2013 and 2014 show a similar seasonal
pattern but broader distributions and higher median values in
the warm months. Given this discontinuity, we cannot draw a
conclusion about the interannual trend of the NOx :NO2 ra-
tio. Nonetheless, the seasonal pattern is robust and consistent
with low photochemical reactivity in the winter. Therefore,
we average the monthly NOx :NO2 ratios in 2013–2014 and
2018–2019 and use them as a climatology.

4.4 NOx emission rates

Figure 12 presents the monthly air-basin-scale emission rate
retrieved from OMI and TROPOMI column–wind speed re-
lationships. The long-term trend and seasonality of OMI-
based emission rates generally match those from the JPL
chemical reanalysis (r = 0.40). The emission rates from
bottom-up inventories EDGAR, PKUNOx, and CEDS are
also shown in Fig. 12; EDGAR is only available as annual av-
erage. We use the surface total NOx emissions from the JPL
chemical reanalysis, which does not include lightning (1.8 %
of surface total). According to the JPL chemical reanalysis,
96.2 % of surface total NOx emissions are anthropogenic.
All sectors from CEDS, EDGAR, and PKUNOx are used.
Although the PKUNOx and CEDS inventories are monthly,
their seasonality differs significantly from the OMI-based
and JPL chemical reanalysis values. The interannual trends
agree reasonably well between bottom-up inventories and
top-down emission estimates (JPL chemical analysis and this
study) in their overlapping periods, although the emission
decrease trends are not as strong in the top-down estimates
as in the bottom-up estimates. The JPL chemical reanaly-

sis reports 3.5 % of NOx emissions in the Po Valley from
soils. However, other top-down studies indicate that the soil
emissions may be underestimated in Europe, ranging from
14 % to 40 % (Visser et al., 2019, and references therein).
Since the satellites observe emissions from all sources, the
discrepancy may also be from missing soil NOx emissions in
bottom-up inventories. The TROPOMI-based emission rates
show similar variation as OMI and the JPL chemical re-
analysis, but tend to be lower than OMI in the cold months
and higher than OMI in the warm months. The calendar
month chemical lifetimes retrieved from TROPOMI are sim-
ilar to OMI (Fig. 10a), and hence the differences in OMI-
and TROPOMI-based emission rates directly result from dif-
ferences in their NO2 TVCDs. This is supported by Fig. 3;
when wind speed is controlled, the OMI TVCDs are higher
in cold months, while the TROPOMI TVCDs are higher in
warm months.

Once the air basin length scale is selected (see Sect. 4.1),
the proposed satellite-data-driven framework can be used to
quantify rapid emission perturbations. The Po Valley region
experienced three major COVID-19 outbreaks, and the con-
dition is still evolving (Dong et al., 2020). All outbreaks trig-
gered lockdown measures that are expected to reduce NOx
emissions. However, the quantitative measure of net emis-
sion reduction due to the lockdowns is complicated by the
long-term decreasing trend and intra-annual variability. For
instance, the simple difference between 2020 and 2019 val-
ues includes both the pandemic-induced emission changes
and the business-as-usual decrease. Leveraging the long and
consistent OMI record, we train a statistical model to present
the interannual and intra-annual variability using the OMI-
based emission rates from January 2010 to December 2019
(yellow shaded region in Fig. 13a):

Q(t)=

exp

(
np∑
i=0

(
ci t

i
)
+

nh∑
j=1

(
aj sin(2πtj)+ bj cos(2πtj)

)
+ e

)
, (6)

where t is time measured in fractional years resolved by
month, c, a, and b are model parameters, and e is an error
term. The order of polynomial np = 3 and the number of har-
monics nh = 4 are chosen through the Akaike information
criterion (Akaike, 1974). The fitted model and 95% confi-
dence intervals are estimated using ordinary least squares
and displayed in Fig. 13a and b. Because the model fitting
does not involve data before 2010 or after 2020, the model
line over those years is from extrapolation and character-
ized by increasingly large uncertainties (i.e., broader confi-
dence intervals) as the range of projection grows. The well-
documented emission perturbation during the 2008–2009 fi-
nancial crisis (Castellanos and Boersma, 2012) is evident in
the discrepancy between model extrapolation and real emis-
sion rates (Fig. 13a). Similarly, since this statistical model
is trained using data before the pandemic, the prediction
in 2020 and beyond serves as a business-as-usual baseline.
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Figure 11. (a) Black circles are the locations of ground-based observation sites where NOx and NO2 data are available. TROPOMI NO2
TVCD from May 2018 to May 2019 oversampled to a 0.02◦ grid is illustrated in the background. (b) The background shows the density of
available NOx :NO2 ratios from filtered hourly ground-based measurements. The red line shows the monthly median values.

Figure 12. Po Valley NOx emission rates retrieved from OMI (blue circles) and TROPOMI (red squares) column–wind speed relationships
in each calendar month. Monthly emission rates calculated from the JPL chemical reanalysis, EDGAR, PKUNOx, and CEDS inventories are
shown as black, magenta, yellow, and cyan lines. The background color map indicates the prior error distributions normalized to the peak
height of unity for each calendar month.

Compared to just using a previous year or multiyear averaged
climatology as a reference (Goldberg et al., 2020; Liu et al.,
2020; Bauwens et al., 2020), the model prediction incorpo-
rates both the long-term trend and seasonality and is less
sensitive to noise in monthly estimates. The real emission
rates during the pandemic relative to the predicted emission
rates are shown in Fig. 13c. Significant COVID-19-induced

emission reduction started in February 2020 and peaked in
March 2020 at 42%. The emission rate gradually recovered
as the first outbreak was under control and reached 85%–
95% of the pre-existing trajectory in June–September 2020.
Thereafter, the emission rate dropped twice as of July 2021,
reaching reductions of 38% and 39% relative to the no-
pandemic scenario in November 2020 and March 2021.
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Figure 13. (a) The blue dots show the monthly OMI-based emission rates. The black solid and dashed lines show the prediction and 95%
confidence intervals using the model as in Eq. (6). Only data points for 2010–2019 (yellow shade) are used to fit the model. Prediction values
outside this range are extrapolations. Panel (b) is similar to (a) but focused on the period after 2019. (c) The bars show real 2020–2021
emission rates relative to the predicted emission rates. The yellow and red lines show Google and Apple mobility indicators.

These reductions correspond to the second and third out-
breaks with the subsequent controlling measures. The emis-
sion rates in January–February and May–June 2021 seem to
be back to the expected normal, highlighting the evolving
nature of pandemic-induced emission perturbations. Over-
all, the real annual emission of 2020 is estimated to be 22%
lower due to the net effect of the COVID-19 pandemic in the
Po Valley air basin.

We further correlate the COVID-19-induced NOx emis-
sion changes with the qualitative indicators of human activi-
ties estimated by the mobility of Google (Google LLC, 2021)
and Apple (Apple, 2021) users. The Google mobility is mea-
sured by aggregated Google user activity levels for the cat-
egories grocery and pharmacy, parks, transit stations, work-
places, and retail and recreation relative to a baseline period
during 3 January–6 February 2020. Google mobility reported
for six Italian regions in the Po Valley air basin, includ-
ing Piedmont, Lombardy, Veneto, Liguria, Emilia–Romagna,
and Friuli–Venezia Giulia, is averaged. The Apple mobility
is measured by Apple user activity levels in driving and tran-
sit modes over the entirety of Italy relative to the baseline
on 13 January 2020. Both Google and Apple mobility indi-
cators are in daily native resolution and averaged weekly to
remove day-of-week effects. The result is shown in Fig. 13c.
The relative NOx emission changes and the mobility indi-
cators consistently show the three troughs corresponding to
large outbreaks. The impacts of the second and third out-
breaks were lower than the first one, which is also consistent

between the mobility indicators and OMI-based net emission
changes. Discrepancies are noted in April 2020 and January
2021, when the mobility indicators stayed low after major
control measures, but the NOx emissions recovered quicker.
We speculate that this is the impact of industrial NOx emis-
sions that are not well represented by the human mobility
indicators.

5 Conclusions and discussion

We present a satellite-data-driven framework to rapidly quan-
tify NOx emission rates over an air basin and demonstrate it
in the Po Valley, Italy. Monthly emission rates and chemical
lifetimes of NOx are retrieved from observed column–wind
speed relationships, wherein the NOx column abundance is
represented by OMI and TROPOMI NO2 TVCD observa-
tions, and the wind speed is obtained from ERA5 reanalysis.
To regularize the retrieval, we derive a NOx chemical life-
time climatology and use it as prior information. The NOx
chemical lifetime is 5–6 h in summer and 15–20 h in winter.
Our observation-based emission rate estimates are consistent
with top-down and bottom-up inventories and can be quickly
updated as the method only depends on satellite and reanal-
ysis data. Leveraging the long and consistent OMI record, a
statistical model is trained to predict the business-as-usual
trajectory without the pandemic. Compared with this tra-
jectory, the real 2020–2021 emission rates show three dis-
tinctive dips that correspond to tightened COVID-19 control
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measures and reduced human activities. The overall net NOx
emission reduction due to the COVID-19 pandemic is esti-
mated to be 22% in 2020 with maximum reduction in March,
followed by November. The pandemic-induced emission re-
duction continued in March–April 2021.

Only observations under modest wind (3–8 m s−1) are
used, so there is an implicit assumption that NOx emissions
under modest wind can represent all wind conditions. Since
NOx sources in air basins are mostly anthropogenic, this as-
sumption is deemed to be valid. In addition, the satellite ob-
servations are made in the early afternoon local time, so the
retrieved emission rates may not necessarily represent the di-
urnal mean emission rate. This is a common limitation of
all observational-data-driven approach, and we note that the
overall emission rate level is anchored to the overall emission
rate level of the JPL chemical reanalysis, which is spatiotem-
porally complete, through the selection of basin length scale
L. The uncertainties of the retrieved monthly emission rates
may also originate from the systematic biases of NO2 TVCD
products, but the relative emission variations should be insen-
sitive to the observational biases. Updated satellite products
(e.g., the version 2 TROPOMI NO2 product to be released
in 2021) can be readily adopted. The monthly climatological
NOx :NO2 ratio derived from ground-based observation net-
works is used to convert NO2 abundance to NOx abundance,
which improves upon the fixed value used in previous stud-
ies (Beirle et al., 2011; Valin et al., 2013; de Foy et al., 2015;
Liu et al., 2016). However, uncertainty remains from con-
tamination of NO2 in situ measurements (Visser et al., 2019)
and the representativeness of the surface-based NOx :NO2
ratio to the column-integrated one due to proximity to emis-
sion sources and local ozone titration. Moreover, a long-term
trend in NOx :NO2 may exist, as observed in the Nether-
lands by Zara et al. (2021), although biases in NOx :NO2
have limited impacts on chemical lifetime and relative emis-
sion change estimates. The seasonal variability of estimated
NOx emissions is determined by the seasonal variabilities of
NO2 TVCD, chemical lifetime, and the NOx :NO2 ratio. We
attempt to characterize these variabilities using as much ob-
servational data as possible, and yet future investigations are
still needed. The general framework is not limited to NO2
and NOx in the Po Valley air basin, but can be applied to
investigating the emissions and lifetimes of other short-lived
species in other geographical regions.
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Appendix A: Pixel-based comparison between OMI and
TROPOMI NO2 TVCDs

The TROPOMI retrievals within ±1 h from an OMI retrieval
are averaged using the relative pixel overlapping area as
weight, and only OMI pixels that are > 80% covered by
such TROPOMI pixels are used for comparison. This en-
sures that OMI and TROPOMI sample essentially the same
air mass, and the NO2 differences reflect the inherent dif-
ferences of those two products. Figure A1 compares the
strictly collocated OMI and TROPOMI retrievals from De-
cember 2019 to November 2020. Since the TROPOMI value
in each TROPOMI–OMI pair is weight-averaged by 10–90
TROPOMI pixels, its random error is significantly lower than
the OMI value, and hence we use the slope in ordinary least
square (OLS) regression to represent the OMI /TROPOMI
ratio.

Figure A1. Correlation plots between weight-averaged TROPOMI NO2 TVCD at OMI pixels and the corresponding OMI NO2 TVCD;
1 year of data from December 2018 to November 2019 are shown monthly for each panel. The number of collocation pairs (N ),
OMI /TROPOMI slope from OLS regression, and OMI–TROPOMI NMB are shown in each panel. The dashed black line is 1 : 1.

Figure A2. OMI /TROPOMI OLS slope (blue) and OMI–TROPOMI NMB (red) for each month when TROPOMI NO2 TVCD data are
available for comparison.

Figure A2 compares both the OLS slope and the OMI–
TROPOMI NMB. In general, OMI is higher than TROPOMI
in the cold season, as indicated by slopes larger than unity
and NMB larger than zero, whereas TROPOMI is higher in
the warm season. The temporal variation of the OLS slope
and NMB shows only moderate correlation (correlation co-
efficient r = 0.54), indicating that the discrepancy between
OMI and TROPOMI is more complicated than a zero-level
offset or proportional scaling.
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Appendix B: Details in optimal estimations of Q and τc

This Appendix provides technical details on the optimal es-
timation using column–wind speed relationships over both
climatological months (Sect. 3.3.2) and calendar months
(Sect. 3.3.3)

Separately for OMI and TROPOMI, the column–wind
speed relationship 〈�〉 vectors are concatenated to a single
observational vector (y):

y = [〈�〉(month1), 〈�〉(month2), . . . ]. (B1)

There are 12 months for the climatology retrieval, 201
months for OMI-based calendar month retrieval, and 38
months for TROPOMI-based calendar month retrieval. The
state vector β includes emission rates and chemical lifetimes
of all months:

β = [Q(month1),Q(month2), . . . ,τc(month1),

τc(month2), . . . ]. (B2)

The optimal estimation is obtained by iteratively minimiz-
ing the cost function

J = (y−f (β))T λ−1(y−f (β))

+ (β −βa)
T Sa
−1(β −βa). (B3)

Here f (β) is the forward model by concatenating Eq. (5) for
each month, βa is the prior vector, and Sa is the prior er-
ror covariance matrix. In the optimal estimations applied in
this study, the strength of prior regularization is controlled
by a single factor λ. A lower λ value, or weaker regular-
ization, leads to smaller residuals but larger deviation from
the prior; a higher λ value, or stronger regularization, leads
to smaller deviation from the prior but larger residuals. We
select λ values for OMI /TROPOMI as well as climatology
and calendar months separately by finding the maximum cur-
vature point. The corresponding L-curve plots in theQ/τc op-
timal estimations using column–wind speed relationships av-
eraged to climatological months and in each calendar month
are shown in Figs. B1 and B2, respectively. The selected λ
values are labeled in the plots.

The cost function J (Eq. B3) is minimized by a Gauss–
Newton approach, whereby the state vector is updated in
each iteration by the following rule:

βi+1= βi + (Sa
−1
+Ki

T λ−1Ki)
−1(Ki

T λ−1(y−f (βi))

−Sa
−1(βi −βa)).

(B4)

Here βi is the state vector estimation in iteration i, and β0 =
βa . Ki = ∂f (βi)/∂βi is the Jacobian matrix at iteration i.
Since the forward model is concatenated from the column–
wind speed relationship for each month (Eq. 5), and the state
vector is concatenated from Q and τc for each month, the

Jacobian can be constructed using analytical derivations of
Eq. (5):

∂〈�〉

∂Q
=

1

φA
(
W
L
+

1
τc

) , (B5)

∂〈�〉

∂τc
=
Q

φA

1

τ 2
c

(
W
L
+

1
τc

)2 . (B6)

The convergence is determined by comparing the error vari-
ance derivative (Bösch et al., 2015),

dσ 2
i = (βi+1−βi)

T
(

Ki
T λ−1(y−f (βi))

+Sa
−1(βi −βa)

)
, (B7)

with a threshold that scales with the number of state vector
elements.

After an optimal solution is found, the DOFS for each state
vector element (Q or τc) is the corresponding diagonal ele-
ment of the averaging kernel matrix:

A= I−
(

KT λ−1K+Sa
−1
)−1

Sa
−1, (B8)

where K is the Jacobian matrix at the final iteration and I
is an identity matrix with the same dimension as the state
vector.
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Figure B1. L-curve plot of the squared errors of a regularized solution vs. squared residuals for the climatology of OMI (dots) and TROPOMI
(squares).

Figure B2. Similar to Fig. B1 but showing L-curve plots for the optimal estimation for all calendar months for OMI (a) and TROPOMI (b).
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