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Abstract. Statistical properties are investigated for the
stochastic model of eddy hopping, which is a novel cloud
microphysical model that accounts for the effect of the su-
persaturation fluctuation at unresolved scales on the growth
of cloud droplets and on spectral broadening. Two versions
of the model, the original version by Grabowski and Abade
(2017) and the second version by Abade et al. (2018), are
considered and validated against the reference data taken
from direct numerical simulations and large-eddy simula-
tions (LESs). It is shown that the original version fails to
reproduce a proper scaling for a certain range of parame-
ters, resulting in a deviation of the model prediction from
the reference data, while the second version successfully re-
produces the proper scaling. In addition, a possible simplifi-
cation of the model is discussed, which reduces the number
of model variables while keeping the statistical properties al-
most unchanged in the typical parameter range for the model
implementation in the LES Lagrangian cloud model.

1 Introduction

The purpose of the present paper is to investigate the sta-
tistical properties of the stochastic model of eddy hopping
proposed by Grabowski and Abade (2017). This stochastic
model, referred to hereinafter as the eddy-hopping model,
was developed in order to account for the effect of the su-
persaturation fluctuation at unresolved (subgrid) scales on
the growth of cloud droplets by the condensation process.
In a turbulent cloud, cloud droplets arriving at a given loca-
tion follow different trajectories and thus experience different
growth histories, which leads to significant spectral broaden-
ing. This mechanism, referred to as the stochastic conden-
sation theory, has been investigated since the early 1960s

by a number of researchers (mostly Russian; see Sedunov,
1974; Clark and Hall, 1979; Korolev and Mazin, 2003), but
the importance of this mechanism was later reinforced by
Cooper (1989) and Lasher-Trapp et al. (2005). For this mech-
anism, Grabowski and Wang (2013) emphasized the impor-
tance of large-scale eddies (turbulent eddies with scales not
much smaller than the cloud itself) and proposed the concept
of large-eddy hopping. Grabowski and Abade (2017) formu-
lated this concept and developed the eddy-hopping model.
Abade et al. (2018) extended the model by introducing a term
accounting for the relaxation of supersaturation fluctuations
due to turbulent mixing. For clarity, we hereinafter refer to
the model by Grabowski and Abade (2017) as the original
version, and the model by Abade et al. (2018) as the sec-
ond version. For the following study using the eddy-hopping
model, readers are referred to Thomas et al. (2020).

It should be noted that the turbulent entrainment mixing
is another important mechanism for the supersaturation fluc-
tuation generation other than the stochastic condensation and
that the effects of the turbulent entrainment mixing are not in-
cluded in the eddy-hopping model considered in the present
study. Abade et al. (2018) investigated the effects of the tur-
bulent entrainment mixing and entrained CCN activation by
using the entraining parcel model.

In the present paper, we take a rather theoretical approach
to obtain various statistical properties of the eddy-hopping
model, such as the variance, covariance, and auto-correlation
function of the supersaturation fluctuation. These statistical
properties are used to validate the model against the refer-
ence data taken from direct numerical simulations (DNSs)
and large-eddy simulations (LESs). We show that the orig-
inal version of the eddy-hopping model fails to reproduce
a proper scaling for a certain range of parameters, resulting
in the deviation of the model prediction from the reference
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data, while the second version successfully reproduces the
proper scaling. We show how the relaxation term introduced
by Abade et al. (2018) leads to this improvement. We also
discuss the possibility of simplification of the model, which
reduces the number of model variables while keeping the sta-
tistical properties almost unchanged in the typical parameter
range for the model implementation in the LES Lagrangian
cloud model.

The remainder of the present paper is organized as follows.
Section 2 describes the governing equations of the original
version. Section 3 presents a theoretical analysis and numeri-
cal experiments and demonstrates the improper scaling in the
model prediction by the original version. Section 4 describes
the second version. Finally, Sect. 5 discusses the possibility
of simplification of the model.

2 Governing equations

The original version of the eddy-hopping model proposed by
Grabowski and Abade (2017) consists of the following two
evolution equations. First, the fluctuation of the vertical ve-
locity of turbulent flow at the droplet position, w′(t), is mod-
eled by the Ornstein–Uhlenbeck process:

w′(t + δt)= w′(t)e−δt/τ +
√

1− e−
2δt
τ σw′ψ, (1)

where δt is the time increment,ψ is a Gaussian random num-
ber with zero mean and unit variance drawn every time step,
σw′ is the standard deviation of w′, and τ is the integral time,
or the large-eddy turnover time of the turbulent flow. Here,
σw′ and τ are used as the model parameters. Second, the su-
persaturation fluctuation at the droplet position, S′(t), is gov-
erned by

dS′

dt
= a1w

′
−

S′

τrelax
. (2)

Here, the first term on the right-hand side represents the ef-
fect of adiabatic cooling and warming due to air parcel as-
cent and descent caused by the vertical velocity w′(t). The
parameter a1 has the unit of a scalar gradient. The second
term on the right-hand side represents the effect of conden-
sation or evaporation of droplets. The timescale τrelax is re-
ferred to as the phase relaxation time and is inversely propor-
tional to the average of the number density and radius of the
droplets (Politovich and Cooper, 1988; Korolev and Mazin,
2003; Kostinski, 2009; Devenish et al., 2012).

Equation (1) can also be written as the following derivative
form (Pope, 2000):

dw′

dt
=−

1
τ
w′(t)+Fw′(t). (3)

Here, the term Fw′(t) is statistically independent of S′ and
obeys the Gaussian random process that has zero mean and

two-time covariance defined by

〈Fw′(t)Fw′(s)〉 =

(
2σ 2
w′

τ

)
δ(t − s), (4)

where the angle brackets indicate an ensemble average and
δ( ) is the Dirac delta function. In the following theoretical
analysis, Eqs. (3) and (2) are used as the governing equations
of the original version.

3 Statistical properties of the original version

We now obtain the analytical expression for the standard de-
viation of the supersaturation fluctuation, σS′ , in a statisti-
cally steady state. Starting from Eqs. (3) and (2), the result is
provided in Eq. (13).

First, multiplying Eq. (3) by S′ and taking an ensemble
average, we obtain〈
S′

dw′

dt

〉
=−

1
τ
〈w′S′〉 (5)

because of statistical independence
(
〈S′Fw′〉 = 0

)
. Second,

multiplying Eq. (2) by w′ and taking an ensemble average,
we obtain〈
w′

dS′

dt

〉
= a1〈w

′2
〉−

1
τrelax
〈w′S′〉. (6)

Summing Eqs. (5) and (6), we obtain

d
dt
〈w′S′〉 = a1〈w

′2
〉−

1
τrelax
〈w′S′〉−

1
τ
〈w′S′〉. (7)

Next, we consider a statistically steady state. Since
an ensemble-averaged variable does not change in time
(d 〈◦〉/dt = 0) and 〈w′2〉 = σ 2

w′
in the statistically steady

state, we obtain the flux of the supersaturation in the verti-
cal direction as follows:

〈w′S′〉 = a1

(
1
τ
+

1
τrelax

)−1

σ 2
w′

= a1(1+Da)−1τσ 2
w′ , (8)

whereDa is the Damköhler number (Shaw, 2003) defined as

Da =
τ

τrelax
. (9)

Next, multiplying Eq. (2) by S′ and taking an ensemble aver-
age, we obtain

1
2

d
dt
〈S′

2
〉 = a1〈w

′S′〉−
1

τrelax
〈S′

2
〉. (10)

In the statistically steady state, we have

σ 2
S′ = 〈S

′2
〉 = a1τrelax〈w

′S′〉. (11)
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Combining Eqs. (8) and (11), we obtain

σ 2
S′ = a1τrelax

[
a1(1+Da)−1τσ 2

w′

]
= a2

1(1+Da)
−1τrelaxτσ

2
w′ , (12)

or equivalently,

σS′ = (1+Da)−1/2Da−1/2 a1τσw′ . (13)

Here, σS′ in Eq. (13) has two important asymptotic forms,
as shown below:

1. Large scale limit.
For τ →∞ (or equivalently,Da→∞, L→∞, where
L= σw′τ is the integral scale), σS′ in Eq. (13) is approx-
imated as

σS′ ≈ a1Da
−1/2τ

1/2
relaxτ

1/2σw′

= a1τrelaxσw′ . (14)

For the case of a constant dissipation rate of turbulent
kinetic energy ε, σw′ ∼ L1/3 (see Appendix B), and we
have the following scaling:

σS′ ∼ L
1/3. (15)

2. Small scale limit.
For τ → 0 (or equivalently, Da→ 0, L→ 0), σS′ in
Eq. (13) is approximated as

σS′ ≈ a1τ
1/2
relaxτ

1/2σw′ . (16)

For the case of a constant dissipation rate of turbu-
lent kinetic energy ε, σw′ ∼ L1/3 and τ ∼ L2/3 (see Ap-
pendix B), and we have the following scaling:

σS′ ∼ L
2/3. (17)

The above asymptotic forms of σS′ in the two limits can be
validated through comparison with the result of the scaling
argument by Lanotte et al. (2009). From their argument, we
should have σS′ ∼ a1τrelaxσw′ for the large scale limit, which
is consistent with Eq. (14). On the other hand, we should
have σS′ ∼ a1τσw′ for the small scale limit, which is incon-
sistent with Eq. (16). Therefore, the original version given by
Eqs. (3) and (2) does not reproduce the proper scaling for the
small scale limit.

Figure 1 compares the scale dependence of σS′ for the an-
alytical expression given by Eq. (13) (orange curve) with the
results of the numerical integration of the original version
given by Eqs. (1) and (2) (blue squares). Here, numerical in-
tegration is conducted in the same manner as that by Thomas
et al. (2020) (Sect. 5 of their study), except that the integra-
tion time is increased from 6τ to 10τ (see Appendix A for
details). After the integration time of 10τ , all of the experi-
mental results achieved a statistically steady state and agreed

Figure 1. Standard deviation of the supersaturation fluctuation σS′
in the statistically steady state obtained from the analytical expres-
sion given by Eq. (13) (orange curve) and the results of our numeri-
cal integration of the original version of the eddy-hopping model
(blue squares). The horizontal axis is the integral length L. The
black dots indicate the reference data taken from direct numerical
simulations and large-eddy simulations by Thomas et al. (2020).
The red triangles indicate the results of the numerical integration of
the original version reported by Thomas et al. (2020). The range of
L and σS′ for the panel is the same as in Fig. 10 in Thomas et al.
(2020). The three short black lines indicate slopes of 1, 2/3, and
1/3.

with the theoretical curve (compare the orange curve and the
blue squares). As expected based on the analysis, the theoret-
ical curve shows the scaling σS′ ∼ L1/3 for large scales (ap-
proximately L > 101m) and the improper scaling σS′ ∼ L2/3

for small scales (approximately L < 10−1m). These results
are contrary to the results of DNSs and LESs (scaled-up
DNSs) conducted by Thomas et al. (2020) (black dots in
Fig. 1), which show the proper scalings both for large and
small scales (σS′ ∼ L1/3 and ∼ L1, respectively).

Note that Fig. 1 also shows the results of the numerical
integration of the original version reported by Thomas et al.
(2020) (red triangles), and their results disagree with the re-
sults of the present study. A possible reason for this discrep-
ancy might be that their results did not achieve a statistically
steady state. For details, see Appendix C.

The original version of the eddy-hopping model given
by Eqs. (1) and (2) shows the improper scaling for small
scales because of the assumption made in the formulation
of the model. Originally, Eq. (2) (corresponding to Eq. 8 in
Grabowski and Abade, 2017) was formulated under the as-
sumption of large scales (or Da� 1), since this assumption
usually holds for typical situations in atmospheric clouds.
Thus, it is reasonable that the original version does not re-
produce the proper scaling for small scales.
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4 Statistical properties of the second version

We next consider the second version of the eddy-hopping
model by Abade et al. (2018), which is written as follows:

w′(t + δt)= w′(t)e−δt/(c1τ)+

√
1− e−

2δt
(c1τ) σw′ψ, (18)

dS′

dt
= a1w

′
−

S′

(c2τrelax)
−

S′

(c1τ)
. (19)

Note that, for subsequent use, we write the governing equa-
tions in a slightly generalized form by introducing two pa-
rameters c1 and c2. The second version by Abade et al.
(2018) has c1 = c2 = 1.

The important change introduced by Abade et al. (2018)
into the original version is the term proportional to −S′/τ in
Eq. (19). Physically, this term represents the damping effect
on S′ due to turbulent mixing (eddy diffusivity). This type
of term is commonly included in stochastic models used in
cloud turbulence research (Sardina et al., 2015, 2018; Chan-
drakar et al., 2016; Siewert et al., 2017; Saito et al., 2019a).
The timescale of the damping effect due to turbulent mixing
is characterized by the integral time τ , whereas that due to
condensation or evaporation of cloud droplets is character-
ized by the phase relaxation time τrelax. The relative impor-
tance of these two effects is characterized by the Damköh-
ler number (Da = τ/τrelax), where the damping effect due to
turbulent mixing is dominant for Da� 1 (corresponding to
small scales). Below we show that the term −S′/τ plays an
essential role in reproducing the proper scaling.

Note that it is possible to further extend the second version
by additionally introducing the Wiener process term repre-
senting small-scale fluctuations or mixing into Eq. (19) for
the supersaturation fluctuation. Readers are referred to Paoli
and Shariff (2009) and Sardina et al. (2015) for the Langevin
model including such terms, and also to Chandrakar et al.
(2021), who implemented such a Langevin model into the
LES Lagrangian cloud model and investigated the impact of
entrainment mixing and turbulent fluctuations on droplet size
distributions in a cumulus cloud. In the present study, how-
ever, we focus on statistical properties of the second version
with Eqs. (18) and (19).

Applying the analytical procedure described in Sect. 3 to
the second version given by Eqs. (18) and (19), we first ob-
tain

〈w′S′〉 = a1

(
2
c1τ
+

1
c2τrelax

)−1

σ 2
w′

= c1a1[2+ (c1/c2)Da]
−1τσ 2

w′ , (20)

instead of Eq. (8). Next, instead of Eq. (11), we have

σ 2
S′ = 〈S

′2
〉 = a1

(
1
c1τ
+

1
c2τrelax

)−1

〈w′S′〉

= c1a1[1+ (c1/c2)Da]
−1τ 〈w′S′〉. (21)

Finally, the analytical expression corresponding to Eq. (13)
is

σS′ = [1+ (c1/c2)Da]
−1/2
[2+ (c1/c2)Da]

−1/2c1a1τσw′ . (22)

Asymptotic forms of σS′ in Eq. (22) for the large and small
scale limits are, respectively, given as follows:

1. Large scale limit.
For τ →∞ (or equivalently, Da→∞, L→∞), σS′
in Eq. (22) is approximated as

σS′ ≈ c2a1Da
−1τσw′

= c2a1τrelaxσw′ . (23)

For the case of a constant dissipation rate of turbulent
kinetic energy ε, we have

σS′ ∼ L
1/3. (24)

2. Small scale limit.
For τ → 0 (or equivalently, Da→ 0, L→ 0), σS′ in
Eq. (22) is approximated as

σS′ ≈ 2−1/2c1a1τσw′ , (25)

which indicates that τ 1/2
relax in Eq. (16) has been replaced

by τ 1/2 by introducing the term −S′/τ in Eq. (19). For
the case of a constant dissipation rate of turbulent ki-
netic energy ε, we have

σS′ ∼ L. (26)

Therefore, the second version successfully reproduces
asymptotic forms σS′ ∼ a1τrelaxσw′ and ∼ a1τσw′ for the
large and small scale limits, respectively, which are both con-
sistent with the result of the scaling argument by Lanotte
et al. (2009).

Figure 2 (orange curve) shows the theoretical curve given
by Eq. (22) for the second version (c1 = c2 = 1). The sec-
ond version reproduces the proper scalings both for large and
small scales (σS′ ∼ L1/3 and∼ L1, respectively) and demon-
strates better agreement with the reference data (black dots)
than the original version for L < 100 m. Figure 2 (green di-
amonds) also shows the results of the numerical integration
of the second version, which agree with the theoretical curve
(orange curve), as expected. Here, the numerical integration
was conducted in the same manner as in the previous section
(see Appendix A for details).

Although improved, the second version still slightly over-
and underestimates the supersaturation fluctuations for L <
3×10−1 and L > 2×100 m, respectively, as shown in Fig. 2
(compare the orange curve with black dots). This deviation
from the reference data can be further reduced by adjusting
two parameters c1 and c2 in Eqs. (18) and (19). The analyt-
ical expression (22) and its asymptotic forms (23) and (25)

Atmos. Chem. Phys., 21, 13119–13130, 2021 https://doi.org/10.5194/acp-21-13119-2021



I. Saito et al.: Statistical properties of a stochastic model of eddy hopping 13123

Figure 2. Standard deviation of the supersaturation fluctuation σS′
in the statistically steady state obtained from the analytical expres-
sion given by Eq. (22) for the second version (c1 = c2 = 1, orange
curve) and the results of our numerical integration using the second
version given by Eqs. (18) and (19) (c1 = c2 = 1, green diamonds).
The dashed line indicates the analytical expression given by Eq. (13)
for the original version. The two short black lines indicate slopes of
1 and 1/3. The black dots and the axes of the panel are the same as
in Fig. 1.

Figure 3. Standard deviation of the supersaturation fluctuation σS′
in the statistically steady state from the analytical expression (22)
for the second version. The dashed curve is for c1 = c2 = 1, and the
solid curve is for c1 = 0.746 and c2 = 1.28. The black dots and the
axes of the panel are the same as in Fig. 1.

show how c1 and c2 work. These types of parameters are not
new. For example, a parameter corresponding to c1 is com-
monly used in the Langevin stochastic equation in turbulence
research (Sawford, 1991; Marcq and Naert, 1998). Formally,
the inverse of c1 is referred to as the drift coefficient, and
the coefficients for the velocity and scalar equations should
be distinguished. However, we treat these coefficients as the
same parameter in Eqs. (18) and (19) for simplicity. On the
other hand, the importance of a parameter corresponding to

c2 has been demonstrated in a recent study on turbulence
modulation by particles (Saito et al., 2019b).

Here, we do not consider any physical meaning for c1
and c2 and use them just as tuning parameters. Two param-
eters c1 and c2 are determined by comparing the theoretical
curve given by Eq. (22) with the reference data taken from
DNSs and LESs in Thomas et al. (2020). The best fit is given
by c1 = 0.746 and c2 = 1.28. Figure 3 (solid curve) shows
the theoretical curve given by Eq. (22) with these values of
c1 and c2, which agrees almost perfectly with the reference
data (black dots). Although the improvement from the sec-
ond version with c1 = c2 = 1 is slight, this result shows that
the eddy-hopping model can be easily tuned to reproduce the
reference data almost perfectly.

5 Possibility of simplification of the model

Finally, we discuss the possibility of simplification of the
eddy-hopping model. Here, our discussion is based on the
second version given by Eqs. (18) and (19), but the same ar-
gument also applies to the original version given by Eqs. (1)
and (2).

The eddy-hopping model consists of two evolution equa-
tions for the supersaturation and vertical velocity fluctua-
tions, S′ and w′ respectively, and these two variables fluctu-
ate randomly according to the Ornstein–Uhlenbeck process.
However, if we have S′ that fluctuates with a proper am-
plitude and auto-correlation function, then we do not need
the evolution equation for w′, because only S′ is used in the
growth equation of the droplet size. As described in Sect. 4,
we obtained an analytical expression for σS′ , i.e., the stan-
dard deviation of the supersaturation fluctuation in the statis-
tically steady state given by Eq. (22). On the other hand, the
auto-correlation function for S′ in a statistically steady state
can also be obtained analytically. The derivation is described
in Appendix D. The result is given in Eq. (D14) and is as
follows:

A(t)=

〈
S′(t + t0)S

′(t0)
〉

〈S′(t0)S′(t0)〉
(27)

=

(
τ1

τ1− τ2

)
e−t/τ1 −

(
τ2

τ1− τ2

)
e−t/τ2 , (28)

where τ1 and τ2 are, respectively, defined as

τ1 = c1τ, and τ2 =

(
1
c1τ
+

1
c2τrelax

)−1

= c1τ

(
1+

c1

c2
Da

)−1

. (29)

We can also obtain the auto-correlation time for S′ by time
integration of A(t) (see Eq. D16 in Appendix D), which is
given as

τ0 = τ1+ τ2. (30)

https://doi.org/10.5194/acp-21-13119-2021 Atmos. Chem. Phys., 21, 13119–13130, 2021
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Figure 4. Auto-correlation functions in the statistically steady state for the simplified model (B(t) in Eq. 35: blue dashed curve) and the
second version (A(t) in Eq. 28: red solid curve). Here, c1 = c2 = 1. The parameters for each panel are as follows: (a) L= 10−2 m, τ =
0.447 s, τ0 = 0.844 s,Da = 0.127; (b)L= 10−1 m, τ = 2.08 s, τ0 = 3.38 s,Da = 0.591; (c)L= 100 m, τ = 9.63 s, τ0 = 12.2 s,Da = 2.74;
(d) L= 101 m, τ = 44.7 s, τ0 = 48.0 s, Da = 12.7; and (e) L= 102 m, τ = 208 s, τ0 = 211 s, Da = 59.1. The phase relaxation time is fixed
to τrelax = 3.513 s. The horizontal axis is the time t normalized by the auto-correlation time τ0 for each case. The parameter τ is determined
from the integral length L based on the setting for the numerical experiment described in Appendices A and B.

The auto-correlation function A(t) in Eq. (28) and the auto-
correlation time τ0 in Eq. (30), with τ1 and τ2 defined by (29),
have important asymptotic forms in two limits. First, for the
large scale limit (Da→∞), the asymptotic forms of A(t)
and τ0 are given by

lim
Da→∞

A(t)= e−t/(c1τ) and lim
Da→∞

τ0 = c1τ, (31)

respectively. Second, for the small scale limit (Da→ 0), the
asymptotic forms of A(t) and τ0 are given by

lim
Da→0

A(t)=

[
1+

t

(c1τ)

]
e−t/(c1τ) and

lim
Da→0

τ0 = 2c1τ, (32)

respectively.
Based on analytical expressions for the fluctuation ampli-

tude and the auto-correlation function for S′ (Eqs. 22 and
30, respectively), a simplified version of the eddy-hopping
model is defined as follows:

S′(t + δt)= S′(t)e−δt/τ0 +

√
1− e−

2δt
τ0 σS′ψ, (33)

where σS′ and τ0 are given by Eqs. (22) and (30), respec-
tively. Note that the simplified model given by Eq. (33) is
a single-equation model, as compared to the two-equation

model given by Eqs. (18) and (19) before the simplification.
The auto-correlation function for S′ in the simplified model
given by Eq. (33) is as follows:

B(t)=

〈
S′(t + t0)S

′(t0)
〉

〈S′(t0)S′(t0)〉
(34)

= e−t/τ0 , (35)

which has the following two asymptotic forms. First, for the
large scale limit (Da→∞),

lim
Da→∞

B(t)= e−t/(c1τ), (36)

which agrees with the corresponding asymptotic form given
by Eq. (31) for the second version. Second, for the small
scale limit (Da→ 0),

lim
Da→0

B(t)= e−t/(2c1τ), (37)

which disagrees with the corresponding asymptotic form
given by Eq. (32) for the second version.

Figures 4a through e compare the auto-correlation func-
tion for the simplified model (B(t) in Eq. 35: blue dashed
curve) and that for the second version (A(t) in Eq. 28: red
solid curve) for five cases ranging from Da� 1 to Da� 1.
Here, c1 = c2 = 1. Note that the time t is normalized by
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Figure 5. Time evolutions of the supersaturation fluctuations obtained from the numerical integration of the original version (Eqs. 1 and
2, dashed red curve), the second version (Eqs. 18 and 19, dotted blue curve), and the simplified model (Eq. 33, solid green curve). The
parameters for each panel are as follows: (a) L= 10−2 m, τ = 0.447 s, Da = 0.127; (b) L= 100 m, τ = 9.63 s, Da = 2.74; (c) L= 102 m,
τ = 208 s, Da = 59.1. The phase relaxation time is fixed to τrelax = 3.513 s. Results are shown for the time range 0≤ (t/τ − 10)≤ 10 (or
equivalently, 10τ ≤ t ≤ 20τ ), where all cases are already in a statistically steady state. The numerical integration was conducted in the same
manner as described in Appendix A. All results were obtained by using the same random number series.

the auto-correlation time τ0 for each case. Although B(t)
and A(t) share the same auto-correlation time, B(t) deviates
from A(t) for cases with Da of order unity or smaller, as
shown in Fig. 4a through c. On the other hand, for Da� 1,
B(t) agrees with A(t) very well, as shown in Fig. 4d and e.

The simplified model has the desirable convergence prop-
erty. The auto-correlation function for the simplified model
(B(t) in Eq. 35) converges to that for the second version in
the large-scale limit (Da→∞), as shown in Eq. (36). As
confirmed in Figs. 4d and e, the two auto-correlation func-
tions are almost identical for an integral length L greater
than 10 m (or Da ≥ 10). In the implementation of the eddy-
hopping model to the LES Lagrangian cloud model, the in-
tegral length L is supposed to roughly correspond to the grid
size, which is often greater than several meters to several
tens of meters. Therefore, the assumption of large scales (or
Da� 1) usually holds, in which case the statistical proper-
ties of the simplified model are expected to be almost un-
changed after the simplification.

Figure 5 compares the time evolutions of the supersatura-
tion fluctuations obtained from the numerical integration of
the original version (dashed red curve), the second version
(dotted blue curve), and the simplified model (solid green
curve). Here, the numerical integration was conducted in the
same manner as described in Appendix A. All results were
obtained by using the same random number series. The re-
sults are shown in the time range 10τ ≤ t ≤ 20τ , where all
cases are already in a statistically steady state.

For small scales, the simplified model produces qualita-
tively different trajectories of S′ from the second version, as
shown in Fig. 5a (L= 10−2 m; compare the solid green and
dotted blue curves), even though these two models share the
same fluctuation amplitude σS′ and the auto-correlation time
τ0 in the statistically steady state. The difference is smaller
for intermediate scales (Fig. 5b, L= 100 m). For sufficiently

large scales (Fig. 5c, L= 102 m), the simplified model and
the second version produce almost identical results.

6 Summary and conclusions

The purpose of the present paper was to obtain various
statistical properties of the eddy-hopping model, a novel
cloud microphysical model, which accounts for the effect of
the supersaturation fluctuation at unresolved scales on the
growth of cloud droplets and on spectral broadening. Two
versions of the model are considered: the original version
by Grabowski and Abade (2017) and the second version by
Abade et al. (2018). Based on derived statistical properties,
we first showed in Sect. 3 that the original version fails to
reproduce a proper scaling for smaller Damköhler numbers
(corresponding to small scales), resulting in a deviation of the
model prediction from the reference data taken from DNSs
and LESs, as shown in Fig. 1. In Sect. 4, we showed that
the second version successfully reproduces the proper scal-
ing and agrees better with the reference data than the origi-
nal version for small scales (L < 100 m in Fig. 2). We also
showed that, by adjusting two parameters c1 and c2, the sec-
ond version can almost perfectly reproduce the reference
data. In Sect. 5, we discussed the possibility of simplifica-
tion of the model. The simplified model consists of a sin-
gle stochastic equation for the supersaturation fluctuation, as
in Eq. (33), with amplitude and time parameters given by
the corresponding analytical expressions for the model be-
fore the simplification. We showed that, for larger Damköhler
numbers (corresponding to large scales), the auto-correlation
function of the supersaturation fluctuation for the simplified
model converges to that for the model before the simplifi-
cation. This convergence property is desirable because the
assumption of large scales usually holds in the typical pa-
rameter range for the model implementation in the LES La-
grangian cloud model.
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Appendix A: Numerical integration of the eddy-hopping
model

The results of the numerical integration of the original ver-
sion (Eqs. 1 and 2) and the second version (Eqs. 18 and 19)
are shown in Figs. 1 (blue squares) and 2 (green diamonds),
respectively. For these experiments, we used the same set-
ting as that in Sect. 5 in Thomas et al. (2020), except that
the integration time was increased from 6τ to 10τ . We set
a1 = 4.753×10−4 m−1, ε = 10 cm2 s−3, and τrelax = 3.513 s,
and the integral time τ as

τ =
1

(2π)1/3

(
L

σw′

)
. (A1)

As described in Appendix B, for the case of a constant dis-
sipation rate of turbulent kinetic energy ε, σw′ is given as a
function of L. We time integrated the governing equations of
the model using 12 values of L: L= 0.0128, 0.0256, 0.064,
0.128, 0.256, 0.512, 1.024, 2.56, 6.4, 12.8, 25.6, and 64.0 m.
The time step δt is set as 1/1000 of τ , and the integra-
tion time is 10τ . The numerical scheme is the forward Euler
method. The initial condition is such that w′(0)= σw′ψ and
S′(0)= 0. Each result in Figs. 1 (blue squares) and 2 (green
diamonds) is obtained by averaging the results for 1000 en-
sembles with different seeds of random numbers.

Appendix B: Scalings for the case of a constant
dissipation rate of turbulent kinetic energy

We consider classical homogeneous isotropic turbulence, in
which energy is mainly injected into the system at large
scales, cascaded to smaller scales by nonlinear interaction,
and finally dissipated by the molecular viscosity in the small-
est scales. In a statistically steady state, the dissipation rate of
turbulent kinetic energy is defined as ε. If ε is fixed and the
integral scale L is changed, then the kinetic energy E scales
as follows (Thomas et al., 2020):

E ∼ (Lε)2/3. (B1)

The black dots in Fig. B1 show the relation between L and E
in the reference data taken from DNSs and LESs by Thomas
et al. (2020) (Table 2 of their study). In their simulation,
the dissipation rate was fixed to ε = 10 cm2s−3. The orange
curve in Fig. B1 indicates the functionE = αε2/3L2/3, where
α is the fitting parameter. The best fit is given by α = 0.475.
The root-mean-square turbulent velocity is calculated as a
function of L by urms = σw′ =

√
(2E/3), and σw′ is used as

the parameter in the eddy-hopping model. Note that Thomas
et al. (2020) used the same type of large-scale forcing as that
used by Kumar et al. (2012), where the integral length L is
set to be equal to the box length Lbox.

Figure B1. Relationship between the integral scale L and the turbu-
lent kinetic energy E. The black dots are taken from the reference
data in Thomas et al. (2020). The orange curve indicates the fitting
function E = αε2/3L2/3 with α = 0.475.

Appendix C: Achievement of a statistically steady state

We confirm that all of the results of the numerical integration
of the eddy-hopping model in the present study achieved sta-
tistically steady states. For this purpose, we first derive the
analytical expression for the time evolutions of the variance
and covariance of the variables in the model and then com-
pare these analytical expressions with the results of the nu-
merical integration.

The governing equations given by Eqs. (3) and (2) can be
rewritten in generalized forms as

dw′

dt
=−

1
τ1
w′(t)+Fw′(t), (C1)

dS′

dt
= a1w

′(t)−
S′(t)

τ2
, (C2)

where τ1 and τ2 are the relaxation times forw′ and S′, respec-
tively, and the forcing term Fw′(t) satisfies Eq. (4). Evolution
equations for the variance and covariance of the variables are
derived as follows:

dVw′(t)
dt

=−
2
τ1
Vw′(t)+

(
2σ 2
w′

τ1

)
, (C3)

dC(t)
dt
= a1Vw′(t)−

(
1
τ1
+

1
τ2

)
C(t), (C4)

dVS′(t)
dt

=−
2
τ2
VS′(t)+ 2a1C(t), (C5)

where Vw′(t), C(t), and VS′(t) are, respectively, defined as

Vw′(t)=
〈
w′(t)w′(t)

〉
, (C6)

C(t)=
〈
w′(t)S′(t)

〉
, (C7)

VS′(t)=
〈
S′(t)S′(t)

〉
. (C8)

Atmos. Chem. Phys., 21, 13119–13130, 2021 https://doi.org/10.5194/acp-21-13119-2021



I. Saito et al.: Statistical properties of a stochastic model of eddy hopping 13127

For the numerical integration of the eddy-hopping model by
Thomas et al. (2020), τ1 = τ and τ2 = τrelax. Since the initial
conditions for w′(t) and S′(t) are set to w′(0)= σw′ψ and
S′(0)= 0 in Thomas et al. (2020), the corresponding initial
conditions for the variance and covariance are given by

Vw′(0)= σ 2
w′ , (C9)

C(0)= 0, (C10)
VS′(0)= 0. (C11)

Solving Eqs. (C3) through (C5) with the initial conditions
given by Eqs. (C9) through (C11), we obtain

Vw′(t)= σ
2
w′ , (C12)

C(t)= a1σ
2
w′τ3

(
1− e−t/τ3

)
, (C13)

VS′(t)= a
2
1σ

2
w′τ3τ2

(
1− e−2t/τ2

)
+ 2a2

1σ
2
w′τ3τ4

(
e−t/τ3 − e−2t/τ2

)
, (C14)

where τ3 and τ4 are, respectively, defined as

τ3 =
τ1τ2

τ1+ τ2
, and τ4 =

τ1τ2

τ2− τ1
. (C15)

Figure C1. Standard deviation of the supersaturation fluctuation σS′ at times t = 0.6τ (a) and t = 6τ (b) obtained from the analytical
expression given by Eq. (C14) (cyan dots) and the results of the numerical integration of the original version given by Eqs. (1) and (2) (black
crosses). The orange curve, red triangles, and axes of the panel are the same as in Fig. 1. The two short black lines indicate slopes of 2/3 and
1/3. The setting for the numerical integration is the same as that used in Sect. 3, except that the integration times are 0.6τ and 6τ in (a) and
(b), respectively.

Figure C1 compares the analytical expression given by
Eq. (C14) (cyan dots) with the results of the numerical in-
tegration of the original version given by Eqs. (1) and (2)
(black crosses). The setting for the numerical experiment is
the same as that used in Fig. 1, except that the integration
time is 0.6τ in Fig. C1a and 6τ in Fig. C1b. The results of
the numerical integration (black crosses) agree well with the
analytical expression (cyan dots), and both approach the the-
oretical curve for the statistically steady state (orange curve
in each panel) as the integration time increases. Figure C1a
also indicates that the results of the numerical integration of
the eddy-hopping model by Thomas et al. (2020) (red trian-
gles) are fairly close to our results at 0.6τ . Thus, it might be
possible that the integration time of their numerical exper-
iment was not long enough to achieve a statistically steady
state.
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Appendix D: Derivation of auto-correlation function

We derive the analytical expression for the auto-correlation
function of the supersaturation fluctuation S′(t) in the eddy-
hopping model. As in Appendix C, we start from the gener-
alized form of the eddy-hopping model as follows:

dw′

dt
=−

1
τ1
w′(t)+Fw′(t), (D1)

dS′

dt
= a1w

′(t)−
S′(t)

τ2
, (D2)

where τ1 and τ2 are the relaxation times for w′ and S′, re-
spectively, and the forcing term Fw′(t) satisfies Eq. (4). We
consider that the system is in a statistically steady state.

First, multiplying Eq. (D2) by et/τ2 and applying the prod-
uct rule of differentiation, we obtain

d
dt

(
S′(t)et/τ2

)
= a1w

′(t)et/τ2 . (D3)

Integrating Eq. (D3) from t = 0 to t , we obtain

S′(t)= S′(0)e−t/τ2 +

t∫
0

a1w
′(ξ)e(ξ−t)/τ2dξ. (D4)

(Note that we chose the integration range [0, t] for simplicity
of notation. Since we consider a statistically steady state, the
following discussion is unchanged if the integration range
is [t0, t0+ t].) Applying a similar procedure to that above to
Eq. (D1) with the integration range t : 0→ ξ , we obtain

w′(ξ)= w′(0)e−ξ/τ1 +

ξ∫
0

Fw′(ζ )e(ζ−ξ)/τ1dζ. (D5)

Substituting Eq. (D5) into (D4) and calculating some of the
integrations, we obtain

S′(t)= S′(0)e−t/τ2 +

t∫
0

a1

(
w′(0)e−ξ/τ1

+

ξ∫
0

Fw′(ζ )e(ζ−ξ)/τ1dζ
)

e(ξ−t)/τ2dξ (D6)

= S′(0)e−t/τ2 + a1w
′(0)e−t/τ2

t∫
0

e(τ
−1
2 −τ

−1
1 )ξdξ

+ a1e−t/τ2

t∫
0

ξ∫
0

Fw′(ζ )eζ/τ1e(τ
−1
2 −τ

−1
1 )ξdζdξ (D7)

= S′(0)e−t/τ2 + a1w
′(0)

(
τ−1

2 − τ
−1
1

)−1 (
e−t/τ1 − e−t/τ2

)
+ a1e−t/τ2

t∫
0

ξ∫
0

Fw′(ζ )eζ/τ1e(τ
−1
2 −τ

−1
1 )ξdζdξ. (D8)

Multiplying Eq. (D8) by S′(0) and taking an ensemble aver-
age, we obtain

〈S′(t)S′(0)〉 = 〈S′(0)S′(0)〉e−t/τ2 + a1〈w
′(0)S′(0)〉(

τ−1
2 − τ

−1
1

)−1 (
e−t/τ1 − e−t/τ2

)
, (D9)

because of the statistical independence
(〈
Fw′(ζ )S

′(0)
〉
= 0

)
.

Next, as in the derivation of Eq. (11), we multiply Eq. (D2)
by S′ and consider the statistically steady state. We obtain

〈S′(0)S′(0)〉 = a1τ2〈w
′(0)S′(0)〉. (D10)

Substituting Eq. (D10) into (D9), we have

〈S′(t)S′(0)〉 = 〈S′(0)S′(0)〉e−t/τ2

+〈S′(0)S′(0)〉τ−1
2

(
τ−1

2

−τ−1
1

)−1 (
e−t/τ1 − e−t/τ2

)
. (D11)

Therefore, the auto-correlation function of the supersatura-
tion fluctuation S′(t) for the eddy-hopping model given by
Eqs. (D1) and (D2) in the statistically steady state is written
as follows:

A(t)=
〈S′(t)S′(0)〉
〈S′(0)S′(0)〉

(D12)

= e−t/τ2 +
τ1

τ1− τ2

(
e−t/τ1 − e−t/τ2

)
(D13)

=

(
τ1

τ1− τ2

)
e−t/τ1 −

(
τ2

τ1− τ2

)
e−t/τ2 . (D14)

The auto-correlation time τ0 is obtained by time-integrating
A(t) as

τ0 =

∞∫
0

A(t)dt =
τ 2

1 − τ
2
2

τ1− τ2
(D15)

= τ1+ τ2. (D16)

For the original version of the eddy-hopping model given by
Eqs. (1) and (2), we have

τ1 = τ, and τ2 = τrelax. (D17)

For the second version given by Eqs. (18) and (19), we have

τ1 = c1τ, andτ2 =

(
1
c1τ
+

1
c2τrelax

)−1

. (D18)
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